
Package ‘kerastuneR’
May 14, 2020

Type Package

Title Interface to 'Keras Tuner'

Version 0.1.0.2

Maintainer Turgut Abdullayev <turqut.a.314@gmail.com>

Description 'Keras Tuner' <https://keras-team.github.io/keras-
tuner/> is a hypertuning framework made for humans.
It aims at making the life of AI practitioners, hypertuner
algorithm creators and model designers as simple as possible by
providing them with a clean and easy to use API for hypertuning.
'Keras Tuner' makes moving from a base model to a hypertuned one quick and
easy by only requiring you to change a few lines of code.

License Apache License 2.0

URL https://github.com/henry090/kerastuneR

BugReports https://github.com/henry090/kerastuneR/issues

SystemRequirements TensorFlow >= 2.0 (https://www.tensorflow.org/)

Encoding UTF-8

LazyData true

RoxygenNote 7.1.0

Imports reticulate, tensorflow, rstudioapi, plotly, data.table,
RJSONIO, rjson, tidyjson, dplyr, echarts4r, magick, crayon,
keras

Suggests knitr, rmarkdown, tfdatasets, testthat, purrr

VignetteBuilder knitr

NeedsCompilation no

Author Turgut Abdullayev [aut, cre],
Google Inc. [cph]

Repository CRAN

Date/Publication 2020-05-14 08:10:02 UTC

1

https://github.com/henry090/kerastuneR
https://github.com/henry090/kerastuneR/issues

2 BayesianOptimization

R topics documented:
BayesianOptimization . 2
fit_tuner . 4
get_best_models . 6
Hyperband . 7
HyperModel_class . 9
HyperParameters . 10
HyperResNet . 10
HyperXception . 11
install_kerastuner . 12
keras_tuner_version . 13
load_model . 13
Objective . 14
Oracle . 14
plot_keras_model . 15
plot_tuner . 16
RandomSearch . 17
results_summary . 19
save_model . 19
search_summary . 20
TensorBoard . 20
Tuner_class . 22

Index 23

BayesianOptimization BayesianOptimization

Description

Bayesian optimization oracle.

Usage

BayesianOptimization(
objective,
max_trials,
num_initial_points = NULL,
alpha = 1e-04,
beta = 2.6,
seed = NULL,
hyperparameters = NULL,
allow_new_entries = TRUE,
tune_new_entries = TRUE

)

BayesianOptimization 3

Arguments

objective String or ‘kerastuner.Objective‘. If a string, the direction of the optimization
(min or max) will be inferred.

max_trials Int. Total number of trials (model configurations) to test at most. Note that the
oracle may interrupt the search before ‘max_trial‘ models have been tested if the
search space has been exhausted.

num_initial_points

(Optional) Int. The number of randomly generated samples as initial training
data for Bayesian optimization. If not specified, a value of 3 times the dimen-
sionality of the hyperparameter space is used.

alpha Float. Value added to the diagonal of the kernel matrix during fitting. It repre-
sents the expected amount of noise in the observed performances in Bayesian
optimization.

beta Float. The balancing factor of exploration and exploitation. The larger it is, the
more explorative it is.

seed Int. Random seed.
hyperparameters

HyperParameters class instance. Can be used to override (or register in advance)
hyperparamters in the search space.

allow_new_entries

Whether the hypermodel is allowed to request hyperparameter entries not listed
in ‘hyperparameters‘.

tune_new_entries

Whether hyperparameter entries that are requested by the hypermodel but that
were not specified in ‘hyperparameters‘ should be added to the search space, or
not. If not, then the default value for these parameters will be used.

Details

It uses Bayesian optimization with a underlying Gaussian process model. The acquisition function
used is upper confidence bound (UCB), which can be found in the following link: https://www.cse.wustl.edu/~garnett/cse515t/spring_2015/files/lecture_notes/12.pdf

Value

BayesianOptimization tuning with Gaussian process

be found in the following link

https://www.cse.wustl.edu/~garnett/cse515t/spring_2015/files/lecture_notes/12.pdf

Examples

The usage of 'tf$keras'
library(keras)
library(dplyr)

4 fit_tuner

library(kerastuneR)
tf$keras$Input(shape=list(28L, 28L, 1L))

fit_tuner Search

Description

Start the search for the best hyperparameter configuration. The call to search has the same signature
as “‘model.fit()“‘. Models are built iteratively by calling the model-building function, which pop-
ulates the hyperparameter space (search space) tracked by the hp object. The tuner progressively
explores the space, recording metrics for each configuration.

Usage

fit_tuner(
tuner,
x = NULL,
y = NULL,
steps_per_epoch = NULL,
batch_size = NULL,
epochs = NULL,
validation_data = NULL,
validation_steps = NULL,
...

)

Arguments

tuner A tuner object

x Vector, matrix, or array of training data (or list if the model has multiple in-
puts). If all inputs in the model are named, you can also pass a list mapping
input names to data. x can be NULL (default) if feeding from framework-native
tensors (e.g. TensorFlow data tensors).

y Vector, matrix, or array of target (label) data (or list if the model has multiple
outputs). If all outputs in the model are named, you can also pass a list mapping
output names to data. y can be NULL (default) if feeding from framework-native
tensors (e.g. TensorFlow data tensors).

steps_per_epoch

Integer. Total number of steps (batches of samples) to yield from generator be-
fore declaring one epoch finished and starting the next epoch. It should typically
be equal to ceil(num_samples / batch_size). Optional for Sequence: if unspeci-
fied, will use the len(generator) as a number of steps.

batch_size Integer or ‘NULL‘. Number of samples per gradient update. If unspecified,
‘batch_size‘ will default to 32.

fit_tuner 5

epochs to train the model. Note that in conjunction with initial_epoch, epochs is to be
understood as "final epoch". The model is not trained for a number of iterations
given by epochs, but merely until the epoch of index epochs is reached.

validation_data

Data on which to evaluate the loss and any model metrics at the end of each
epoch. The model will not be trained on this data. validation_data will over-
ride validation_split. validation_data could be: - tuple (x_val, y_val) of Numpy
arrays or tensors - tuple (x_val, y_val, val_sample_weights) of Numpy arrays -
dataset or a dataset iterator

validation_steps

Only relevant if steps_per_epoch is specified. Total number of steps (batches of
samples) to validate before stopping.

... Some additional arguments

Value

performs a search for best hyperparameter configuations

Examples

library(dplyr)
library(kerastuneR)
library(keras)
x_data <- matrix(data = runif(500,0,1),nrow = 50,ncol = 5)
y_data <- ifelse(runif(50,0,1) > 0.6, 1L,0L) %>% as.matrix()
x_data2 <- matrix(data = runif(500,0,1),nrow = 50,ncol = 5)
y_data2 <- ifelse(runif(50,0,1) > 0.6, 1L,0L) %>% as.matrix()

HyperModel <- kerastuneR::PyClass(
'HyperModel',
inherit = kerastuneR::HyperModel_class(),
list(

`__init__` = function(self, num_classes) {

self$num_classes = num_classes
NULL

},
build = function(self,hp) {

model = keras_model_sequential()
model %>% layer_dense(units = hp$Int('units',

min_value = 32,
max_value = 512,
step = 32),

input_shape = ncol(x_data),
activation = 'relu') %>%

layer_dense(as.integer(self$num_classes), activation = 'softmax') %>%
compile(

6 get_best_models

optimizer = tf$keras$optimizers$Adam(
hp$Choice('learning_rate',

values = c(1e-2, 1e-3, 1e-4))),
loss = 'sparse_categorical_crossentropy',
metrics = 'accuracy')

}
)

)

hypermodel = HyperModel(num_classes=10L)

tuner = RandomSearch(hypermodel = hypermodel,
objective = 'val_accuracy',
max_trials = 2,
executions_per_trial = 1,
directory = 'my_dir5',
project_name = 'helloworld')

tuner %>% fit_tuner(x_data, y_data, epochs = 1, validation_data = list(x_data2,y_data2))

get_best_models Get best models

Description

The function for retrieving the top best models with hyperparameters Returns the best model(s),
as determined by the tuner’s objective. The models are loaded with the weights corresponding to
their best checkpoint (at the end of the best epoch of best trial). This method is only a convenience
shortcut. For best performance, It is recommended to retrain your Model on the full dataset using
the best hyperparameters found during search.

Usage

get_best_models(tuner = NULL, num_models = NULL)

Arguments

tuner A tuner object

num_models When search is over, one can retrieve the best model(s)

Value

the list of best model(s)

Hyperband 7

Hyperband Hyperband

Description

Variation of HyperBand algorithm.

Usage

Hyperband(
hypermodel,
optimizer = NULL,
loss = NULL,
metrics = NULL,
hyperparameters = NULL,
objective,
max_epochs,
factor = 3,
hyperband_iterations = 1,
seed = NULL,
tune_new_entries = TRUE,
allow_new_entries = TRUE,
distribution_strategy = NULL,
directory = NULL,
project_name = NULL,
...

)

Arguments

hypermodel Define a model-building function. It takes an argument "hp" from which you
can sample hyperparameters.

optimizer An optimizer is one of the arguments required for compiling a Keras model

loss A loss function (or objective function, or optimization score function) is one of
the parameters required to compile a model

metrics A metric is a function that is used to judge the performance of your model
hyperparameters

HyperParameters class instance. Can be used to override (or register in advance)
hyperparamters in the search space.

objective A loss metrics function for tracking the model performance e.g. "val_precision".
The name of the objective to optimize (whether to minimize or maximize is
automatically inferred for built-in metrics)

max_epochs to train the model. Note that in conjunction with initial_epoch, epochs is to be
understood as "final epoch". The model is not trained for a number of iterations
given by epochs, but merely until the epoch of index epochs is reached.

8 Hyperband

factor Int. Reduction factor for the number of epochs and number of models for each
bracket.

hyperband_iterations

Int >= 1. The number of times to iterate over the full Hyperband algorithm.
One iteration will run approximately “‘max_epochs * (math.log(max_epochs,
factor) ** 2)“‘ cumulative epochs across all trials. It is recommended to set this
to as high a value as is within your resource budget.

seed Int. Random seed.
tune_new_entries

Whether hyperparameter entries that are requested by the hypermodel but that
were not specified in hyperparameters should be added to the search space, or
not. If not, then the default value for these parameters will be used.

allow_new_entries

Whether the hypermodel is allowed to request hyperparameter entries not listed
in ‘hyperparameters‘. **kwargs: Keyword arguments relevant to all ‘Tuner‘
subclasses. Please see the docstring for ‘Tuner‘.

distribution_strategy

Scale up from running single-threaded locally to running on dozens or hundreds
of workers in parallel. Distributed Keras Tuner uses a chief-worker model. The
chief runs a service to which the workers report results and query for the hyper-
parameters to try next. The chief should be run on a single-threaded CPU in-
stance (or alternatively as a separate process on one of the workers). Keras Tuner
also supports data parallelism via tf.distribute. Data parallelism and distributed
tuning can be combined. For example, if you have 10 workers with 4 GPUs on
each worker, you can run 10 parallel trials with each trial training on 4 GPUs
by using tf.distribute.MirroredStrategy. You can also run each trial on TPUs via
tf.distribute.experimental.TPUStrategy. Currently tf.distribute.MultiWorkerMirroredStrategy
is not supported, but support for this is on the roadmap.

directory The dir where training logs are stored

project_name Detailed logs, checkpoints, etc, in the folder my_dir/helloworld, i.e. direc-
tory/project_name.

... Some additional arguments

Details

Reference: Li, Lisha, and Kevin Jamieson. ["Hyperband: A Novel Bandit-Based Approach to Hy-
perparameter Optimization." Journal of Machine Learning Research 18 (2018): 1-52](http://jmlr.org/papers/v18/16-
558.html). # Arguments hypermodel: Instance of HyperModel class (or callable that takes hyper-
parameters and returns a Model instance). objective: String. Name of model metric to minimize
or maximize, e.g. "val_accuracy". max_epochs: Int. The maximum number of epochs to train
one model. It is recommended to set this to a value slightly higher than the expected time to
convergence for your largest Model, and to use early stopping during training (for example, via
‘tf.keras.callbacks.EarlyStopping‘). factor: Int. Reduction factor for the number of epochs and
number of models for each bracket. hyperband_iterations: Int >= 1. The number of times to
iterate over the full Hyperband algorithm. One iteration will run approximately ‘max_epochs *
(math.log(max_epochs, factor) ** 2)‘ cumulative epochs across all trials. It is recommended to set
this to as high a value as is within your resource budget. seed: Int. Random seed. hyperparameters:

HyperModel_class 9

HyperParameters class instance. Can be used to override (or register in advance) hyperparamters
in the search space. tune_new_entries: Whether hyperparameter entries that are requested by the
hypermodel but that were not specified in ‘hyperparameters‘ should be added to the search space, or
not. If not, then the default value for these parameters will be used. allow_new_entries: Whether the
hypermodel is allowed to request hyperparameter entries not listed in ‘hyperparameters‘. **kwargs:
Keyword arguments relevant to all ‘Tuner‘ subclasses. Please see the docstring for ‘Tuner‘.

Value

a hyperparameter tuner object Hyperband

Reference

Li, Lisha, and Kevin Jamieson. ["Hyperband: A Novel Bandit-Based Approach to Hyperparameter
Optimization." Journal of Machine Learning Research 18 (2018): 1-52](http://jmlr.org/papers/v18/16-
558.html).

HyperModel_class HyperModel

Description

Defines a searchable space of Models and builds Models from this space.

Usage

HyperModel_class()

Details

Attributes: name: The name of this HyperModel. tunable: Whether the hyperparameters defined
in this hypermodel should be added to search space. If ‘FALSE‘, either the search space for these
parameters must be defined in advance, or the default values will be used.

Value

None

10 HyperResNet

HyperParameters HyperParameters

Description

The HyperParameters class serves as a hyperparameter container. A HyperParameters instance
contains information about both the search space and the current values of each hyperparameter.
Hyperparameters can be defined inline with the model-building code that uses them. This saves you
from having to write boilerplate code and helps to make the code more maintainable.

Usage

HyperParameters(...)

Arguments

... Pass hyperparameter arguments to the tuner constructor

Value

container for both a hyperparameter space, and current values

HyperResNet HyperResNet

Description

A ResNet HyperModel.

Usage

HyperResNet(
include_top = TRUE,
input_shape = NULL,
input_tensor = NULL,
classes = NULL

)

Arguments

include_top whether to include the fully-connected layer at the top of the network.

input_shape Optional shape list, e.g. ‘(256, 256, 3)‘. One of ‘input_shape‘ or ‘input_tensor‘
must be specified.

input_tensor Optional Keras tensor (i.e. output of ‘layers.Input()‘) to use as image input for
the model. One of ‘input_shape‘ or ‘input_tensor‘ must be specified.

HyperXception 11

classes optional number of classes to classify images into, only to be specified if ‘in-
clude_top‘ is TRUE, and if no ‘weights‘ argument is specified. **kwargs: Addi-
tional keyword arguments that apply to all HyperModels. See ‘kerastuner.HyperModel‘.

Value

a pre-trained ResNet model

Examples

library(keras)
library(dplyr)
library(kerastuneR)

kerastuneR::install_kerastuner()

cifar <- dataset_cifar10()

hypermodel = kerastuneR::HyperResNet(input_shape = list(32L, 32L, 3L), classes = 10L)
hypermodel2 = kerastuneR::HyperXception(input_shape = list(32L, 32L, 3L), classes = 10L)

tuner = kerastuneR::Hyperband(
hypermodel = hypermodel,
objective = 'accuracy',
loss = 'sparse_categorical_crossentropy',
max_epochs = 1,
directory = 'my_dir',
project_name='helloworld')

train_data = cifar$train$x[1:30,1:32,1:32,1:3]
test_data = cifar$train$y[1:30,1] %>% as.matrix()

tuner %>% fit_tuner(train_data,test_data, epochs = 1)

HyperXception HyperXception

Description

An Xception HyperModel.

12 install_kerastuner

Usage

HyperXception(
include_top = TRUE,
input_shape = NULL,
input_tensor = NULL,
classes = NULL

)

Arguments

include_top whether to include the fully-connected layer at the top of the network.

input_shape Optional shape list, e.g. ‘(256, 256, 3)‘. One of ‘input_shape‘ or ‘input_tensor‘
must be specified.

input_tensor Optional Keras tensor (i.e. output of ‘layers.Input()‘) to use as image input for
the model. One of ‘input_shape‘ or ‘input_tensor‘ must be specified.

classes optional number of classes to classify images into, only to be specified if ‘in-
clude_top‘ is TRUE, and if no ‘weights‘ argument is specified. **kwargs: Addi-
tional keyword arguments that apply to all HyperModels. See ‘kerastuner.HyperModel‘.

Value

a pre-trained Xception model

install_kerastuner Install Keras Tuner

Description

This function is used to install the Keras Tuner python module

Usage

install_kerastuner(
version = NULL,
...,
restart_session = TRUE,
from_git = FALSE

)

Arguments

version for specific version of Keras Tuner, e.g. "1.0.1"

... other arguments passed to [reticulate::py_install()].
restart_session

Restart R session after installing (note this will only occur within RStudio).

from_git install the recent GitHub version of Keras Tuner

keras_tuner_version 13

Value

a python module kerastuner

keras_tuner_version Version of Keras Tuner

Description

Get the current version of Keras Tuner

Usage

keras_tuner_version()

Value

prints the version.

load_model Load model

Description

Loads a Model from a given trial

Usage

load_model(tuner, trial)

Arguments

tuner A tuner object

trial A ‘Trial‘ instance. For models that report intermediate results to the ‘Ora-
cle‘, generally ‘load_model‘ should load the best reported ‘step‘ by relying of
‘trial.best_step‘

Value

None

14 Oracle

Objective Objective

Description

Objective(name, direction) includes strings, the direction of the optimization (min or max) will be
inferred.

Usage

Objective(name, direction, ...)

Arguments

name name

direction direction

... Some additional arguments

Value

None

Oracle Oracle

Description

Implements a hyperparameter optimization algorithm.

Usage

Oracle(
objective,
max_trials = NULL,
hyperparameters = NULL,
allow_new_entries = TRUE,
tune_new_entries = TRUE

)

plot_keras_model 15

Arguments

objective String. Name of model metric to minimize or maximize, e.g. "val_accuracy".

max_trials The maximum number of hyperparameter combinations to try.
hyperparameters

HyperParameters class instance. Can be used to override (or register in advance)
hyperparamters in the search space.

allow_new_entries

Whether the hypermodel is allowed to request hyperparameter entries not listed
in ‘hyperparameters‘.

tune_new_entries

Whether hyperparameter entries that are requested by the hypermodel but that
were not specified in ‘hyperparameters‘ should be added to the search space, or
not. If not, then the default value for these parameters will be used.

Value

None

plot_keras_model Plot Keras model

Description

Converts a Keras model to dot format and save to a file.

Usage

plot_keras_model(
model,
to_file = "model.png",
show_shapes = FALSE,
show_layer_names = TRUE,
rankdir = "TB",
expand_nested = FALSE,
dpi = 96

)

Arguments

model A Keras model instance

to_file File name of the plot image.

show_shapes whether to display shape information.
show_layer_names

whether to display layer names.

16 plot_tuner

rankdir ‘rankdir‘ argument passed to PyDot, a string specifying the format of the plot:
’TB’ creates a vertical plot; ’LR’ creates a horizontal plot.

expand_nested Whether to expand nested models into clusters.

dpi Dots per inch.

Value

saves a png image on the system and builds a plot in R

plot_tuner Plot the tuner results with ’plotly’

Description

Plot the search space results

Usage

plot_tuner(tuner, height = NULL, width = NULL, type = "plotly")

Arguments

tuner A tuner object

height height of the plot

width width of the plot

type Type parameter has 2 options:
* By default it uses ‘plotly‘
* Second option is ‘echarts4r‘
Note that ‘echarts4r‘ ignores width and height parameters

Value

a list which contains a dataframe of results and a plot

RandomSearch 17

RandomSearch RandomSearch

Description

Random search tuner.

Usage

RandomSearch(
hypermodel,
objective,
max_trials,
seed = NULL,
hyperparameters = NULL,
tune_new_entries = TRUE,
allow_new_entries = TRUE,
executions_per_trial = NULL,
directory = NULL,
project_name = NULL,
...

)

Arguments

hypermodel Define a model-building function. It takes an argument "hp" from which you
can sample hyperparameters.

objective A loss metrics function for tracking the model performance e.g. "val_precision".
The name of the objective to optimize (whether to minimize or maximize is
automatically inferred for built-in metrics)

max_trials the total number of trials (max_trials) to test

seed Int. Random seed
hyperparameters

HyperParameters class instance. Can be used to override (or register in advance)
hyperparamters in the search space

tune_new_entries

Whether hyperparameter entries that are requested by the hypermodel but that
were not specified in hyperparameters should be added to the search space, or
not. If not, then the default value for these parameters will be used.

allow_new_entries

Whether the hypermodel is allowed to request hyperparameter entries not listed
in hyperparameters

executions_per_trial

the number of models that should be built and fit for each trial (executions_per_trial).
Note: the purpose of having multiple executions per trial is to reduce results

18 RandomSearch

variance and therefore be able to more accurately assess the performance of a
model. If you want to get results faster, you could set executions_per_trial=1
(single round of training for each model configuration)

directory The dir where training logs are stored

project_name Detailed logs, checkpoints, etc, in the folder my_dir/helloworld, i.e. direc-
tory/project_name.

... Some additional arguments

Details

Arguments: hypermodel: Instance of HyperModel class (or callable that takes hyperparameters
and returns a Model instance). objective: String. Name of model metric to minimize or maximize,
e.g. "val_accuracy". max_trials: Int. Total number of trials (model configurations) to test at most.
Note that the oracle may interrupt the search before ‘max_trial‘ models have been tested. seed:
Int. Random seed. hyperparameters: HyperParameters class instance. Can be used to override (or
register in advance) hyperparamters in the search space. tune_new_entries: Whether hyperparam-
eter entries that are requested by the hypermodel but that were not specified in ‘hyperparameters‘
should be added to the search space, or not. If not, then the default value for these parameters will
be used. allow_new_entries: Whether the hypermodel is allowed to request hyperparameter entries
not listed in ‘hyperparameters‘. **kwargs: Keyword arguments relevant to all ‘Tuner‘ subclasses.
Please see the docstring for ‘Tuner‘.

Value

a hyperparameter tuner object RandomSearch

Examples

library(keras)
library(tensorflow)

x_data <- matrix(data = runif(500,0,1),nrow = 50,ncol = 5)
y_data <- ifelse(runif(50,0,1) > 0.6, 1L,0L) %>% as.matrix()
x_data2 <- matrix(data = runif(500,0,1),nrow = 50,ncol = 5)
y_data2 <- ifelse(runif(50,0,1) > 0.6, 1L,0L) %>% as.matrix()

build_model = function(hp) {
model = keras_model_sequential()
model %>% layer_dense(units=hp$Int('units',

min_value=32L,
max_value=512L,
step=32L),
input_shape = ncol(x_data),
activation='relu') %>%

layer_dense(units=1L, activation='softmax') %>%
compile(

optimizer= tf$keras$optimizers$Adam(
hp$Choice('learning_rate',

results_summary 19

values=c(1e-2, 1e-3, 1e-4))),
loss='binary_crossentropy',
metrics='accuracy')
return(model)

}
tuner = RandomSearch(hypermodel = build_model,

objective = 'val_accuracy',
max_trials = 2,
executions_per_trial = 1,
directory = 'model_dir',
project_name = 'helloworld')

results_summary Results summary

Description

Print a summary of the search results (best models)

Usage

results_summary(tuner = NULL, num_trials = NULL)

Arguments

tuner Requires a tuner object

num_trials Shows the top best models

Value

the list of results summary of the tuner object

save_model Save model

Description

Saves a Model for a given trial

Usage

save_model(tuner, trial_id, model, step = 1)

20 TensorBoard

Arguments

tuner A tuner object

trial_id The ID of the ‘Trial‘ that corresponds to this Model.

model The trained model.

step For models that report intermediate results to the ‘Oracle‘, the step that this
saved file should correspond to. For example, for Keras models this is the num-
ber of epochs trained.

Value

None

search_summary Search summary

Description

Print a summary of the search space

Usage

search_summary(tuner = NULL)

Arguments

tuner Requires a tuner object

Value

the summary of search space of the tuner object

TensorBoard TensorBoard

Description

Enable visualizations for TensorBoard.

TensorBoard 21

Usage

TensorBoard(
log_dir = "logs",
histogram_freq = 0,
write_graph = TRUE,
write_images = FALSE,
update_freq = "epoch",
profile_batch = 2,
embeddings_freq = 0,
embeddings_metadata = NULL

)

Arguments

log_dir the path of the directory where to save the log files to be parsed by TensorBoard.

histogram_freq frequency (in epochs) at which to compute activation and weight histograms for
the layers of the model. If set to 0, histograms won’t be computed. Validation
data (or split) must be specified for histogram visualizations.

write_graph whether to visualize the graph in TensorBoard. The log file can become quite
large when write_graph is set to TRUE.

write_images whether to write model weights to visualize as image in TensorBoard.

update_freq ‘’batch’‘ or ‘’epoch’‘ or integer. When using ‘’batch’‘, writes the losses and
metrics to TensorBoard after each batch. The same applies for ‘’epoch’‘. If us-
ing an integer, let’s say ‘1000‘, the callback will write the metrics and losses to
TensorBoard every 1000 samples. Note that writing too frequently to Tensor-
Board can slow down your training.

profile_batch Profile the batch to sample compute characteristics. By default, it will profile the
second batch. Set profile_batch=0 to disable profiling. Must run in TensorFlow
eager mode.

embeddings_freq

frequency (in epochs) at which embedding layers will be visualized. If set to 0,
embeddings won’t be visualized.

embeddings_metadata

a dictionary which maps layer name to a file name in which metadata for this em-
bedding layer is saved. See the [details](https://www.tensorflow.org/how_tos/embedding_viz/#metadata_optional)
about metadata files format. In case if the same metadata file is used for all em-
bedding layers, string can be passed.

Details

TensorBoard is a visualization tool provided with TensorFlow. This callback logs events for Tensor-
Board, including: * Metrics summary plots * Training graph visualization * Activation histograms
* Sampled profiling If you have installed TensorFlow with pip, you should be able to launch Tensor-
Board from the command line: “‘sh tensorboard –logdir=path_to_your_logs “‘ You can find more
information about TensorBoard [here](https://www.tensorflow.org/get_started/summaries_and_tensorboard).

22 Tuner_class

Value

None

Raises

ValueError: If histogram_freq is set and no validation data is provided.

Tuner_class Tuner

Description

Tuner class for Keras models.

Usage

Tuner_class()

Details

May be subclassed to create new tuners. # Arguments: oracle: Instance of Oracle class. hyper-
model: Instance of HyperModel class (or callable that takes hyperparameters and returns a Model
instance). max_model_size: Int. Maximum size of weights (in floating point coefficients) for a valid
models. Models larger than this are rejected. optimizer: Optional. Optimizer instance. May be used
to override the ‘optimizer‘ argument in the ‘compile‘ step for the models. If the hypermodel does
not compile the models it generates, then this argument must be specified. loss: Optional. May be
used to override the ‘loss‘ argument in the ‘compile‘ step for the models. If the hypermodel does not
compile the models it generates, then this argument must be specified. metrics: Optional. May be
used to override the ‘metrics‘ argument in the ‘compile‘ step for the models. If the hypermodel does
not compile the models it generates, then this argument must be specified. distribution_strategy:
Optional. A TensorFlow ‘tf.distribute‘ DistributionStrategy instance. If specified, each trial will
run under this scope. For example, ‘tf.distribute.MirroredStrategy([’/gpu:0, /’gpu:1])‘ will run each
trial on two GPUs. Currently only single-worker strategies are supported. directory: String. Path to
the working directory (relative). project_name: Name to use as prefix for files saved by this Tuner.
logger: Optional. Instance of Logger class, used for streaming data to Cloud Service for monitor-
ing. overwrite: Bool, default ‘FALSE‘. If ‘FALSE‘, reloads an existing project of the same name if
one is found. Otherwise, overwrites the project.

Value

None

Index

BayesianOptimization, 2

fit_tuner, 4

get_best_models, 6

Hyperband, 7
HyperModel_class, 9
HyperParameters, 10
HyperResNet, 10
HyperXception, 11

install_kerastuner, 12

keras_tuner_version, 13

load_model, 13

Objective, 14
Oracle, 14

plot_keras_model, 15
plot_tuner, 16

RandomSearch, 17
results_summary, 19

save_model, 19
search_summary, 20

TensorBoard, 20
Tuner_class, 22

23

	BayesianOptimization
	fit_tuner
	get_best_models
	Hyperband
	HyperModel_class
	HyperParameters
	HyperResNet
	HyperXception
	install_kerastuner
	keras_tuner_version
	load_model
	Objective
	Oracle
	plot_keras_model
	plot_tuner
	RandomSearch
	results_summary
	save_model
	search_summary
	TensorBoard
	Tuner_class
	Index

