Package ‘keras’

May 19, 2020
Type Package
Title R Interface to 'Keras'
Version 2.3.0.0
Description Interface to 'Keras' <https://keras.io>, a high-level neural
networks 'API'. 'Keras' was developed with a focus on enabling fast experimentation,

supports both convolution based networks and recurrent networks (as well as
combinations of the two), and runs seamlessly on both 'CPU" and 'GPU' devices.

Encoding UTF-8
License MIT + file LICENSE

URL https://keras.rstudio.com

BugReports https://github.com/rstudio/keras/issues

Depends R (>=3.2)

Imports generics (>= 0.0.1), reticulate (>= 1.10), tensorflow (>=
2.0.0), tfruns (>= 1.0), magrittr, zeallot, methods, R6

Suggests ggplot2, testthat (>= 2.1.0), knitr, rmarkdown, tfdatasets,
jpeg

SystemRequirements Keras >= 2.0 (https://keras.io)

RoxygenNote 7.0.2

VignetteBuilder knitr

NeedsCompilation no

Author Daniel Falbel [ctb, cph, cre],
JJ Allaire [aut, cph],
Frangois Chollet [aut, cph],
RStudio [ctb, cph, fnd],
Google [ctb, cph, fnd],
Yuan Tang [ctb, cph] (<https://orcid.org/0000-0001-5243-233X>),
Wouter Van Der Bijl [ctb, cph],
Martin Studer [ctb, cph],
Sigrid Keydana [ctb]
Maintainer Daniel Falbel <daniel@rstudio.com>
Repository CRAN

Date/Publication 2020-05-19 20:30:02 UTC

https://keras.rstudio.com
https://github.com/rstudio/keras/issues

2 R topics documented:

R topics documented:

keras-package L e 9
activation_relu s 10
adapt e 11
application_densenet e 12
application_inception_resnet_v2 e e 13
application_inception_v3 e e 15
application_mobilenet oL o 16
application_mobilenet_v2 18
application_nasnet e e 19
application_resnet50 L. 21
application_VEE o e e e e e e 23
application_Xception e e e e 24
backend L. e 26
bidirectional 26
callback_csv_logger 27
callback_early_stopping L 28
callback_lambda 29
callback_learning_rate_scheduler. 30
callback_model_checkpoint L o 31
callback_progbar_logger 32
callback_reduce_Ir_on_plateau 33
callback_remote_monitor e e e 34
callback_tensorboard e 35
callback_terminate_on_naan e e e e e e e e 36
clone_model L 37
compile. keras.engine.training.Modelo 0oL 37
COMSIIAINES . . . & v v v o e 38
COUNE_PATAMS « . . v v v v e v v e e e e e e e e e e e e e e e e 40
create_layer e e e e e e e e e 40
CIEALE_WIAPPET . . v v v v v e e e e e e e e e e e e e e e e e e 41
dataset_boston_housing 42
dataset_cifarlQ e 42
dataset_cifarlO0 e 43
dataset_fashion_mmnist. e 44
dataset_imdb e 45
dataset_mnist L e e e e e e 46
dataset_Teuters e e e e 47
evaluate.keras.engine.trainingModel 0oL 000 48
evaluate_generator oL e e e e e e e 49
export_savedmodel keras.engine.training.Model oo 50
fit.keras.engine.training.Model oL oo 51
fit_generator e e e e e e 53
fit_image_data_generator e e 55
fit_teXt_toKenizer e e e e 56
flow_images_from_data. 56

flow_images_from_dataframe oo 58

R topics documented: 3

flow_images_from_directory 60
freeze_weights L 62
GENETAtOr_NEXE . . .« v v vttt e e e e e e e e e e e e e e e e e 63
get_configo 64
get_file e 65
GELANPUL_ At oL e e e e e e e e e 66
get_layer L 67
get_vocabulary L e e 67
get_weights e 68
hdf5_matrix 68
imagenet_decode_predictions L. oL 69
imagenet_preprocess_inputo u e e e e e e e e 69
image_data_generatoro e e e e e 70
image_load 72
IMAZE_LO_AITAY . . .« v v v v e e e e e e e e e e e e e e e e e e e 73
implementationo L. e e e 74
initializer_constant e e e 74
initializer_glorot_normal 75
initializer_glorot_uniform.o oL 75
initializer_he normal e 76
initializer_he_uniform 77
initializer_identity L. e 77
initializer_lecun_normal 78
initializer_lecun_uniform e 79
Initializer_ONes e e e 79
initializer_orthogonal L 80
initializer_random_normal 80
initializer_random_uniform 81
initializer_truncated_normal 81
initializer_variance_scaling L 82
Initializer_zeros e e 83
install_Keras e e 83
is_keras_available L 85
KerasCallback e 86
KerasConstraint e e e e e e e e 87
KerasLayer e e 88
KerasWrapper 89
keras_arrayo 89
keras_ model e e 90
keras_model_custom e 91
keras_model_sequential 91
K abs . . e 92
keall . . e e 93
koany . . L 94
klarange 94
k_argmax e e e e e 95
k argmin e 96

k backendo 96

R topics documented:

k batch_dot e 97
k_batch_flatten 98
k_batch_get_value 98
k_batch_normalization e e e e 99
k_batch_set_value 100
k bias_add 100
k_binary_CroSsentropy oot e e e e 101
Kocast . . . e 102
k_cast_to_floatx e 102
k_categorical_Crossentropyo 103
k clear_session e e e 104
k clip . . o e e e 104
k concatenate e e 105
koconstant e e 105
k convld e 106
k_conv2d e 107
k_conv2d_transposeo 108
k convdd e 109
k_conv3d_transpose e e e 110
K COS . o s 111
k count_params L e 111
k_ctc_batch_cost e e e e 112
k_cte_decode e 113
k_ctc_label_dense_to_sparseo e e 114
k_cumprod e e e e 114
k cumsum e 115
k_depthwise_conv2d 116
kodot . .. 117
k_dropout e e e e 117
kodtype 118
K elu . . s 119
k epsilon e e e 119
k equal e 120
koeval e 120
K eXp . . o 121
k_expand_dims e e e 122
Kk eye . . e 122
k flatten 123
kK floatx e 124
k foldl e 124
kK foldr. . . . o 125
k function L e 126
k_gather e 126
koget session e e 127
kogetuid 128
k_get_value e e 128
k_get variable_shape 129

k_gradients L 129

R topics documented: 5

K_greater e e e 130
k_greater_equal L. L 131
k_hard_sigmoid 131
koidentity e 132
k_image_data_format L 132
k int_shape 133
k in_test_phase 134
k_in_top_K e e e 134
k_in_train_phase e 135
k is_Keras tensor 136
k_is_placeholder 136
K is_sparse e e 137
K IS _tENSOr . . . o o o 137
k12 normalize 138
k_learning_phase 139
KdesSs . . o e 139
ki less_equal o . 140
k local_convld e 140
k_local_conv2d 141
k log . . o e 142
k logsumexp e 143
k_manual_variable_initialization 143
komap_fn 144
K omax 145
K omaximum e 145
komean L e 146
K omin 147
kominimum L e 147
k_moving_average_update e 148
kondim 149
k_normalize_batch_in_training 149
k_not_equal e e 150
K ones e e e 151
k oones like 151
k oone hot e 152
k_permute_dimensions L e e e 153
k_placeholder 153
k pool2d 154
k_pool3d e e 155
K pow . o e 156
k print_tensor e 156
koprod e e e 157
k_random_binomial 158
k random normal L e 158
k_random_normal_variable 159
k_random_uniform L L e e 160
k_random_uniform_variable 161

korelu . . . 162

R topics documented:

korepeato e e e e 162
k repeat_elements e 163
koreset_ wids 164
k reshape e 164
k_resize_images e e e e e 165
k_resize_volumes e 165
K Ieverse e s 166
K rnn . .. e 167
k_roundo e 168
k_separable_conv2d 168
k_set_learning_phase L 169
koset_value e 170
k shape e 170
kosigmoid 171
K_Sign . . . o e e e 172
K_Sin . . . e e e 172
Kk softmax 173
K_softplus e e e e 174
kosoftsign 174
k_sparse_categorical_Crossentropyo i e 175
k_spatial_2d_paddingo 176
k_spatial_3d_padding 176
kosqrt . . e 177
kosquare 178
K_SqUeeze e e e e e 178
kostack e 179
kostd . . . o 180
k_ stop_gradient L 180
Kosum e e e e e e e 181
koswitch e 182
k_tanh 182
k_temporal_padding 183
kK tile . . . e e e 184
Kk to dense 184
k transpose 185
k_truncated_normal L 185
k update 186
k update_add 187
k_update_sub e e e 187
kovar .. s 188
k variable 189
K_ZEeros e e 189
k_zeros_like 190
layer_activation 191
layer_activation_elu 192
layer_activation_leaky_relu L 193
layer_activation_parametric_reluo 194

layer_activation_relu 195

R topics documented: 7

layer_activation_selu e 196
layer_activation_softmax oL 197
layer_activation_thresholded_relu 198
layer_activity_regularization 199
layer_add e 201
layer_alpha_dropout 202
layer_attention e e e e 203
layer_average o e e e e e e e e e e 204
layer_average_pooling 1d L o 205
layer_average_pooling_2d L 206
layer_average_pooling_3d 208
layer_batch_normalization 209
layer_concatenateol e e e e 212
layer_conv_1d L 213
layer_conv_2d e e e 215
layer_conv_2d_transposeo .o e e e e e 218
layer_conv_3d 220
layer_conv_3d_transpose e e e e e 223
layer_conv_Istm_2d L. 225
layer_cropping_1d 228
layer_cropping_2d 229
layer_cropping_3d e 231
layer_cudnn_gru L. e e 232
layer_cudnn_Istm L 234
layer_dense e e e 236
layer_dense_features 238
layer_depthwise_conv_2d 239
layer_dot 241
layer_dropout e e e 242
layer embedding 243
layer_flatten L 245
layer_gaussian_dropout e e e e e e 246
layer_gaussian_noise oo e e e e e 247
layer_global_average_pooling_1d 248
layer_global_average_pooling_2d L o 249
layer_global_average_pooling_ 3d 250
layer_global_max_pooling_1d 251
layer_global_max_pooling_2d 252
layer_global_max_pooling_3d 254
layer_gru L 255
layer_input e 258
layer_lambda e 259
layer_locally_connected_1d 261
layer_locally_connected_2d 263
layer_Istm 265
layer_masking L. e e 268
layer_maximum oL L e e e 269

layer_max_pooling_1d 270

R topics documented:

layer_max_pooling_2d 271
layer_max_pooling 3d L 273
layer_minimum L. e e 274
layer_multiply 275
layer_permute e e e e e 276
layer_repeat_vectoro e e e e 277
layer_reshape 278
layer_separable_conv_1d 279
layer_separable_conv_2d 282
layer_simple_rnn e 285
layer_spatial_dropout_Id 288
layer_spatial_dropout_2d 289
layer_spatial_dropout_3d 290
layer_subtract L 292
layer_text_vectorization v v v it e e e e e e e e e 293
layer upsampling Id 294
layer_upsampling_2d 295
layer_upsampling_3d 297
layer_zero_padding_1d 298
layer_zero_padding_2d 299
layer_zero_padding_3d 300
loss_mean_squared_erroro e e e e e 302
make_sampling_table Lo 303
Metric_binary_acCuracy vttt e e e e e 304
model_from_saved_model 307
model_to_json e e e e e e 307
model_to_saved_model 308
model_to_yaml 309
multi_gpu_model 310
normalize e e e e 312
optimizer_adadelta 312
optimizer_adagrad 313
optimizer_adam L. e 314
optimizer_adamax e 315
optimizer_nadam e 316
OPtMIZET_TMSPIOP .« « v v v v v e e e e e e e e e e e e e e e e e 317
optimizer_sgd e e e e 318
Pad_SEqUENCES e e e e 319
plot.keras_training_history e 320
pop_layer e 321
predict.keras.engine.training.Model oL 321
predict_generator oo e e e e e e 322
predict_on_batch 323
predict_proba 324
regularizer_11 oL 325
TESEL_STAtES i e e e e e e e 325
save_model_hdf5 326

save_model_tf, 327

keras-package 9

save_model_weights_hdf5 328
save_model_weights_tf L 329
save_text_tokenizer e e 330
SeqUeNnCes_to_MAtriXt it e e e e e e 331
serialize_model L e 332
set_vocabulary L e e e e e e 333
skipgramso L e e e e e 333
summary.keras.engine.training.Model oo 0oL 335
EXES_tO_MALIIX o o o e e e e e e e e e e e s 336
tEXES_LO_SEQUENCES . « « v v v v v e v e e e e e e e e e e e e e e e e 336
teXtS_tO_SeqUenCes_generatorot e e e e e 337
text_hashing_trick e 337
text_one_hot e e e e 338
tEXE_tOKENIZET o o e e e e e e e e e e e 339
teXt_to_WOrd_SeqUENCEt e e e e e e e 340
tiMESeries_generator v bt e e e e e e 341
time_distributed L e e 342
to_categorical L e 343
train_on_batch 344
use_implementation Lol oL e 345
with_custom_object_scope 346
Index 348
keras-package R interface to Keras
Description

Keras is a high-level neural networks API, developed with a focus on enabling fast experimentation.
Keras has the following key features:

Details

Allows the same code to run on CPU or on GPU, seamlessly.
User-friendly API which makes it easy to quickly prototype deep learning models.

Built-in support for convolutional networks (for computer vision), recurrent networks (for
sequence processing), and any combination of both.

Supports arbitrary network architectures: multi-input or multi-output models, layer sharing,
model sharing, etc. This means that Keras is appropriate for building essentially any deep
learning model, from a memory network to a neural Turing machine.

Is capable of running on top of multiple back-ends including TensorFlow, CNTK, or Theano.

See the package website at https://keras.rstudio.com for complete documentation.

https://github.com/tensorflow/tensorflow
https://github.com/Microsoft/cntk
https://github.com/Theano/Theano
https://keras.rstudio.com

10 activation_relu

Author(s)

Maintainer: Daniel Falbel <daniel@rstudio.com> [contributor, copyright holder]
Authors:

* JJ Allaire [copyright holder]
* Francois Chollet [copyright holder]

Other contributors:

* RStudio [contributor, copyright holder, funder]

* Google [contributor, copyright holder, funder]

* Yuan Tang <terrytangyuan@gmail.com> (ORCID) [contributor, copyright holder]
* Wouter Van Der Bijl [contributor, copyright holder]

Martin Studer [contributor, copyright holder]

Sigrid Keydana [contributor]

See Also
Useful links:

e https://keras.rstudio.com

* Report bugs at https://github.com/rstudio/keras/issues

activation_relu Activation functions

Description

Activations functions can either be used through layer_activation(), or through the activation
argument supported by all forward layers.

Usage

activation_relu(x, alpha = @, max_value = NULL, threshold = @)
activation_elu(x, alpha = 1)

activation_selu(x)

activation_hard_sigmoid(x)

activation_linear(x)

activation_sigmoid(x)

activation_softmax(x, axis = -1)

https://orcid.org/0000-0001-5243-233X
https://keras.rstudio.com
https://github.com/rstudio/keras/issues

adapt 11

activation_softplus(x)
activation_softsign(x)
activation_tanh(x)

activation_exponential (x)

Arguments

X Tensor

alpha Alpha value

max_value Max value

threshold Threshold value for thresholded activation.

axis Integer, axis along which the softmax normalization is applied
Details

* activation_selu() to be used together with the initialization "lecun_normal".
e activation_selu() to be used together with the dropout variant "AlphaDropout".

Value

Tensor with the same shape and dtype as x.

References

e activation_selu(): Self-Normalizing Neural Networks

adapt Fits the state of the preprocessing layer to the data being passed.

Description

Fits the state of the preprocessing layer to the data being passed.

Usage

adapt(object, data, reset_state = NULL)

Arguments
object Preprocessing layer object
data The data to train on. It can be passed either as a tf.data Dataset, or as an R array.
reset_state Optional argument specifying whether to clear the state of the layer at the start

of the call to adapt, or whether to start from the existing state. Subclasses may
choose to throw if reset_state is set to FALSE. NULL mean layer’s default.

https://arxiv.org/abs/1706.02515

12

application_densenet

application_densenet Instantiates the DenseNet architecture.

Description

Instantiates the DenseNet architecture.

Usage

application_densenet(
blocks,
include_top = TRUE,
weights = "imagenet”,
input_tensor = NULL,
input_shape = NULL,
pooling = NULL,
classes = 1000

)

application_densenet121(
include_top = TRUE,
weights = "imagenet”,
input_tensor = NULL,
input_shape = NULL,
pooling = NULL,
classes = 1000

)

application_densenet169(
include_top = TRUE,
weights = "imagenet”,
input_tensor = NULL,
input_shape = NULL,
pooling = NULL,
classes = 1000

)

application_densenet201(
include_top = TRUE,
weights = "imagenet”,
input_tensor = NULL,
input_shape = NULL,
pooling = NULL,
classes = 1000

)

densenet_preprocess_input(x, data_format = NULL)

application_inception_resnet_v2 13

Arguments
blocks numbers of building blocks for the four dense layers.
include_top whether to include the fully-connected layer at the top of the network.
weights one of NULL (random initialization), ’imagenet’ (pre-training on ImageNet), or

the path to the weights file to be loaded.

input_tensor optional Keras tensor (i.e. output of layer_input()) to use as image input for
the model.

input_shape optional shape list, only to be specified if include_top is FALSE (otherwise
the input shape has to be (224, 224, 3) (with channels_last data format) or
(3, 224, 224) (with channels_first data format). It should have exactly 3
inputs channels.

pooling optional pooling mode for feature extraction when include_top is FALSE. -
NULL means that the output of the model will be the 4D tensor output of the last
convolutional layer. - avg means that global average pooling will be applied to
the output of the last convolutional layer, and thus the output of the model will
be a 2D tensor. - max means that global max pooling will be applied.

classes optional number of classes to classify images into, only to be specified if include_top
is TRUE, and if no weights argument is specified.
X a 3D or 4D array consists of RGB values within [0, 255].
data_format data format of the image tensor.
Details

Optionally loads weights pre-trained on ImageNet. Note that when using TensorFlow, for best per-
formance you should set image_data_format="channels_last' in your Keras config at ~/.keras/keras.json.

The model and the weights are compatible with TensorFlow, Theano, and CNTK. The data format
convention used by the model is the one specified in your Keras config file.

application_inception_resnet_v2
Inception-ResNet v2 model, with weights trained on ImageNet

Description

Inception-ResNet v2 model, with weights trained on ImageNet

Usage

application_inception_resnet_v2(
include_top = TRUE,
weights = "imagenet”,
input_tensor = NULL,
input_shape = NULL,
pooling = NULL,

14 application_inception_resnet_v2

classes = 1000

)

inception_resnet_v2_preprocess_input(x)

Arguments
include_top whether to include the fully-connected layer at the top of the network.
weights NULL (random initialization), imagenet (ImageNet weights), or the path to the

weights file to be loaded.
input_tensor optional Keras tensor to use as image input for the model.

input_shape optional shape list, only to be specified if include_top is FALSE (otherwise
the input shape has to be (299, 299, 3). It should have exactly 3 inputs channels,
and width and height should be no smaller than 75. E.g. (150, 150, 3) would be
one valid value.

pooling Optional pooling mode for feature extraction when include_top is FALSE.

* NULL means that the output of the model will be the 4D tensor output of the
last convolutional layer.

* avg means that global average pooling will be applied to the output of the
last convolutional layer, and thus the output of the model will be a 2D ten-
SOT.

* max means that global max pooling will be applied.

classes optional number of classes to classify images into, only to be specified if include_top
is TRUE, and if no weights argument is specified.

X Input tensor for preprocessing

Details

Do note that the input image format for this model is different than for the VGG16 and ResNet
models (299x299 instead of 224x224).

The inception_resnet_v2_preprocess_input () function should be used for image preprocess-
ing.

Value

A Keras model instance.

Reference

¢ Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning(http://arxiv.org/abs/1512.00567)

https://arxiv.org/abs/1602.07261

application_inception_v3 15

application_inception_v3

Inception V3 model, with weights pre-trained on ImageNet.

Description

Inception V3 model, with weights pre-trained on ImageNet.

Usage

application_inception_v3(
include_top = TRUE,
weights = "imagenet”,

input_tensor
input_shape

= NULL,

NULL,

pooling = NULL,

classes =

)

1000

inception_v3_preprocess_input(x)

Arguments

include_top

weights

input_tensor

input_shape

pooling

classes

whether to include the fully-connected layer at the top of the network.

NULL (random initialization), imagenet (ImageNet weights), or the path to the
weights file to be loaded.

optional Keras tensor to use as image input for the model.

optional shape list, only to be specified if include_top is FALSE (otherwise
the input shape has to be (299, 299, 3). It should have exactly 3 inputs channels,
and width and height should be no smaller than 75. E.g. (150, 150, 3) would be
one valid value.

Optional pooling mode for feature extraction when include_top is FALSE.
* NULL means that the output of the model will be the 4D tensor output of the
last convolutional layer.

* avg means that global average pooling will be applied to the output of the
last convolutional layer, and thus the output of the model will be a 2D ten-
SOf.

* max means that global max pooling will be applied.

optional number of classes to classify images into, only to be specified if include_top
is TRUE, and if no weights argument is specified.

Input tensor for preprocessing

16 application_mobilenet

Details

Do note that the input image format for this model is different than for the VGG16 and ResNet
models (299x299 instead of 224x224).

The inception_v3_preprocess_input() function should be used for image preprocessing.

Value

A Keras model instance.

Reference

* Rethinking the Inception Architecture for Computer Vision

application_mobilenet MobileNet model architecture.

Description

MobileNet model architecture.

Usage

application_mobilenet(
input_shape = NULL,
alpha = 1,
depth_multiplier = 1,
dropout = 0.001,
include_top = TRUE,
weights = "imagenet”,
input_tensor = NULL,
pooling = NULL,
classes = 1000

)
mobilenet_preprocess_input(x)
mobilenet_decode_predictions(preds, top = 5)

mobilenet_load_model_hdf5(filepath)

Arguments

input_shape optional shape list, only to be specified if include_top is FALSE (otherwise
the input shape has to be (224, 224, 3) (with channels_last data format) or (3,
224, 224) (with channels_first data format). It should have exactly 3 inputs
channels, and width and height should be no smaller than 32. E.g. (200, 200, 3)
would be one valid value.

http://arxiv.org/abs/1512.00567

application_mobilenet 17

alpha controls the width of the network.

* If alpha < 1.0, proportionally decreases the number of filters in each layer.
* If alpha > 1.0, proportionally increases the number of filters in each layer.
 If alpha = 1, default number of filters from the paper are used at each layer.
depth_multiplier
depth multiplier for depthwise convolution (also called the resolution multiplier)

dropout dropout rate
include_top whether to include the fully-connected layer at the top of the network.
weights NULL (random initialization), imagenet (ImageNet weights), or the path to the

weights file to be loaded.

input_tensor optional Keras tensor (i.e. output of layer_input()) to use as image input for
the model.

pooling Optional pooling mode for feature extraction when include_top is FALSE. -
NULL means that the output of the model will be the 4D tensor output of the last
convolutional layer. - avg means that global average pooling will be applied to
the output of the last convolutional layer, and thus the output of the model will
be a 2D tensor. - max means that global max pooling will be applied.

classes optional number of classes to classify images into, only to be specified if include_top
is TRUE, and if no weights argument is specified.

X input tensor, 4D
preds Tensor encoding a batch of predictions.
top integer, how many top-guesses to return.
filepath File path

Details

The mobilenet_preprocess_input() function should be used for image preprocessing. To load
a saved instance of a MobileNet model use the mobilenet_load_model_hdf5() function. To pre-
pare image input for MobileNet use mobilenet_preprocess_input (). To decode predictions use
mobilenet_decode_predictions().

Value

application_mobilenet() and mobilenet_load_model_hdf5() return a Keras model instance.
mobilenet_preprocess_input() returns image input suitable for feeding into a mobilenet model.
mobilenet_decode_predictions() returns a list of data frames with variables class_name, class_description,
and score (one data frame per sample in batch input).

Reference

* MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications.

https://arxiv.org/pdf/1704.04861v1.pdf

18

application_mobilenet_v2

application_mobilenet_v2

MobileNetV2 model architecture

Description

MobileNetV2 model architecture

Usage

application_mobilenet_v2(
input_shape = NULL,

alpha = 1,

include_top = TRUE,
weights = "imagenet”,

input_tensor

= NULL,

pooling = NULL,

classes =

)

1000

mobilenet_v2_preprocess_input(x)

mobilenet_v2_decode_predictions(preds, top = 5)

mobilenet_v2_load_model_hdf5(filepath)

Arguments

input_shape

alpha

include_top

weights

input_tensor

pooling

optional shape list, only to be specified if include_top is FALSE (otherwise
the input shape has to be (224, 224, 3) (with channels_last data format) or (3,
224, 224) (with channels_first data format). It should have exactly 3 inputs
channels, and width and height should be no smaller than 32. E.g. (200, 200, 3)
would be one valid value.

controls the width of the network.

* If alpha < 1.0, proportionally decreases the number of filters in each layer.
* If alpha > 1.0, proportionally increases the number of filters in each layer.
e If alpha = 1, default number of filters from the paper are used at each layer.

whether to include the fully-connected layer at the top of the network.

NULL (random initialization), imagenet (ImageNet weights), or the path to the
weights file to be loaded.

optional Keras tensor (i.e. output of layer_input()) to use as image input for
the model.

Optional pooling mode for feature extraction when include_top is FALSE. -
NULL means that the output of the model will be the 4D tensor output of the last
convolutional layer. - avg means that global average pooling will be applied to

application_nasnet 19

the output of the last convolutional layer, and thus the output of the model will
be a 2D tensor. - max means that global max pooling will be applied.

classes optional number of classes to classify images into, only to be specified if include_top
is TRUE, and if no weights argument is specified.
X input tensor, 4D
preds Tensor encoding a batch of predictions.
top integer, how many top-guesses to return.
filepath File path
Value

application_mobilenet_v2() and mobilenet_v2_load_model_hdf5() return a Keras model
instance. mobilenet_v2_preprocess_input() returns image input suitable for feeding into a
mobilenet v2 model. mobilenet_v2_decode_predictions() returns a list of data frames with
variables class_name, class_description, and score (one data frame per sample in batch in-
put).

Reference

e MobileNetV2: Inverted Residuals and Linear Bottlenecks

See Also

application_mobilenet

application_nasnet Instantiates a NASNet model.

Description

Note that only TensorFlow is supported for now, therefore it only works with the data format
image_data_format="'channels_last' in your Keras config at ~/ keras/keras.json.

Usage

application_nasnet(
input_shape = NULL,
penultimate_filters = 4032L,
num_blocks = 6L,
stem_block_filters = 96L,
skip_reduction = TRUE,
filter_multiplier = 2L,
include_top = TRUE,
weights = NULL,
input_tensor = NULL,
pooling = NULL,

https://arxiv.org/abs/1801.04381

20 application_nasnet

classes = 1000,
default_size = NULL
)

application_nasnetlarge(
input_shape = NULL,
include_top = TRUE,
weights = NULL,
input_tensor = NULL,
pooling = NULL,
classes = 1000

)

application_nasnetmobile(
input_shape = NULL,
include_top = TRUE,
weights = NULL,
input_tensor = NULL,
pooling = NULL,
classes = 1000

)

nasnet_preprocess_input(x)

Arguments

input_shape Optional shape list, the input shape is by default (331, 331, 3) for NASNetLarge
and (224, 224, 3) for NASNetMobile It should have exactly 3 inputs channels,
and width and height should be no smaller than 32. E.g. (224, 224, 3) would be
one valid value.
penultimate_filters
Number of filters in the penultimate layer. NASNet models use the notation
NASNet (N @P), where: - N is the number of blocks - P is the number of penul-
timate filters
num_blocks Number of repeated blocks of the NASNet model. NASNet models use the
notation NASNet (N @ P), where: - N is the number of blocks - P is the number
of penultimate filters
stem_block_filters
Number of filters in the initial stem block
skip_reduction Whether to skip the reduction step at the tail end of the network. Set to FALSE
for CIFAR models.
filter_multiplier
Controls the width of the network.
e Iffilter_multiplier < 1.0, proportionally decreases the number of filters
in each layer.
e If filter_multiplier > 1.0, proportionally increases the number of filters
in each layer. - If filter_multiplier = 1, default number of filters from
the paper are used at each layer.

application_resnet50 21

include_top Whether to include the fully-connected layer at the top of the network.

weights NULL (random initialization) or imagenet (ImageNet weights)

input_tensor Optional Keras tensor (i.e. output of layer_input()) to use as image input for
the model.

pooling Optional pooling mode for feature extraction when include_top is FALSE. -

NULL means that the output of the model will be the 4D tensor output of the last
convolutional layer. - avg means that global average pooling will be applied to
the output of the last convolutional layer, and thus the output of the model will
be a 2D tensor. - max means that global max pooling will be applied.

classes Optional number of classes to classify images into, only to be specified if include_top
is TRUE, and if no weights argument is specified.

default_size Specifies the default image size of the model

X a 4D array consists of RGB values within [0, 255].

application_resnet50 ResNet50 model for Keras.

Description

ResNet50 model for Keras.

Usage

application_resnet50(
include_top = TRUE,
weights = "imagenet”,
input_tensor = NULL,
input_shape = NULL,
pooling = NULL,
classes = 1000

)
Arguments
include_top whether to include the fully-connected layer at the top of the network.
weights NULL (random initialization), imagenet (ImageNet weights), or the path to the

weights file to be loaded.
input_tensor optional Keras tensor to use as image input for the model.

input_shape optional shape list, only to be specified if include_top is FALSE (otherwise
the input shape has to be (224, 224, 3). It should have exactly 3 inputs channels,
and width and height should be no smaller than 32. E.g. (200, 200, 3) would be
one valid value.

pooling Optional pooling mode for feature extraction when include_top is FALSE.

22

classes

Details

application_resnet50

* NULL means that the output of the model will be the 4D tensor output of the
last convolutional layer.

* avg means that global average pooling will be applied to the output of the
last convolutional layer, and thus the output of the model will be a 2D ten-
SOf.

* max means that global max pooling will be applied.

optional number of classes to classify images into, only to be specified if include_top
is TRUE, and if no weights argument is specified.

Optionally loads weights pre-trained on ImageNet.

The imagenet_preprocess_input () function should be used for image preprocessing.

Value

A Keras model instance.

Reference

- Deep Residual Learning for Image Recognition

Examples

Not run:
library(keras)

instantiate the model
model <- application_resnet50(weights = 'imagenet')

load the image

img_path <- "elephant. jpg"
img <- image_load(img_path, target_size = c(224,224))
x <- image_to_array(img)

ensure we have

a 4d tensor with single element in the batch dimension,
the input for prediction using resnet50

<- array_reshape(x, c(1, dim(x)))
<- imagenet_preprocess_input(x)

#
the preprocess
X
X

make predictions then decode and print them
preds <- model %>% predict(x)
imagenet_decode_predictions(preds, top = 3)[[1]1]

End(Not run)

https://arxiv.org/abs/1512.03385

application_vgg 23

application_vgg VGG16 and VGGI19 models for Keras.

Description

VGG16 and VGG19 models for Keras.

Usage

application_vggl16(
include_top = TRUE,
weights = "imagenet”,
input_tensor = NULL,
input_shape = NULL,
pooling = NULL,
classes = 1000

)

application_vgg19(
include_top = TRUE,
weights = "imagenet”,
input_tensor = NULL,
input_shape = NULL,
pooling = NULL,
classes = 1000

)

Arguments
include_top whether to include the 3 fully-connected layers at the top of the network.
weights NULL (random initialization), imagenet (ImageNet weights), or the path to the

weights file to be loaded.

input_tensor optional Keras tensor to use as image input for the model.

input_shape optional shape list, only to be specified if include_top is FALSE (otherwise
the input shape has to be (224, 224, 3) It should have exactly 3 inputs channels,

and width and height should be no smaller than 32. E.g. (200, 200, 3) would be
one valid value.

pooling Optional pooling mode for feature extraction when include_top is FALSE.
* NULL means that the output of the model will be the 4D tensor output of the
last convolutional layer.
* avg means that global average pooling will be applied to the output of the

last convolutional layer, and thus the output of the model will be a 2D ten-
SOr.

* max means that global max pooling will be applied.

classes optional number of classes to classify images into, only to be specified if include_top
is TRUE, and if no weights argument is specified.

24 application_xception

Details

Optionally loads weights pre-trained on ImageNet.

The imagenet_preprocess_input () function should be used for image preprocessing.

Value

Keras model instance.

Reference

- Very Deep Convolutional Networks for Large-Scale Image Recognition

Examples
Not run:
library(keras)

model <- application_vggl6(weights = 'imagenet', include_top = FALSE)

img_path <- "elephant. jpg"

img <- image_load(img_path, target_size = c(224,224))
X <- image_to_array(img)

x <- array_reshape(x, c(1, dim(x)))

x <- imagenet_preprocess_input(x)

features <- model %>% predict(x)

End(Not run)

application_xception Xception VI model for Keras.

Description

Xception V1 model for Keras.

Usage

application_xception(
include_top = TRUE,
weights = "imagenet”,
input_tensor = NULL,
input_shape = NULL,
pooling = NULL,
classes = 1000

xception_preprocess_input(x)

https://arxiv.org/abs/1409.1556

application_xception 25

Arguments
include_top whether to include the fully-connected layer at the top of the network.
weights NULL (random initialization), imagenet (ImageNet weights), or the path to the

weights file to be loaded.
input_tensor optional Keras tensor to use as image input for the model.

input_shape optional shape list, only to be specified if include_top is FALSE (otherwise
the input shape has to be (299, 299, 3). It should have exactly 3 inputs channels,
and width and height should be no smaller than 75. E.g. (150, 150, 3) would be
one valid value.

pooling Optional pooling mode for feature extraction when include_top is FALSE.

* NULL means that the output of the model will be the 4D tensor output of the
last convolutional layer.

* avg means that global average pooling will be applied to the output of the
last convolutional layer, and thus the output of the model will be a 2D ten-
SOf.

* max means that global max pooling will be applied.

classes optional number of classes to classify images into, only to be specified if include_top
is TRUE, and if no weights argument is specified.

X Input tensor for preprocessing

Details

On ImageNet, this model gets to a top-1 validation accuracy of 0.790 and a top-5 validation accuracy
of 0.945.

Do note that the input image format for this model is different than for the VGG16 and ResNet
models (299x299 instead of 224x224).

The xception_preprocess_input() function should be used for image preprocessing.

This application is only available when using the TensorFlow back-end.

Value

A Keras model instance.

Reference

» Xception: Deep Learning with Depthwise Separable Convolutions

https://arxiv.org/abs/1610.02357

26 bidirectional

backend Keras backend tensor engine

Description

Obtain a reference to the keras.backend Python module used to implement tensor operations.

Usage
backend(convert = TRUE)

Arguments
convert TRUE to automatically convert Python objects to their R equivalent. If you pass
FALSE you can do manual conversion using the py_to_r () function.
Value

Reference to Keras backend python module.

Note
See the documentation here https://keras.io/backend/ for additional details on the available
functions.
bidirectional Bidirectional wrapper for RNNs.
Description

Bidirectional wrapper for RNNs.

Usage

bidirectional(
object,
layer,
merge_mode = "concat”,
input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,
dtype = NULL,
name = NULL,
trainable = NULL,
weights = NULL

https://keras.io/backend/

callback_csv_logger

Arguments

object
layer

merge_mode

input_shape

27

Model or layer object
Recurrent instance.

Mode by which outputs of the forward and backward RNNs will be combined.
One of ’sum’, 'mul’, concat’, ’ave’, NULL. If NULL, the outputs will not be
combined, they will be returned as a list.

Dimensionality of the input (integer) not including the samples axis. This argu-
ment is required when using this layer as the first layer in a model.

batch_input_shape

batch_size
dtype

name

trainable

weights

See Also

Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number
of 32-dimensional vectors.

Fixed batch size for layer
The data type expected by the input, as a string (float32, float64, int32...)

An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.

Whether the layer weights will be updated during training.

Initial weights for layer.

Other layer wrappers: time_distributed()

callback_csv_logger Callback that streams epoch results to a csv file

Description

Supports all values that can be represented as a string

Usage
callback_csv_logger(filename, separator = ",", append = FALSE)
Arguments
filename filename of the csv file, e.g. ‘run/log.csv’.
separator string used to separate elements in the csv file.
append TRUE: append if file exists (useful for continuing training). FALSE: overwrite

existing file,

28 callback_early_stopping

See Also

Other callbacks: callback_early_stopping(), callback_lambda(), callback_learning_rate_scheduler(),
callback_model_checkpoint(), callback_progbar_logger(), callback_reduce_lr_on_plateau(),
callback_remote_monitor(), callback_tensorboard(), callback_terminate_on_naan()

callback_early_stopping
Stop training when a monitored quantity has stopped improving.

Description

Stop training when a monitored quantity has stopped improving.

Usage

callback_early_stopping(
monitor = "val_loss",
min_delta = 0,
patience = 0,
verbose = 0,
mode = c("auto”,
baseline = NULL,
restore_best_weights = FALSE

n

min”, "max"),

)
Arguments

monitor quantity to be monitored.

min_delta minimum change in the monitored quantity to qualify as an improvement, i.e.
an absolute change of less than min_delta, will count as no improvement.

patience number of epochs with no improvement after which training will be stopped.

verbose verbosity mode, O or 1.

mode one of "auto", "min", "max". In min mode, training will stop when the quantity
monitored has stopped decreasing; in max mode it will stop when the quantity
monitored has stopped increasing; in auto mode, the direction is automatically
inferred from the name of the monitored quantity.

baseline Baseline value for the monitored quantity to reach. Training will stop if the

model doesn’t show improvement over the baseline.
restore_best_weights
Whether to restore model weights from the epoch with the best value of the

monitored quantity. If FALSE, the model weights obtained at the last step of
training are used.

callback_lambda 29

See Also

Other callbacks: callback_csv_logger(), callback_lambda(), callback_learning_rate_scheduler(),
callback_model_checkpoint(), callback_progbar_logger (), callback_reduce_lr_on_plateau(),
callback_remote_monitor(), callback_tensorboard(), callback_terminate_on_naan()

callback_lambda Create a custom callback

Description

This callback is constructed with anonymous functions that will be called at the appropriate time.
Note that the callbacks expects positional arguments, as:

* on_epoch_begin and on_epoch_end expect two positional arguments: epoch, logs

e on_batch_*, on_train_batch_*, on_predict_batch_* and on_test_batch_*, expect two posi-
tional arguments: batch, logs

* on_train_*, on_test_* and on_predict_* expect one positional argument: logs

Usage

callback_lambda(
on_epoch_begin = NULL,
on_epoch_end = NULL,
on_batch_begin = NULL,
on_batch_end = NULL,
on_train_batch_begin = NULL,
on_train_batch_end = NULL,
on_train_begin = NULL,
on_train_end = NULL,
on_predict_batch_begin = NULL,
on_predict_batch_end = NULL,
on_predict_begin = NULL,
on_predict_end = NULL,
on_test_batch_begin = NULL,
on_test_batch_end = NULL,
on_test_begin = NULL,
on_test_end = NULL

Arguments

on_epoch_begin called at the beginning of every epoch.
on_epoch_end called at the end of every epoch.
on_batch_begin called at the beginning of every training batch.

on_batch_end called at the end of every training batch.

30 callback_learning_rate_scheduler

on_train_batch_begin

called at the beginning of every batch.
on_train_batch_end

called at the end of every batch.
on_train_begin called at the beginning of model training.

on_train_end called at the end of model training.
on_predict_batch_begin
called at the beginning of a batch in predict methods.
on_predict_batch_end
called at the end of a batch in predict methods.
on_predict_begin
called at the beginning of prediction.
on_predict_end called at the end of prediction.
on_test_batch_begin
called at the beginning of a batch in evaluate methods. Also called at the begin-
ning of a validation batch in the fit methods, if validation data is provided.

on_test_batch_end
called at the end of a batch in evaluate methods. Also called at the end of a
validation batch in the fit methods, if validation data is provided.

on_test_begin called at the beginning of evaluation or validation.

on_test_end called at the end of evaluation or validation.

See Also

Other callbacks: callback_csv_logger(), callback_early_stopping(), callback_learning_rate_scheduler(),
callback_model_checkpoint(), callback_progbar_logger (), callback_reduce_lr_on_plateau(),
callback_remote_monitor(), callback_tensorboard(), callback_terminate_on_naan()

callback_learning_rate_scheduler
Learning rate scheduler.

Description

Learning rate scheduler.

Usage

callback_learning_rate_scheduler(schedule)

Arguments

schedule a function that takes an epoch index as input (integer, indexed from 0) and cur-
rent learning rate and returns a new learning rate as output (float).

callback_model_checkpoint 31

See Also

Other callbacks: callback_csv_logger(), callback_early_stopping(), callback_lambda(),
callback_model_checkpoint(), callback_progbar_logger(), callback_reduce_lr_on_plateau(),
callback_remote_monitor(), callback_tensorboard(), callback_terminate_on_naan()

callback_model_checkpoint
Save the model after every epoch.

Description

filepath can contain named formatting options, which will be filled the value of epoch and
keys in logs (passed in on_epoch_end). For example: if filepath is weights.{epoch:02d}-
{val_loss:.2f}.hdf5, then the model checkpoints will be saved with the epoch number and the vali-
dation loss in the filename.

Usage
callback_model_checkpoint(
filepath,
monitor = "val_loss”,

verbose = 0,
save_best_only = FALSE,
save_weights_only = FALSE,

mode = c("auto”, "min”, "max"),
period = NULL,
save_freq = "epoch”
)
Arguments
filepath string, path to save the model file.
monitor quantity to monitor.
verbose verbosity mode, O or 1.

save_best_only if save_best_only=TRUE, the latest best model according to the quantity mon-
itored will not be overwritten.

save_weights_only
if TRUE, then only the model’s weights will be saved (save_model_weights_hdf5(filepath)),
else the full model is saved (save_model_hdf5(filepath)).

"non "non

mode one of "auto", "min", "max". If save_best_only=TRUE, the decision to over-
write the current save file is made based on either the maximization or the mini-
mization of the monitored quantity. For val_acc, this should be max, for val_loss
this should be min, etc. In auto mode, the direction is automatically inferred
from the name of the monitored quantity.

period Interval (number of epochs) between checkpoints.

32 callback_progbar_logger

save_freq 'epoch’ or integer. When using ’epoch’, the callback saves the model after
each epoch. When using integer, the callback saves the model at end of a batch
at which this many samples have been seen since last saving. Note that if the
saving isn’t aligned to epochs, the monitored metric may potentially be less
reliable (it could reflect as little as 1 batch, since the metrics get reset every
epoch). Defaults to 'epoch’

For example

if filepath is weights.{epoch:02d}-{val_loss:.2f}.hdf5,: then the model checkpoints will be saved
with the epoch number and the validation loss in the filename.

See Also

Other callbacks: callback_csv_logger(), callback_early_stopping(), callback_lambda(),
callback_learning_rate_scheduler(), callback_progbar_logger(), callback_reduce_lr_on_plateau(),
callback_remote_monitor(), callback_tensorboard(), callback_terminate_on_naan()

callback_progbar_logger
Callback that prints metrics to stdout.

Description

Callback that prints metrics to stdout.

Usage

callback_progbar_logger(count_mode = "samples”, stateful_metrics = NULL)

Arguments

count_mode One of "steps" or "samples". Whether the progress bar should count samples
seens or steps (batches) seen.

stateful_metrics
List of metric names that should not be averaged onver an epoch. Metrics in
this list will be logged as-is in on_epoch_end. All others will be averaged in
on_epoch_end.

See Also

Other callbacks: callback_csv_logger(), callback_early_stopping(), callback_lambda(),
callback_learning_rate_scheduler(), callback_model_checkpoint(), callback_reduce_lr_on_plateau(),
callback_remote_monitor(), callback_tensorboard(), callback_terminate_on_naan()

callback_reduce_Ir_on_plateau 33

callback_reduce_lr_on_plateau
Reduce learning rate when a metric has stopped improving.

Description

Models often benefit from reducing the learning rate by a factor of 2-10 once learning stagnates.
This callback monitors a quantity and if no improvement is seen for a ’patience’ number of epochs,
the learning rate is reduced.

Usage
callback_reduce_lr_on_plateau(
monitor = "val_loss",
factor = 0.1,

patience = 10,

verbose = 0,

mode = c("auto”, "min"”, "max"),
min_delta = 1e-04,

cooldown = 0,

min_lr = @

)
Arguments
monitor quantity to be monitored.
factor factor by which the learning rate will be reduced. new_Ir = Ir
* factor
patience number of epochs with no improvement after which learning rate will be re-
duced.
verbose int. 0: quiet, 1: update messages.
mode one of "auto", "min", "max". In min mode, Ir will be reduced when the quan-
tity monitored has stopped decreasing; in max mode it will be reduced when
the quantity monitored has stopped increasing; in auto mode, the direction is
automatically inferred from the name of the monitored quantity.
min_delta threshold for measuring the new optimum, to only focus on significant changes.
cooldown number of epochs to wait before resuming normal operation after Ir has been
reduced.
min_1r lower bound on the learning rate.
See Also

Other callbacks: callback_csv_logger(), callback_early_stopping(), callback_lambda(),
callback_learning_rate_scheduler(), callback_model_checkpoint(), callback_progbar_logger(),
callback_remote_monitor(), callback_tensorboard(), callback_terminate_on_naan()

34 callback _remote_monitor

callback_remote_monitor
Callback used to stream events to a server.

Description

Callback used to stream events to a server.

Usage

callback_remote_monitor(
root = "http://localhost:9000",
path = "/publish/epoch/end/",
field = "data",
headers = NULL,
send_as_json = FALSE

)
Arguments
root root url of the target server.
path path relative to root to which the events will be sent.
field JSON field under which the data will be stored.
headers Optional named list of custom HTTP headers. Defaults to: list(Accept = "appli-

cation/json", Content-Type = "application/json")

send_as_json Whether the request should be sent as application/json.

Details

Events are sent to root + ' /publish/epoch/end/"' by default. Calls are HTTP POST, with a data
argument which is a JSON-encoded dictionary of event data. If send_as_json is set to True, the
content type of the request will be application/json. Otherwise the serialized JSON will be send
within a form

See Also

Other callbacks: callback_csv_logger(), callback_early_stopping(), callback_lambda(),
callback_learning_rate_scheduler(), callback_model_checkpoint(), callback_progbar_logger(),
callback_reduce_lr_on_plateau(), callback_tensorboard(), callback_terminate_on_naan()

callback_tensorboard

35

callback_tensorboard TensorBoard basic visualizations

Description

This callback writes a log for TensorBoard, which allows you to visualize dynamic graphs of your
training and test metrics, as well as activation histograms for the different layers in your model.

Usage

callback_tensorboard(
log_dir = NULL,
histogram_freq = 0,
batch_size = NULL,
write_graph = TRUE,

write_grads =

write_images

FALSE,

= FALSE,

embeddings_freq = 0,
embeddings_layer_names = NULL,
embeddings_metadata = NULL,
embeddings_data = NULL,

update_freq =

"epOCh" ,

profile_batch = 0

Arguments

log_dir

histogram_freq

batch_size

write_graph

write_grads

write_images

embeddings_freq

The path of the directory where to save the log files to be parsed by Tensorboard.
The default is NULL, which will use the active run directory (if available) and
otherwise will use "logs".

frequency (in epochs) at which to compute activation histograms for the layers
of the model. If set to 0, histograms won’t be computed.

size of batch of inputs to feed to the network for histograms computation. No
longer needed, ignored since TF 1.14.

whether to visualize the graph in Tensorboard. The log file can become quite
large when write_graph is set to TRUE

whether to visualize gradient histograms in TensorBoard. histogram_freq
must be greater than 0.

whether to write model weights to visualize as image in Tensorboard.

frequency (in epochs) at which selected embedding layers will be saved.

embeddings_layer_names

a list of names of layers to keep eye on. If NULL or empty list all the embedding
layers will be watched.

36 callback_terminate_on_naan

embeddings_metadata
a named list which maps layer name to a file name in which metadata for this
embedding layer is saved. See the details about the metadata file format. In case
if the same metadata file is used for all embedding layers, string can be passed.
embeddings_data
Data to be embedded at layers specified in embeddings_layer_names. Array (if
the model has a single input) or list of arrays (if the model has multiple inputs).
Learn more about embeddings

update_freq 'batch’ or 'epoch' orinteger. When using 'batch’, writes the losses and met-
rics to TensorBoard after each batch. The same applies for 'epoch'. If using
an integer, let’s say 10009, the callback will write the metrics and losses to Ten-
sorBoard every 10000 samples. Note that writing too frequently to TensorBoard
can slow down your training.

profile_batch Profile the batch to sample compute characteristics. By default, it will disbale
profiling. Set profile_batch=2 profile the second batch. Must run in TensorFlow
eager mode. (TF >=1.14)

Details

TensorBoard is a visualization tool provided with TensorFlow.
You can find more information about TensorBoard here.

When using a backend other than TensorFlow, TensorBoard will still work (if you have TensorFlow
installed), but the only feature available will be the display of the losses and metrics plots.

See Also

Other callbacks: callback_csv_logger(), callback_early_stopping(), callback_lambda(),
callback_learning_rate_scheduler(), callback_model_checkpoint(), callback_progbar_logger(),
callback_reduce_lr_on_plateau(), callback_remote_monitor(), callback_terminate_on_naan()

callback_terminate_on_naan
Callback that terminates training when a NaN loss is encountered.

Description

Callback that terminates training when a NaN loss is encountered.

Usage

callback_terminate_on_naan()

See Also

Other callbacks: callback_csv_logger(), callback_early_stopping(), callback_lambda(),
callback_learning_rate_scheduler(), callback_model_checkpoint(), callback_progbar_logger(),
callback_reduce_lr_on_plateau(), callback_remote_monitor(), callback_tensorboard()

https://www.tensorflow.org/how_tos/embedding_viz/#metadata_optional
https://www.tensorflow.org/programmers_guide/embedding
https://www.tensorflow.org/get_started/summaries_and_tensorboard

clone_model 37

clone_model Clone a model instance.

Description
Model cloning is similar to calling a model on new inputs, except that it creates new layers (and
thus new weights) instead of sharing the weights of the existing layers.

Usage

clone_model(model, input_tensors = NULL)

Arguments

model Instance of Keras model (could be a functional model or a Sequential model).

input_tensors Optional list of input tensors to build the model upon. If not provided, place-
holders will be created.

compile.keras.engine.training.Model
Configure a Keras model for training

Description

Configure a Keras model for training

Usage

S3 method for class 'keras.engine.training.Model'
compile(

object,

optimizer,

loss,

metrics = NULL,

loss_weights = NULL,

sample_weight_mode = NULL,

weighted_metrics = NULL,

target_tensors = NULL,

38 constraints

Arguments

object Model object to compile.

optimizer Name of optimizer or optimizer instance.

loss Name of objective function or objective function. If the model has multiple
outputs, you can use a different loss on each output by passing a dictionary or a
list of objectives. The loss value that will be minimized by the model will then
be the sum of all individual losses.

metrics List of metrics to be evaluated by the model during training and testing. Typi-

cally you will use metrics="accuracy'. To specify different metrics for dif-
ferent outputs of a multi-output model, you could also pass a named list such as
metrics=list(output_a = "accuracy').

loss_weights Optional list specifying scalar coefficients to weight the loss contributions of
different model outputs. The loss value that will be minimized by the model will
then be the weighted sum of all indvidual losses, weighted by the loss_weights
coefficients.

sample_weight_mode
If you need to do timestep-wise sample weighting (2D weights), set this to "tem-
poral". NULL defaults to sample-wise weights (1D). If the model has multiple
outputs, you can use a different sample_weight_mode on each output by pass-
ing a list of modes.

weighted_metrics
List of metrics to be evaluated and weighted by sample_weight or class_weight
during training and testing

target_tensors By default, Keras will create a placeholder for the model’s target, which will be
fed with the target data during training. If instead you would like to use your
own target tensor (in turn, Keras will not expect external data for these targets
at training time), you can specify them via the target_tensors argument. It
should be a single tensor (for a single-output sequential model),

When using the Theano/CNTK backends, these arguments are passed into K.function.
When using the TensorFlow backend, these arguments are passed into tf$Session()$run.

See Also

Other model functions: evaluate.keras.engine.training.Model (), evaluate_generator(),
fit.keras.engine.training.Model(), fit_generator(), get_config(), get_layer(), keras_model_sequential(),
keras_model (), multi_gpu_model(), pop_layer(), predict.keras.engine.training.Model(),
predict_generator(), predict_on_batch(), predict_proba(), summary.keras.engine.training.Model(),
train_on_batch()

constraints Weight constraints

Description

Functions that impose constraints on weight values.

constraints 39
Usage

constraint_maxnorm(max_value = 2, axis = @)

constraint_nonneg()

constraint_unitnorm(axis = @)

constraint_minmaxnorm(min_value = @, max_value = 1, rate = 1, axis = @)

Arguments
max_value The maximum norm for the incoming weights.
axis The axis along which to calculate weight norms. For instance, in a dense layer
the weight matrix has shape input_dim, output_dim, set axis to @ to constrain
each weight vector of length input_dim,. In a convolution 2D layer with dim_ordering="tf",
the weight tensor has shape rows, cols, input_depth, output_depth, set axis to
c(0,1,2) to constrain the weights of each filter tensor of size rows, cols, in-
put_depth.
min_value The minimum norm for the incoming weights.
rate The rate for enforcing the constraint: weights will be rescaled to yield (1 - rate) *
norm + rate * norm.clip(low, high). Effectively, this means that rate=1.0 stands
for strict enforcement of the constraint, while rate<1.0 means that weights will
be rescaled at each step to slowly move towards a value inside the desired inter-
val.
Details

* constraint_maxnorm() constrains the weights incident to each hidden unit to have a norm
less than or equal to a desired value.

* constraint_nonneg() constraints the weights to be non-negative
e constraint_unitnorm() constrains the weights incident to each hidden unit to have unit
norm.

e constraint_minmaxnorm() constrains the weights incident to each hidden unit to have the
norm between a lower bound and an upper bound.

Custom constraints

You can implement your own constraint functions in R. A custom constraint is an R function that
takes weights (w) as input and returns modified weights. Note that keras backend() tensor func-
tions (e.g. k_greater_equal()) should be used in the implementation of custom constraints. For
example:

nonneg_constraint <- function(w) {
w * k_cast(k_greater_equal(w, 0), k_floatx())
3

layer_dense(units = 32, input_shape = c(784),
kernel_constraint = nonneg_constraint)

40 create_layer

Note that models which use custom constraints cannot be serialized using save_model_hdf5().
Rather, the weights of the model should be saved and restored using save_model_weights_hdf5().

See Also

Dropout: A Simple Way to Prevent Neural Networks from Overfitting Srivastava, Hinton, et al.
2014

KerasConstraint

count_params Count the total number of scalars composing the weights.

Description

Count the total number of scalars composing the weights.

Usage

count_params(object)

Arguments

object Layer or model object

Value

An integer count

See Also

Other layer methods: get_config(), get_input_at(), get_weights(), reset_states()

create_layer Create a Keras Layer

Description

Create a Keras Layer

Usage

create_layer(layer_class, object, args = list())

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf
http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

create_wrapper 41

Arguments
layer_class Python layer class or R6 class of type KerasLayer
object Object to compose layer with. This is either a keras_model_sequential() to
add the layer to, or another Layer which this layer will call.
args List of arguments to layer constructor function
Value
A Keras layer
Note

The object parameter can be missing, in which case the layer is created without a connection to an
existing graph.

create_wrapper Create a Keras Wrapper

Description

Create a Keras Wrapper

Usage

create_wrapper (wrapper_class, object, args = list())

Arguments

wrapper_class R6 class of type KerasWrapper

object Object to compose layer with. This is either a keras_model_sequential() to
add the layer to, or another Layer which this layer will call.
args List of arguments to layer constructor function
Value

A Keras wrapper

Note

The object parameter can be missing, in which case the layer is created without a connection to an
existing graph.

42 dataset_citarl0

dataset_boston_housing
Boston housing price regression dataset

Description

Dataset taken from the StatLib library which is maintained at Carnegie Mellon University.

Usage
dataset_boston_housing(
path = "boston_housing.npz"”,
test_split = 0.2,
seed = 113L
)
Arguments
path Path where to cache the dataset locally (relative to ~/.keras/datasets).
test_split fraction of the data to reserve as test set.
seed Random seed for shuffling the data before computing the test split.
Value

Lists of training and test data: train$x, train$y, test$x, test$y.

Samples contain 13 attributes of houses at different locations around the Boston suburbs in the late
1970s. Targets are the median values of the houses at a location (in k$).
See Also

Other datasets: dataset_cifar100(), dataset_cifari10(), dataset_fashion_mnist(), dataset_imdb(),
dataset_mnist(), dataset_reuters()

dataset_cifarie CIFARI10 small image classification

Description

Dataset of 50,000 32x32 color training images, labeled over 10 categories, and 10,000 test images.

Usage

dataset_cifar10()

dataset_citarl00 43

Value

Lists of training and test data: train$x, train$y, test$x, test$y.
The x data is an array of RGB image data with shape (num_samples, 3, 32, 32).

The y data is an array of category labels (integers in range 0-9) with shape (num_samples).

See Also

Other datasets: dataset_boston_housing(), dataset_cifar100(), dataset_fashion_mnist(),
dataset_imdb(), dataset_mnist(), dataset_reuters()

dataset_cifari10@ CIFARI100 small image classification

Description

Dataset of 50,000 32x32 color training images, labeled over 100 categories, and 10,000 test images.

Usage

dataset_cifar100(label_mode = c("fine", "coarse"))
Arguments

label_mode one of "fine", "coarse".
Value

Lists of training and test data: train$x, train$y, test$x, test$y.
The x data is an array of RGB image data with shape (num_samples, 3, 32, 32).

The y data is an array of category labels with shape (num_samples).

See Also

Other datasets: dataset_boston_housing(), dataset_cifar1@(), dataset_fashion_mnist(),
dataset_imdb(), dataset_mnist(), dataset_reuters()

44 dataset_fashion_mnist

dataset_fashion_mnist Fashion-MNIST database of fashion articles

Description

Dataset of 60,000 28x28 grayscale images of the 10 fashion article classes, along with a test set
of 10,000 images. This dataset can be used as a drop-in replacement for MNIST. The class labels
are encoded as integers from 0-9 which correspond to T-shirt/top, Trouser, Pullover, Dress, Coat,
Sandal, Shirt,

Usage

dataset_fashion_mnist()

Details

Dataset of 60,000 28x28 grayscale images of 10 fashion categories, along with a test set of 10,000
images. This dataset can be used as a drop-in replacement for MNIST. The class labels are:
¢ 0 - T-shirt/top
e 1 - Trouser
* 2 - Pullover
* 3 - Dress
* 4 - Coat
* 5- Sandal
* 6 - Shirt
* 7 - Sneaker
* 8-Bag
9 - Ankle boot

Value

Lists of training and test data: train$x, trainS$y, test$x, test$y, where x is an array of grayscale image
data with shape (num_samples, 28, 28) and y is an array of article labels (integers in range 0-9) with
shape (num_samples).

See Also

Other datasets: dataset_boston_housing(), dataset_cifar100(), dataset_cifar10(), dataset_imdb(),
dataset_mnist(), dataset_reuters()

dataset_imdb

45

dataset_imdb

IMDB Movie reviews sentiment classification

Description

Dataset of 25,000 movies reviews from IMDB, labeled by sentiment (positive/negative). Reviews
have been preprocessed, and each review is encoded as a sequence of word indexes (integers). For
convenience, words are indexed by overall frequency in the dataset, so that for instance the integer
"3" encodes the 3rd most frequent word in the data. This allows for quick filtering operations such
as: "only consider the top 10,000 most common words, but eliminate the top 20 most common

words".

Usage

dataset_imdb(

path = "imdb.npz",

num_words = NULL,
skip_top = oL,
maxlen = NULL,
seed = 113L,
start_char = 1L,
oov_char = 2L,
index_from = 3L

)
dataset_imdb_word_index(path = "imdb_word_index. json")
Arguments

path Where to cache the data (relative to ~/.keras/dataset).

num_words Max number of words to include. Words are ranked by how often they occur (in
the training set) and only the most frequent words are kept

skip_top Skip the top N most frequently occuring words (which may not be informative).

maxlen sequences longer than this will be filtered out.

seed random seed for sample shuffling.

start_char The start of a sequence will be marked with this character. Set to 1 because 0 is
usually the padding character.

oov_char Words that were cut out because of the num_words or skip_top limit will be

index_from

Details

replaced with this character.

Index actual words with this index and higher.

As a convention, "0" does not stand for a specific word, but instead is used to encode any unknown

word.

46 dataset_mnist

Value

Lists of training and test data: train$x, train$y, test$x, test$y.

The x data includes integer sequences. If the num_words argument was specific, the maximum
possible index value is num_words-1. If the maxlen™™ argument was specified, the largest possi-
ble sequence length is maxlen‘.

The y data includes a set of integer labels (0 or 1).

The dataset_imdb_word_index () function returns a list where the names are words and the values
are integer.

See Also

Other datasets: dataset_boston_housing(), dataset_cifar100(), dataset_cifar10(), dataset_fashion_mnist(),
dataset_mnist(), dataset_reuters()

dataset_mnist MNIST database of handwritten digits

Description

Dataset of 60,000 28x28 grayscale images of the 10 digits, along with a test set of 10,000 images.

Usage

dataset_mnist(path = "mnist.npz")
Arguments

path Path where to cache the dataset locally (relative to ~/.keras/datasets).
Value

Lists of training and test data: train$x, train$y, test$x, test$y, where x is an array of grayscale image
data with shape (num_samples, 28, 28) and y is an array of digit labels (integers in range 0-9) with
shape (num_samples).

See Also

Other datasets: dataset_boston_housing(), dataset_cifar100(), dataset_cifar10(), dataset_fashion_mnist(),
dataset_imdb(), dataset_reuters()

dataset_reuters 47

dataset_reuters Reuters newswire topics classification

Description

Dataset of 11,228 newswires from Reuters, labeled over 46 topics. As with dataset_imdb() , each
wire is encoded as a sequence of word indexes (same conventions).

Usage

dataset_reuters(
path = "reuters.npz”,
num_words = NULL,
skip_top = oL,
maxlen = NULL,
test_split = 0.2,
seed = 113L,
start_char = 1L,
oov_char = 2L,
index_from = 3L

)
dataset_reuters_word_index(path = "reuters_word_index.pkl")
Arguments
path Where to cache the data (relative to ~/ keras/dataset).
num_words Max number of words to include. Words are ranked by how often they occur (in
the training set) and only the most frequent words are kept
skip_top Skip the top N most frequently occuring words (which may not be informative).
maxlen Truncate sequences after this length.
test_split Fraction of the dataset to be used as test data.
seed Random seed for sample shuffling.
start_char The start of a sequence will be marked with this character. Set to 1 because 0 is
usually the padding character.
oov_char words that were cut out because of the num_words or skip_top limit will be
replaced with this character.
index_from index actual words with this index and higher.
Value

Lists of training and test data: train$x, train$y, test$x, test$y with same format as dataset_imdb ().
The dataset_reuters_word_index() function returns a list where the names are words and the
values are integer. e.g. word_index[["giraffe”]] might return 1234.

48 evaluate.keras.engine.training. Model

See Also

Other datasets: dataset_boston_housing(), dataset_cifar100(), dataset_cifar10(), dataset_fashion_mnist(),
dataset_imdb (), dataset_mnist()

evaluate.keras.engine.training.Model
Evaluate a Keras model

Description

Evaluate a Keras model

Usage

S3 method for class 'keras.engine.training.Model'
evaluate(

object,

x = NULL,

y = NULL,

batch_size = NULL,

verbose = 1,

sample_weight = NULL,

steps = NULL,

callbacks = NULL,

Arguments

object Model object to evaluate

X Vector, matrix, or array of test data (or list if the model has multiple inputs). If
all inputs in the model are named, you can also pass a list mapping input names
to data. x can be NULL (default) if feeding from framework-native tensors (e.g.
TensorFlow data tensors).

y Vector, matrix, or array of target (label) data (or list if the model has multiple
outputs). If all outputs in the model are named, you can also pass a list mapping
output names to data. y can be NULL (default) if feeding from framework-native
tensors (e.g. TensorFlow data tensors).

batch_size Integer or NULL. Number of samples per gradient update. If unspecified, batch_size
will default to 32.

verbose Verbosity mode (0 = silent, 1 = progress bar, 2 = one line per epoch).

sample_weight Optional array of the same length as x, containing weights to apply to the
model’s loss for each sample. In the case of temporal data, you can pass a
2D array with shape (samples, sequence_length), to apply a different weight to
every timestep of every sample. In this case you should make sure to specify
sample_weight_mode="temporal” in compile().

evaluate_generator 49

steps Total number of steps (batches of samples) before declaring the evaluation round
finished. Ignored with the default value of NULL.
callbacks List of callbacks to apply during evaluation.
Unused
Value

Named list of model test loss (or losses for models with multiple outputs) and model metrics.

See Also

Other model functions: compile.keras.engine.training.Model(), evaluate_generator(),
fit.keras.engine.training.Model(), fit_generator(), get_config(), get_layer(), keras_model_sequential(),
keras_model (), multi_gpu_model(), pop_layer(), predict.keras.engine.training.Model(),
predict_generator(), predict_on_batch(), predict_proba(), summary.keras.engine.training.Model(),
train_on_batch()

evaluate_generator Evaluates the model on a data generator.

Description

The generator should return the same kind of data as accepted by test_on_batch().

Usage

evaluate_generator(
object,
generator,
steps,
max_queue_size = 10,
workers = 1,
callbacks = NULL

)
Arguments
object Model object to evaluate
generator Generator yielding lists (inputs, targets) or (inputs, targets, sample_weights)
steps Total number of steps (batches of samples) to yield from generator before

stopping.
max_gueue_size Maximum size for the generator queue. If unspecified, max_queue_size will
default to 10.

workers Maximum number of threads to use for parallel processing. Note that parallel
processing will only be performed for native Keras generators (e.g. flow_images_from_directory())
as R based generators must run on the main thread.

callbacks List of callbacks to apply during evaluation.

50 export_savedmodel keras.engine.training. Model

Value

Named list of model test loss (or losses for models with multiple outputs) and model metrics.

See Also

Other model functions: compile.keras.engine.training.Model(), evaluate.keras.engine.training.Model(),
fit.keras.engine.training.Model(), fit_generator(), get_config(), get_layer(), keras_model_sequential(),
keras_model (), multi_gpu_model(), pop_layer(), predict.keras.engine.training.Model(),
predict_generator(), predict_on_batch(), predict_proba(), summary.keras.engine.training.Model(),
train_on_batch()

export_savedmodel.keras.engine.training.Model
Export a Saved Model

Description

Serialize a model to disk.

Usage

S3 method for class 'keras.engine.training.Model'
export_savedmodel (

object,
export_dir_base,
overwrite = TRUE,
versioned = !overwrite,

remove_learning_phase = TRUE,
as_text = FALSE,

Arguments

object An R object.
export_dir_base
A string containing a directory in which to export the SavedModel.
overwrite Should the export_dir_base directory be overwritten?
versioned Should the model be exported under a versioned subdirectory?
remove_learning_phase
Should the learning phase be removed by saving and reloading the model? De-
faults to TRUE.
as_text Whether to write the SavedModel in text format.

Other arguments passed to tf.saved_model.save. (Used only if TensorFlow ver-
sion >= 2.0)

fit.keras.engine.training. Model

Value

The path to the exported directory, as a string.

51

fit.keras.engine.training.Model

Train a Keras model

Description

Trains the model for a fixed number of epochs (iterations on a dataset).

Usage

S3 method for class 'keras.engine.training.Model'
fit(

)
Arguments

object Model to train.

X Vector, matrix, or array of training data (or list if the model has multiple inputs).
If all inputs in the model are named, you can also pass a list mapping input
names to data. x can be NULL (default) if feeding from framework-native tensors
(e.g. TensorFlow data tensors).

y Vector, matrix, or array of target (label) data (or list if the model has multiple

object,

x = NULL,

y = NULL,

batch_size = NULL,

epochs = 10,

verbose = getOption("keras.fit_verbose"”, default = 1),
callbacks = NULL,

view_metrics = getOption("keras.view_metrics”, default = "auto"),
validation_split = 0,

validation_data = NULL,

shuffle = TRUE,

class_weight = NULL,

sample_weight = NULL,

initial_epoch = 0,

steps_per_epoch = NULL,

validation_steps = NULL,

outputs). If all outputs in the model are named, you can also pass a list mapping
output names to data. y can be NULL (default) if feeding from framework-native

tensors (e.g. TensorFlow data tensors).

fit.keras.engine.training.Model

batch_size Integer or NULL. Number of samples per gradient update. If unspecified, batch_size
will default to 32.
epochs Number of epochs to train the model. Note that in conjunction with initial_epoch,

epochs is to be understood as "final epoch". The model is not trained for a num-
ber of iterations given by epochs, but merely until the epoch of index epochs is

reached.
verbose Verbosity mode (0 = silent, 1 = progress bar, 2 = one line per epoch).
callbacks List of callbacks to be called during training.

view_metrics View realtime plot of training metrics (by epoch). The default ("auto”) will
display the plot when running within RStudio, metrics were specified during
model compile(), epochs > 1 and verbose > @. Use the global keras.view_metrics
option to establish a different default.

validation_split
Float between 0 and 1. Fraction of the training data to be used as validation
data. The model will set apart this fraction of the training data, will not train on
it, and will evaluate the loss and any model metrics on this data at the end of
each epoch. The validation data is selected from the last samples in the x and y
data provided, before shuffling.

validation_data
Data on which to evaluate the loss and any model metrics at the end of each
epoch. The model will not be trained on this data. This could be a list (x_val,
y_val) or a list (x_val, y_val, val_sample_weights). validation_data will
override validation_split.

shuffle shuffle: Logical (whether to shuffle the training data before each epoch) or string
(for "batch"). "batch" is a special option for dealing with the limitations of HDF5
data; it shuffles in batch-sized chunks. Has no effect when steps_per_epoch is
not NULL.

class_weight Optional named list mapping indices (integers) to a weight (float) value, used
for weighting the loss function (during training only). This can be useful to tell
the model to "pay more attention" to samples from an under-represented class.

sample_weight Optional array of the same length as x, containing weights to apply to the
model’s loss for each sample. In the case of temporal data, you can pass a
2D array with shape (samples, sequence_length), to apply a different weight to
every timestep of every sample. In this case you should make sure to specify
sample_weight_mode="temporal” in compile().

initial_epoch Integer, Epoch at which to start training (useful for resuming a previous training
run).

steps_per_epoch
Total number of steps (batches of samples) before declaring one epoch finished
and starting the next epoch. When training with input tensors such as Tensor-
Flow data tensors, the default NULL is equal to the number of samples in your
dataset divided by the batch size, or 1 if that cannot be determined.

validation_steps
Only relevant if steps_per_epoch is specified. Total number of steps (batches
of samples) to validate before stopping.

Unused

fit_generator 53

Value

A history object that contains all information collected during training.

See Also

Other model functions: compile.keras.engine.training.Model(), evaluate.keras.engine.training.Model(),
evaluate_generator(), fit_generator(), get_config(), get_layer(), keras_model_sequential(),
keras_model (), multi_gpu_model(), pop_layer(), predict.keras.engine.training.Model(),
predict_generator(), predict_on_batch(), predict_proba(), summary.keras.engine.training.Model(),
train_on_batch()

fit_generator Fits the model on data yielded batch-by-batch by a generator.

Description

The generator is run in parallel to the model, for efficiency. For instance, this allows you to do
real-time data augmentation on images on CPU in parallel to training your model on GPU.

Usage

fit_generator(
object,
generator,
steps_per_epoch,
epochs = 1,
verbose = getOption("keras.fit_verbose”, default = 1),
callbacks = NULL,
view_metrics = getOption("keras.view_metrics”, default = "auto"),
validation_data = NULL,
validation_steps = NULL,
class_weight = NULL,
max_queue_size = 10,
workers = 1,
initial_epoch = 0

)
Arguments
object Keras model object
generator A generator (e.g. like the one provided by flow_images_from_directory()

or a custom R generator function).
The output of the generator must be a list of one of these forms:

- (inputs, targets)
- (inputs, targets, sample_weights)

https://rstudio.github.io/reticulate/articles/introduction.html#generators

54 fit_generator

This list (a single output of the generator) makes a single batch. Therefore, all
arrays in this list must have the same length (equal to the size of this batch). Dif-
ferent batches may have different sizes. For example, the last batch of the epoch
is commonly smaller than the others, if the size of the dataset is not divisible by
the batch size. The generator is expected to loop over its data indefinitely. An
epoch finishes when steps_per_epoch batches have been seen by the model.
steps_per_epoch

Total number of steps (batches of samples) to yield from generator before
declaring one epoch finished and starting the next epoch. It should typically be
equal to the number of samples if your dataset divided by the batch size.

epochs Integer. Number of epochs to train the model. An epoch is an iteration over the
entire data provided, as defined by steps_per_epoch. Note that in conjunction
with initial_epoch, epochs is to be understood as "final epoch". The model
is not trained for a number of iterations given by epochs, but merely until the
epoch of index epochs is reached.

verbose Verbosity mode (0 = silent, 1 = progress bar, 2 = one line per epoch).

callbacks List of callbacks to apply during training.

view_metrics View realtime plot of training metrics (by epoch). The default ("auto”) will
display the plot when running within RStudio, metrics were specified during
model compile(), epochs > 1 and verbose > @. Use the global keras.view_metrics
option to establish a different default.

validation_data
this can be either:

* a generator for the validation data

* alist (inputs, targets)

* a list (inputs, targets, sample_weights). on which to evaluate the loss and
any model metrics at the end of each epoch. The model will not be trained

on this data.
validation_steps

Only relevant if validation_data is a generator. Total number of steps (batches
of samples) to yield from generator before stopping at the end of every epoch.
It should typically be equal to the number of samples of your validation dataset
divided by the batch size.

class_weight Optional named list mapping class indices (integer) to a weight (float) value,
used for weighting the loss function (during training only). This can be useful
to tell the model to "pay more attention" to samples from an under-represented
class.
max_gueue_size Maximum size for the generator queue. If unspecified, max_queue_size will
default to 10.
workers Maximum number of threads to use for parallel processing. Note that parallel
processing will only be performed for native Keras generators (e.g. flow_images_from_directory())
as R based generators must run on the main thread.

initial_epoch epoch at which to start training (useful for resuming a previous training run)

Value

Training history object (invisibly)

fit_image_data_generator 55

See Also

Other model functions: compile.keras.engine.training.Model (), evaluate.keras.engine.training.Model(),
evaluate_generator(), fit.keras.engine.training.Model (), get_config(), get_layer(),
keras_model_sequential (), keras_model(), multi_gpu_model (), pop_layer(), predict.keras.engine.training.\
predict_generator(), predict_on_batch(), predict_proba(), summary.keras.engine.training.Model(),
train_on_batch()

fit_image_data_generator
Fit image data generator internal statistics to some sample data.

Description

Required for featurewise_center, featurewise_std_normalization and zca_whitening.

Usage

fit_image_data_generator(object, x, augment = FALSE, rounds = 1, seed = NULL)

Arguments
object image_data_generator()
X array, the data to fit on (should have rank 4). In case of grayscale data, the
channels axis should have value 1, and in case of RGB data, it should have
value 3.
augment Whether to fit on randomly augmented samples
rounds If augment, how many augmentation passes to do over the data
seed random seed.
See Also

Other image preprocessing: flow_images_from_dataframe(), flow_images_from_data(), flow_images_from_directo
image_load(), image_to_array()

56 flow_images_from_data

fit_text_tokenizer Update tokenizer internal vocabulary based on a list of texts or list of
sequences.

Description

Update tokenizer internal vocabulary based on a list of texts or list of sequences.

Usage

fit_text_tokenizer(object, x)

Arguments
object Tokenizer returned by text_tokenizer ()
X Vector/list of strings, or a generator of strings (for memory-efficiency); Alterna-
tively a list of "sequence" (a sequence is a list of integer word indices).
Note

Required before using texts_to_sequences(), texts_to_matrix(), or sequences_to_matrix().

See Also

Other text tokenization: save_text_tokenizer(), sequences_to_matrix(), text_tokenizer(),
texts_to_matrix(), texts_to_sequences_generator(), texts_to_sequences()

flow_images_from_data Generates batches of augmented/normalized data from image data
and labels

Description

Generates batches of augmented/normalized data from image data and labels

Usage
flow_images_from_data(
X ’
y = NULL,

generator = image_data_generator(),
batch_size = 32,

shuffle = TRUE,

sample_weight = NULL,

seed = NULL,

save_to_dir = NULL,

flow_images_from_data 57

save_prefix
save_format =
subset = NULL

Arguments

X

y

generator
batch_size
shuffle
sample_weight
seed

save_to_dir

save_prefix

save_format

subset

Details

nn

npngn7

data. Should have rank 4. In case of grayscale data, the channels axis should
have value 1, and in case of RGB data, it should have value 3.

labels (can be NULL if no labels are required)

Image data generator to use for augmenting/normalizing image data.
int (default: 32).

boolean (defaut: TRUE).

Sample weights.

int (default: NULL).

NULL or str (default: NULL). This allows you to optionally specify a directory
to which to save the augmented pictures being generated (useful for visualizing
what you are doing).

str (default:). Prefix to use for filenames of saved pictures (only relevant if
save_to_dir is set).

"o

one of "png", "jpeg" (only relevant if save_to_dir is set). Default: "png".

Subset of data ("training” or "validation”) if validation_split is set in
image_data_generator().

Yields batches indefinitely, in an infinite loop.

Yields

(X, y) where x is an array of image data and y is a array of corresponding labels. The generator

loops indefinitely.

See Also

Other image preprocessing: fit_image_data_generator(), flow_images_from_dataframe(),
flow_images_from_directory(), image_load(), image_to_array()

58

flow_images_from_dataframe

flow_images_from_dataframe

Takes the dataframe and the path to a directory and generates batches

of augmented/normalized data.

Description

Takes the dataframe and the path to a directory and generates batches of augmented/normalized

data.
Usage

flow_images_from_dataframe(
dataframe,
directory = NULL,
x_col = "filename",
y_col = "class”,
generator = image_data_generator(),
target_size = c(256, 256),
color_mode = "rgb",

classes = NULL,

class_mode =

"categorical”,

batch_size = 32,
shuffle = TRUE,

seed = NULL,
save_to_dir

save_prefix =

save_format

NULL,

nn

’
npnguy

subset = NULL,
interpolation
drop_duplicates = TRUE

Arguments

dataframe

= "nearest”,

data.frame containing the filepaths relative to directory (or absolute paths if
directory is NULL) of the images in a character column. It should include other

column/s depending on the class_mode:

* if class_mode is "categorical" (default value) it must include the y_col col-
umn with the class/es of each image. Values in column can be character/list

if a single class or list if multiple classes.

* if class_mode is "binary" or "sparse" it must include the given y_col col-

umn with class values as strings.

* if class_mode is "other" it should contain the columns specified in y_col.

¢ if class_mode is "input" or NULL no extra column is needed.

directory

x_col

y_col
generator
target_size

color_mode

classes

class_mode

batch_size
shuffle
seed

save_to_dir

save_prefix

save_format

subset

interpolation

drop_duplicates

flow_images_from_dataframe 59

character, path to the directory to read images from. If NULL, data in x_col
column should be absolute paths.

character, column in dataframe that contains the filenames (or absolute paths if
directory is NULL).

string or list, column/s in dataframe that has the target data.
Image data generator to use for augmenting/normalizing image data.

Either NULL (default to original size) or integer vector (img_height, img_width).

non

one of "grayscale", "rgb". Default: "rgb". Whether the images will be converted
to have 1 or 3 color channels.

optional list of classes (e.g. c('dogs"', 'cats'). Default: NULL If not provided,
the list of classes will be automatically inferred from the y_col, which will
map to the label indices, will be alphanumeric). The dictionary containing the
mapping from class names to class indices can be obtained via the attribute
class_indices.

non "non: non

one of "categorical", "binary", "sparse", "input",
egorical". Mode for yielding the targets:

other" or None. Default: "cat-

* "binary": 1D array of binary labels,

 "categorical": 2D array of one-hot encoded labels. Supports multi-label
output.

 "sparse": 1D array of integer labels,

* "input": images identical to input images (mainly used to work with au-
toencoders),

 "other": array of y_col data, NULL, no targets are returned (the generator will

only yield batches of image data, which is useful to use in predict_generator()).

int (default: 32).
boolean (defaut: TRUE).
int (default: NULL).

NULL or str (default: NULL). This allows you to optionally specify a directory
to which to save the augmented pictures being generated (useful for visualizing
what you are doing).

str (default:). Prefix to use for filenames of saved pictures (only relevant if
save_to_dir is set).

non:

one of "png", "jpeg" (only relevant if save_to_dir is set). Default: "png".

Subset of data ("training” or "validation”) if validation_split is set in
image_data_generator().

Interpolation method used to resample the image if the target size is different
from that of the loaded image. Supported methods are "nearest", "bilinear", and
"bicubic". If PIL version 1.1.3 or newer is installed, "lanczos" is also supported.
If PIL version 3.4.0 or newer is installed, "box" and "hamming" are also sup-
ported. By default, "nearest" is used.

Boolean, whether to drop duplicate rows based on filename.

60 flow_images_from_directory

Details

Yields batches indefinitely, in an infinite loop.

Yields

(x, y) where x is an array of image data and y is a array of corresponding labels. The generator
loops indefinitely.

Note

This functions requires that pandas (python module) is installed in the same environment as tensorflow
and keras.

If you are using r-tensorflow (the default environment) you can install pandas by running reticulate: :virtualenv_ins:
="r-tensorflow"”) orreticulate: :conda_install("pandas”,envname = "r-tensorflow”) de-
pending on the kind of environment you are using.

See Also

Other image preprocessing: fit_image_data_generator(), flow_images_from_data(), flow_images_from_directory
image_load(), image_to_array()

flow_images_from_directory
Generates batches of data from images in a directory (with optional
augmented/normalized data)

Description

Generates batches of data from images in a directory (with optional augmented/normalized data)

Usage

flow_images_from_directory(
directory,
generator = image_data_generator(),
target_size = c(256, 256),

color_mode = "rgb",
classes = NULL,
class_mode = "categorical”,

batch_size = 32,
shuffle = TRUE,
seed = NULL,

save_to_dir = NULL,
save_prefix = "",
save_format = "png”,

follow_links = FALSE,
subset = NULL,

interpolation

)

Arguments

directory

generator

target_size

color_mode

classes

class_mode

batch_size
shuffle
seed

save_to_dir

save_prefix

save_format
follow_links

subset

interpolation

Details

flow_images_from_directory 61

= "nearest”

path to the target directory. It should contain one subdirectory per class. Any
PNG, JPG, BMP, PPM, or TIF images inside each of the subdirectories directory
tree will be included in the generator. See this script for more details.

Image data generator (default generator does no data augmentation/normalization
transformations)

integer vector, default: c(256,256). The dimensions to which all images found
will be resized.

non

one of "grayscale", "rbg". Default: "rgb". Whether the images will be converted
to have 1 or 3 color channels.

optional list of class subdirectories (e.g. c('dogs', 'cats')). Default: NULL, If
not provided, the list of classes will be automatically inferred (and the order of
the classes, which will map to the label indices, will be alphanumeric).

non

one of "categorical", "binary", "sparse" or NULL. Default: "categorical". Deter-
mines the type of label arrays that are returned: "categorical” will be 2D one-hot
encoded labels, "binary" will be 1D binary labels, "sparse" will be 1D integer la-
bels. If NULL, no labels are returned (the generator will only yield batches of im-
age data, which is useful to use predict_generator(), evaluate_generator(),
etc.).

int (default: 32).
boolean (defaut: TRUE).
int (default: NULL).

NULL or str (default: NULL). This allows you to optionally specify a directory
to which to save the augmented pictures being generated (useful for visualizing
what you are doing).

str (default:). Prefix to use for filenames of saved pictures (only relevant if
save_to_dir is set).

non:

one of "png", "jpeg" (only relevant if save_to_dir is set). Default: "png".
whether to follow symlinks inside class subdirectories (default: FALSE)

Subset of data ("training” or "validation”) if validation_split is set in
image_data_generator().

Interpolation method used to resample the image if the target size is different
from that of the loaded image. Supported methods are "nearest", "bilinear", and
"bicubic". If PIL version 1.1.3 or newer is installed, "lanczos" is also supported.
If PIL version 3.4.0 or newer is installed, "box" and "hamming" are also sup-
ported. By default, "nearest" is used.

Yields batches indefinitely, in an infinite loop.

https://gist.github.com/fchollet/0830affa1f7f19fd47b06d4cf89ed44d

62 freeze_weights

Yields

(x, y) where x is an array of image data and y is a array of corresponding labels. The generator
loops indefinitely.

See Also

Other image preprocessing: fit_image_data_generator(), flow_images_from_dataframe(),
flow_images_from_data(), image_load(), image_to_array()

freeze_weights Freeze and unfreeze weights

Description

Freeze weights in a model or layer so that they are no longer trainable.

Usage

freeze_weights(object, from = NULL, to = NULL)

unfreeze_weights(object, from = NULL, to = NULL)

Arguments
object Keras model or layer object
from Layer instance, layer name, or layer index within model
to Layer instance, layer name, or layer index within model
Note

The from and to layer arguments are both inclusive.

When applied to a model, the freeze or unfreeze is a global operation over all layers in the model
(i.e. layers not within the specified range will be set to the opposite value, e.g. unfrozen for a call
to freeze).

Models must be compiled again after weights are frozen or unfrozen.

Examples

Not run:

instantiate a VGG16 model

conv_base <- application_vggl6(
weights = "imagenet”,
include_top = FALSE,
input_shape = c(150, 150, 3)

)

freeze it's weights

generator_next 63

freeze_weights(conv_base)

create a composite model that includes the base + more layers
model <- keras_model_sequential() %>%

conv_base %>%

layer_flatten() %>%

layer_dense(units = 256, activation = "relu”) %>%
layer_dense(units = 1, activation = "sigmoid")

compile

model %>% compile(
loss = "binary_crossentropy”,

optimizer = optimizer_rmsprop(lr = 2e-5),
metrics = c("accuracy”)

)

unfreeze weights from "block5_conv1” on
unfreeze_weights(conv_base, from = "block5_conv1")

compile again since we froze or unfroze weights
model %>% compile(
loss = "binary_crossentropy”,
optimizer = optimizer_rmsprop(lr = 2e-5),
metrics = c("accuracy”)

End(Not run)

generator_next Retrieve the next item from a generator

Description

Use to retrieve items from generators (e.g. image_data_generator()). Will return either the next
item or NULL if there are no more items.

Usage

generator_next(generator, completed = NULL)

Arguments
generator Generator
completed Sentinel value to return from generator_next() if the iteration completes (de-

faults to NULL but can be any R value you specify).

64 get_config

get_config Layer/Model configuration

Description

A layer config is an object returned from get_config() that contains the configuration of a layer
or model. The same layer or model can be reinstantiated later (without its trained weights) from this
configuration using from_config(). The config does not include connectivity information, nor the
class name (those are handled externally).

Usage

get_config(object)

from_config(config)

Arguments

object Layer or model object

config Object with layer or model configuration
Value

get_config() returns an object with the configuration, from_config() returns a re-instantation of
hte object.

Note

Objects returned from get_config() are not serializable. Therefore, if you want to save and re-
store a model across sessions, you can use the model_to_json() or model_to_yaml() functions
(for model configuration only, not weights) or the save_model_hdf5() function to save the model
configuration and weights to a file.

See Also

Other model functions: compile.keras.engine.training.Model (), evaluate.keras.engine.training.Model(),
evaluate_generator(), fit.keras.engine.training.Model(), fit_generator(), get_layer(),
keras_model_sequential (), keras_model (), multi_gpu_model (), pop_layer(), predict.keras.engine.training.\
predict_generator(), predict_on_batch(), predict_proba(), summary.keras.engine.training.Model(),
train_on_batch()

Other layer methods: count_params(), get_input_at(), get_weights(), reset_states()

get_file

65

get_file

Downloads a file from a URL if it not already in the cache.

Description

Passing the MDS5 hash will verify the file after download as well as if it is already present in the

cache.
Usage
get_file(
fname,
origin,
file_hash = NULL,
cache_subdir = "datasets”,
hash_algorithm = "auto”,
extract = FALSE,
archive_format = "auto”,
cache_dir = NULL
)
Arguments
fname Name of the file. If an absolute path /path/to/file.txt is specified the file will be
saved at that location.
origin Original URL of the file.
file_hash The expected hash string of the file after download. The sha256 and md5 hash

cache_subdir

hash_algorithm

extract

archive_format

cache_dir

Value

algorithms are both supported.

Subdirectory under the Keras cache dir where the file is saved. If an absolute
path /path/to/folder is specified the file will be saved at that location.

Select the hash algorithm to verify the file. options are *'md5’, ’sha256’°, and
“auto’. The default *auto’ detects the hash algorithm in use.

True tries extracting the file as an Archive, like tar or zip.

Archive format to try for extracting the file. Options are ’auto’, "tar’, ’zip’, and
None. ’tar’ includes tar, tar.gz, and tar.bz files. The default "auto’ is ("tar’, *zip’).
None or an empty list will return no matches found.

Location to store cached files, when NULL it defaults to the Keras configuration
directory.

Path to the downloaded file

66 get_input_at

get_input_at Retrieve tensors for layers with multiple nodes

Description
Whenever you are calling a layer on some input, you are creating a new tensor (the output of the
layer), and you are adding a "node" to the layer, linking the input tensor to the output tensor. When
you are calling the same layer multiple times, that layer owns multiple nodes indexed as 1, 2, 3.
These functions enable you to retrieve various tensor properties of layers with multiple nodes.
Usage
get_input_at(object, node_index)
get_output_at(object, node_index)
get_input_shape_at(object, node_index)
get_output_shape_at(object, node_index)

get_input_mask_at(object, node_index)

get_output_mask_at(object, node_index)

Arguments
object Layer or model object
node_index Integer, index of the node from which to retrieve the attribute. E.g. node_index
=1 will correspond to the first time the layer was called.
Value

A tensor (or list of tensors if the layer has multiple inputs/outputs).

See Also

Other layer methods: count_params(), get_config(), get_weights(), reset_states()

get_layer 67

get_layer Retrieves a layer based on either its name (unique) or index.

Description

Indices are based on order of horizontal graph traversal (bottom-up) and are 1-based. If name and
index are both provided, index will take precedence.

Usage

get_layer(object, name = NULL, index = NULL)

Arguments

object Keras model object

name String, name of layer.

index Integer, index of layer (1-based)
Value

A layer instance.

See Also

Other model functions: compile.keras.engine.training.Model(), evaluate.keras.engine.training.Model(),
evaluate_generator(), fit.keras.engine.training.Model (), fit_generator(), get_config(),
keras_model_sequential(), keras_model(), multi_gpu_model(), pop_layer(), predict.keras.engine.training.}
predict_generator(), predict_on_batch(), predict_proba(), summary.keras.engine.training.Model(),
train_on_batch()

get_vocabulary Get the vocabulary for text vectorization layers

Description

Get the vocabulary for text vectorization layers

Usage

get_vocabulary(object)

Arguments

object a text vectorization layer

See Also

set_vocabulary()

68 hdf5_matrix

get_weights Layer/Model weights as R arrays

Description

Layer/Model weights as R arrays

Usage

get_weights(object)

set_weights(object, weights)

Arguments
object Layer or model object
weights Weights as R array
See Also

Other model persistence: model_to_json(), model_to_yaml(), save_model_hdf5(), save_model_tf (),
save_model_weights_hdf5(), serialize_model ()

Other layer methods: count_params(), get_config(), get_input_at(), reset_states()

hdf5_matrix Representation of HDFS5 dataset to be used instead of an R array

Description

Representation of HDF5 dataset to be used instead of an R array

Usage

hdf5_matrix(datapath, dataset, start = @, end = NULL, normalizer = NULL)

Arguments
datapath string, path to a HDF5 file
dataset string, name of the HDF5 dataset in the file specified in datapath
start int, start of desired slice of the specified dataset
end int, end of desired slice of the specified dataset

normalizer function to be called on data when retrieved

imagenet_decode_predictions 69

Details

Providing start and end allows use of a slice of the dataset.

Optionally, a normalizer function (or lambda) can be given. This will be called on every slice of
data retrieved.

Value

An array-like HDF5 dataset.

imagenet_decode_predictions
Decodes the prediction of an ImageNet model.

Description

Decodes the prediction of an ImageNet model.

Usage

imagenet_decode_predictions(preds, top = 5)

Arguments
preds Tensor encoding a batch of predictions.
top integer, how many top-guesses to return.
Value

List of data frames with variables class_name, class_description, and score (one data frame
per sample in batch input).

imagenet_preprocess_input
Preprocesses a tensor or array encoding a batch of images.

Description

Preprocesses a tensor or array encoding a batch of images.

Usage

imagenet_preprocess_input(x, data_format = NULL, mode = "caffe")

70 image_data_generator

Arguments
X Input Numpy or symbolic tensor, 3D or 4D.
data_format Data format of the image tensor/array.
mode One of "caffe", "tf", or "torch"
* caffe: will convert the images from RGB to BGR, then will zero-center
each color channel with respect to the ImageNet dataset, without scaling.
« tf: will scale pixels between -1 and 1, sample-wise.
* torch: will scale pixels between 0 and 1 and then will normalize each chan-
nel with respect to the ImageNet dataset.
Value

Preprocessed tensor or array.

image_data_generator Generate batches of image data with real-time data augmentation. The
data will be looped over (in batches).

Description

Generate batches of image data with real-time data augmentation. The data will be looped over (in
batches).

Usage

image_data_generator(
featurewise_center = FALSE,
samplewise_center = FALSE,
featurewise_std_normalization = FALSE,
samplewise_std_normalization = FALSE,
zca_whitening = FALSE,
zca_epsilon = 1e-06,
rotation_range = 0,
width_shift_range = 0,
height_shift_range = 0,
brightness_range = NULL,
shear_range = 0,
zoom_range = 0,
channel_shift_range = 0,
fill_mode = "nearest”,
cval = 0,
horizontal_flip = FALSE,
vertical_flip = FALSE,
rescale = NULL,
preprocessing_function = NULL,

image_data_generator 71

data_format = NULL,
validation_split = @
)

Arguments

featurewise_center

Set input mean to O over the dataset, feature-wise.
samplewise_center

Boolean. Set each sample mean to 0.
featurewise_std_normalization

Divide inputs by std of the dataset, feature-wise.
samplewise_std_normalization

Divide each input by its std.

zca_whitening apply ZCA whitening.
zca_epsilon Epsilon for ZCA whitening. Default is 1e-6.

rotation_range degrees (0 to 180).
width_shift_range
fraction of total width.
height_shift_range
fraction of total height.
brightness_range
the range of brightness to apply
shear_range shear intensity (shear angle in radians).
zoom_range amount of zoom. if scalar z, zoom will be randomly picked in the range [1-
z, 1+z]. A sequence of two can be passed instead to select this range.
channel_shift_range
shift range for each channels.

non non

fill_mode One of "constant", "nearest", "reflect”" or "wrap". Points outside the boundaries
of the input are filled according to the given mode:
¢ "constant": kkkkkkkk | abcd | kkkkkkkk (cval=k)
e "nearest": aaaaaaaa|abcd|dddddddd
e "reflect": abcddcba]abcd|dcbaabed
e "wrap": abcdabcd|abcd|abcdabcd
cval value used for points outside the boundaries when fill_mode is ’constant’. De-

fault is 0.
horizontal_flip

whether to randomly flip images horizontally.
vertical_flip whether to randomly flip images vertically.
rescale rescaling factor. If NULL or 0, no rescaling is applied, otherwise we multiply
the data by the value provided (before applying any other transformation).
preprocessing_function
function that will be implied on each input. The function will run before any

other modification on it. The function should take one argument: one image
(tensor with rank 3), and should output a tensor with the same shape.

72 image_load

data_format ’channels_first’ or ’channels_last’. In ’channels_first’ mode, the channels di-
mension (the depth) is at index 1, in ’channels_last’ mode it is at index 3. It
defaults to the image_data_format value found in your Keras config file at
~/ .keras/keras.json. If you never set it, then it will be "channels_last".

validation_split
fraction of images reserved for validation (strictly between 0 and 1).

image_load Loads an image into PIL format.

Description

Loads an image into PIL format.

Usage

image_load(
path,
grayscale = FALSE,
target_size = NULL,

interpolation = "nearest”
)
Arguments
path Path to image file
grayscale Boolean, whether to load the image as grayscale.

target_size Either NULL (default to original size) or integer vector (img_height, img_width).

interpolation Interpolation method used to resample the image if the target size is different
from that of the loaded image. Supported methods are "nearest", "bilinear", and
"bicubic". If PIL version 1.1.3 or newer is installed, "lanczos" is also supported.
If PIL version 3.4.0 or newer is installed, "box" and "hamming" are also sup-
ported. By default, "nearest” is used.

Value

A PIL Image instance.

See Also

Other image preprocessing: fit_image_data_generator(), flow_images_from_dataframe(),
flow_images_from_data(), flow_images_from_directory(), image_to_array()

image_to_array 73

image_to_array 3D array representation of images

Description

3D array that represents an image with dimensions (height,width,channels) or (channels,height,width)
depending on the data_format.

Usage

image_to_array(img, data_format = c("channels_last”, "channels_first"))

image_array_resize(

img,
height,
width,
data_format = c("channels_last”, "channels_first")
)
image_array_save(
img,
path,
data_format = NULL,
file_format = NULL,
scale = TRUE
)
Arguments
img Image
data_format Image data format ("channels_last" or "channels_first")
height Height to resize to
width Width to resize to
path Path to save image to
file_format Optional file format override. If omitted, the format to use is determined from
the filename extension. If a file object was used instead of a filename, this
parameter should always be used.
scale Whether to rescale image values to be within 0,255
See Also

Other image preprocessing: fit_image_data_generator(), flow_images_from_dataframe(),
flow_images_from_data(), flow_images_from_directory(), image_load()

74 initializer_constant

implementation Keras implementation

Description

Obtain a reference to the Python module used for the implementation of Keras.

Usage

implementation()

Details
There are currently two Python modules which implement Keras:

¢ keras ("keras")

« tensorflow.keras ("tensorflow")

This function returns a reference to the implementation being currently used by the keras package.
The default implementation is "keras". You can override this by setting the KERAS_IMPLEMENTATION
environment variable to "tensorflow".

Value

Reference to the Python module used for the implementation of Keras.

initializer_constant [nitializer that generates tensors initialized to a constant value.

Description

Initializer that generates tensors initialized to a constant value.

Usage

initializer_constant(value = 0)

Arguments

value float; the value of the generator tensors.

See Also

Other initializers: initializer_glorot_normal(), initializer_glorot_uniform(), initializer_he_normal(),
initializer_he_uniform(), initializer_identity(), initializer_lecun_normal(), initializer_lecun_uniforr
initializer_ones(), initializer_orthogonal (), initializer_random_normal(), initializer_random_uniform(
initializer_truncated_normal(), initializer_variance_scaling(), initializer_zeros()

initializer_glorot_normal 75

initializer_glorot_normal
Glorot normal initializer, also called Xavier normal initializer.

Description

It draws samples from a truncated normal distribution centered on 0 with stddev = sqrt(2 / (fan_in
+ fan_out)) where fan_in is the number of input units in the weight tensor and fan_out is the
number of output units in the weight tensor.

Usage

initializer_glorot_normal(seed = NULL)

Arguments

seed Integer used to seed the random generator.

References

Glorot & Bengio, AISTATS 2010 http://jmlr.org/proceedings/papers/v9/gloroti@a/glorotioa.

pdf

See Also

Other initializers: initializer_constant(), initializer_glorot_uniform(), initializer_he_normal(),
initializer_he_uniform(), initializer_identity(), initializer_lecun_normal(), initializer_lecun_uniforr
initializer_ones(), initializer_orthogonal(), initializer_random_normal(), initializer_random_uniform(

initializer_truncated_normal(), initializer_variance_scaling(), initializer_zeros()

initializer_glorot_uniform
Glorot uniform initializer, also called Xavier uniform initializer.

Description

It draws samples from a uniform distribution within -limit, limit where 1imit is sqrt(6 / (fan_in
+ fan_out)) where fan_in is the number of input units in the weight tensor and fan_out is the
number of output units in the weight tensor.

Usage

initializer_glorot_uniform(seed = NULL)

Arguments

seed Integer used to seed the random generator.

http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf
http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf

76 initializer_he_normal

References

Glorot & Bengio, AISTATS 2010 http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf

See Also

Other initializers: initializer_constant(), initializer_glorot_normal(), initializer_he_normal(),
initializer_he_uniform(), initializer_identity(), initializer_lecun_normal(), initializer_lecun_uniforr
initializer_ones(), initializer_orthogonal(), initializer_random_normal(), initializer_random_uniform(
initializer_truncated_normal(), initializer_variance_scaling(), initializer_zeros()

initializer_he_normal He normal initializer.

Description
It draws samples from a truncated normal distribution centered on 0 with stddev = sqrt(2 / fan_in)
where fan_in is the number of input units in the weight tensor.

Usage

initializer_he_normal(seed = NULL)

Arguments

seed Integer used to seed the random generator.

References

He et al., http://arxiv.org/abs/1502.01852

See Also

Other initializers: initializer_constant(), initializer_glorot_normal(), initializer_glorot_uniform(),
initializer_he_uniform(), initializer_identity(), initializer_lecun_normal(), initializer_lecun_uniforr
initializer_ones(), initializer_orthogonal(), initializer_random_normal(), initializer_random_uniform(
initializer_truncated_normal(), initializer_variance_scaling(), initializer_zeros()

initializer_he_uniform 77

initializer_he_uniform
He uniform variance scaling initializer.

Description
It draws samples from a uniform distribution within -limit, limit where limit™" is sqrt(6 / fan_in)where
fan_in‘ is the number of input units in the weight tensor.

Usage

initializer_he_uniform(seed = NULL)

Arguments

seed Integer used to seed the random generator.

References

He et al., http://arxiv.org/abs/1502.01852

See Also

Other initializers: initializer_constant(), initializer_glorot_normal(), initializer_glorot_uniform(),
initializer_he_normal(), initializer_identity(), initializer_lecun_normal(), initializer_lecun_uniform
initializer_ones(), initializer_orthogonal(), initializer_random_normal(), initializer_random_uniform(
initializer_truncated_normal(),initializer_variance_scaling(), initializer_zeros()

initializer_identity [Initializer that generates the identity matrix.

Description

Only use for square 2D matrices.

Usage

initializer_identity(gain = 1)

Arguments

gain Multiplicative factor to apply to the identity matrix

78 initializer lecun_normal

See Also

Other initializers: initializer_constant(), initializer_glorot_normal(), initializer_glorot_uniform(),
initializer_he_normal(), initializer_he_uniform(), initializer_lecun_normal(), initializer_lecun_unifol
initializer_ones(), initializer_orthogonal(), initializer_random_normal(), initializer_random_uniform(
initializer_truncated_normal(), initializer_variance_scaling(), initializer_zeros()

initializer_lecun_normal
LeCun normal initializer.

Description
It draws samples from a truncated normal distribution centered on 0 with stddev <-sqrt(1 /
fan_in) where fan_in is the number of input units in the weight tensor..

Usage

initializer_lecun_normal (seed = NULL)

Arguments

seed A Python integer. Used to seed the random generator.

References

* Self-Normalizing Neural Networks

* Efficient Backprop, LeCun, Yann et al. 1998

See Also

Other initializers: initializer_constant(), initializer_glorot_normal(), initializer_glorot_uniform(),
initializer_he_normal(), initializer_he_uniform(), initializer_identity(), initializer_lecun_uniform(),
initializer_ones(), initializer_orthogonal(), initializer_random_normal(), initializer_random_uniform(
initializer_truncated_normal(), initializer_variance_scaling(), initializer_zeros()

https://arxiv.org/abs/1706.02515

initializer lecun_uniform 79

initializer_lecun_uniform
LeCun uniform initializer.

Description
It draws samples from a uniform distribution within -limit, limit where 1imit is sqrt(3 / fan_in)
where fan_in is the number of input units in the weight tensor.

Usage

initializer_lecun_uniform(seed = NULL)

Arguments

seed Integer used to seed the random generator.

References

LeCun 98, Efficient Backprop,

See Also

Other initializers: initializer_constant(), initializer_glorot_normal(), initializer_glorot_uniform(),
initializer_he_normal(), initializer_he_uniform(), initializer_identity(), initializer_lecun_normal(),
initializer_ones(), initializer_orthogonal (), initializer_random_normal(), initializer_random_uniform(
initializer_truncated_normal(), initializer_variance_scaling(), initializer_zeros()

initializer_ones Initializer that generates tensors initialized to 1.

Description

Initializer that generates tensors initialized to 1.

Usage

initializer_ones()

See Also

Other initializers: initializer_constant(), initializer_glorot_normal(), initializer_glorot_uniform(),
initializer_he_normal(), initializer_he_uniform(), initializer_identity(), initializer_lecun_normal(),
initializer_lecun_uniform(), initializer_orthogonal(), initializer_random_normal(),
initializer_random_uniform(), initializer_truncated_normal(), initializer_variance_scaling(),
initializer_zeros()

80 initializer_random_normal

initializer_orthogonal
Initializer that generates a random orthogonal matrix.

Description

Initializer that generates a random orthogonal matrix.

Usage

initializer_orthogonal(gain = 1, seed = NULL)

Arguments
gain Multiplicative factor to apply to the orthogonal matrix.
seed Integer used to seed the random generator.

References

Saxe etal., http://arxiv.org/abs/1312.6120

See Also

Other initializers: initializer_constant(), initializer_glorot_normal(), initializer_glorot_uniform(),
initializer_he_normal(), initializer_he_uniform(), initializer_identity(), initializer_lecun_normal(),
initializer_lecun_uniform(), initializer_ones(), initializer_random_normal(), initializer_random_unifol
initializer_truncated_normal(), initializer_variance_scaling(), initializer_zeros()

initializer_random_normal
Initializer that generates tensors with a normal distribution.

Description

Initializer that generates tensors with a normal distribution.

Usage

initializer_random_normal(mean = @, stddev = 0.05, seed = NULL)

Arguments
mean Mean of the random values to generate.
stddev Standard deviation of the random values to generate.

seed Integer used to seed the random generator.

http://arxiv.org/abs/1312.6120

initializer_random_uniform 81

See Also

Other initializers: initializer_constant(), initializer_glorot_normal(), initializer_glorot_uniform(),
initializer_he_normal(), initializer_he_uniform(), initializer_identity(), initializer_lecun_normal(),
initializer_lecun_uniform(), initializer_ones(), initializer_orthogonal(), initializer_random_uniform(
initializer_truncated_normal(), initializer_variance_scaling(), initializer_zeros()

initializer_random_uniform

Initializer that generates tensors with a uniform distribution.

Description

Initializer that generates tensors with a uniform distribution.

Usage

initializer_random_uniform(minval = -@.05, maxval = 0.05, seed = NULL)
Arguments

minval Lower bound of the range of random values to generate.

maxval Upper bound of the range of random values to generate. Defaults to 1 for float

types.

seed seed

See Also

Other initializers: initializer_constant(), initializer_glorot_normal(), initializer_glorot_uniform(),
initializer_he_normal(), initializer_he_uniform(), initializer_identity(), initializer_lecun_normal(),
initializer_lecun_uniform(), initializer_ones(), initializer_orthogonal(), initializer_random_normal(),
initializer_truncated_normal(), initializer_variance_scaling(), initializer_zeros()

initializer_truncated_normal

Initializer that generates a truncated normal distribution.

Description

These values are similar to values from an initializer_random_normal() except that values
more than two standard deviations from the mean are discarded and re-drawn. This is the recom-
mended initializer for neural network weights and filters.

Usage

initializer_truncated_normal(mean = @, stddev = 0.05, seed = NULL)

82 initializer_variance_scaling

Arguments
mean Mean of the random values to generate.
stddev Standard deviation of the random values to generate.
seed Integer used to seed the random generator.

See Also

Other initializers: initializer_constant(), initializer_glorot_normal(), initializer_glorot_uniform(),
initializer_he_normal(), initializer_he_uniform(), initializer_identity(), initializer_lecun_normal(),
initializer_lecun_uniform(), initializer_ones(), initializer_orthogonal(), initializer_random_normal(),
initializer_random_uniform(), initializer_variance_scaling(), initializer_zeros()

initializer_variance_scaling
Initializer capable of adapting its scale to the shape of weights.

Description

With distribution="normal", samples are drawn from a truncated normal distribution centered
on zero, with stddev = sqrt(scale / n) where n is:

* number of input units in the weight tensor, if mode = "fan_in"

* number of output units, if mode = "fan_out"

* average of the numbers of input and output units, if mode = "fan_avg"

Usage
initializer_variance_scaling(
scale = 1,
mode = c("fan_in", "fan_out”, "fan_avg"),
distribution = c("normal”, "uniform”, "truncated_normal”, "untruncated_normal"),
seed = NULL
)
Arguments
scale Scaling factor (positive float).
mode One of "fan_in", "fan_out", "fan_avg".

distribution One of "truncated_normal", "untruncated_normal" and "uniform". For back-
ward compatibility, "normal" will be accepted and converted to "untruncated_normal".

seed Integer used to seed the random generator.

Details

With distribution="uniform", samples are drawn from a uniform distribution within -limit, limit,
with 1imit = sqrt(3 * scale / n).

initializer_zeros 83

See Also

Other initializers: initializer_constant(), initializer_glorot_normal(), initializer_glorot_uniform(),
initializer_he_normal(), initializer_he_uniform(), initializer_identity(), initializer_lecun_normal(),
initializer_lecun_uniform(), initializer_ones(), initializer_orthogonal(), initializer_random_normal(),
initializer_random_uniform(), initializer_truncated_normal(), initializer_zeros()

initializer_zeros Initializer that generates tensors initialized to 0.

Description

Initializer that generates tensors initialized to 0.

Usage

initializer_zeros()

See Also

Other initializers: initializer_constant(), initializer_glorot_normal(), initializer_glorot_uniform(),
initializer_he_normal(), initializer_he_uniform(), initializer_identity(), initializer_lecun_normal(),
initializer_lecun_uniform(), initializer_ones(), initializer_orthogonal(), initializer_random_normal(),
initializer_random_uniform(), initializer_truncated_normal(), initializer_variance_scaling()

install_keras Install Keras and the TensorFlow backend

Description

Keras and TensorFlow will be installed into an "r-tensorflow" virtual or conda environment. Note
that "virtualenv" is not available on Windows (as this isn’t supported by TensorFlow).

Usage
install_keras(
method = c("auto”, "virtualenv”, "conda"),
conda = "auto",
version = "default”,
tensorflow = "default”,

extra_packages = c("tensorflow-hub"),

84 install_keras
Arguments
method Installation method ("virtualenv" or "conda")
conda Path to conda executable (or "auto" to find conda using the PATH and other
conventional install locations).
version Version of Keras to install. Specify "default" to install the latest release. Other-
wise specify an alternate version (e.g. "2.2.2").
tensorflow TensorFlow version to install. Specify "default" to install the CPU version of

the latest release. Specify "gpu" to install the GPU version of the latest release.
You can also provide a full major.minor.patch specification (e.g. "1.1.0"), ap-
pending "-gpu" if you want the GPU version (e.g. "1.1.0-gpu").
Alternatively, you can provide the full URL to an installer binary (e.g. for a
nightly binary).

extra_packages Additional PyPI packages to install along with Keras and TensorFlow.
Other arguments passed to tensorflow: :install_tensorflow().

GPU Installation

Keras and TensorFlow can be configured to run on either CPUs or GPUs. The CPU version is much
easier to install and configure so is the best starting place especially when you are first learning how
to use Keras. Here’s the guidance on CPU vs. GPU versions from the TensorFlow website:

* TensorFlow with CPU support only. If your system does not have a NVIDIA® GPU, you must
install this version. Note that this version of TensorFlow is typically much easier to install, so
even if you have an NVIDIA GPU, we recommend installing this version first.

o TensorFlow with GPU support. TensorFlow programs typically run significantly faster on a
GPU than on a CPU. Therefore, if your system has a NVIDIA® GPU meeting all prerequi-
sites and you need to run performance-critical applications, you should ultimately install this
version.

To install the GPU version:

1. Ensure that you have met all installation prerequisites including installation of the CUDA and
cuDNN libraries as described in TensorFlow GPU Prerequistes.

2. Pass tensorflow = "gpu” to install_keras(). For example:

install_keras(tensorflow = "gpu")

Windows Installation

The only supported installation method on Windows is "conda". This means that you should install
Anaconda 3.x for Windows prior to installing Keras.

Custom Installation

Installing Keras and TensorFlow using install_keras() isn’t required to use the Keras R package.
You can do a custom installation of Keras (and desired backend) as described on the Keras website
and the Keras R package will find and use that version.

See the documentation on custom installations for additional information on how version of Keras
and TensorFlow are located by the Keras package.

https://tensorflow.rstudio.com/installation_gpu.html#prerequisites
https://keras.io/#installation
https://tensorflow.rstudio.com/installation/custom/

is_keras_available 85

Additional Packages

If you wish to add additional PyPI packages to your Keras / TensorFlow environment you can either
specify the packages in the extra_packages argument of install_keras(), or alternatively install
them into an existing environment using the reticulate: :py_install() function.

Examples

Not run:

default installation
library(keras)
install_keras()

install using a conda environment (default is virtualenv)
install_keras(method = "conda")

install with GPU version of TensorFlow
(NOTE: only do this if you have an NVIDIA GPU + CUDA!)
install_keras(tensorflow = "gpu")

install a specific version of TensorFlow

install_keras(tensorflow = "1.2.1")
install_keras(tensorflow = "1.2.1-gpu")

End(Not run)

is_keras_available Check if Keras is Available

Description

Probe to see whether the Keras python package is available in the current system environment.

Usage

is_keras_available(version = NULL)

Arguments

version Minimum required version of Keras (defaults to NULL, no required version).

Value

Logical indicating whether Keras (or the specified minimum version of Keras) is available.

86 KerasCallback

Examples

Not run:
testthat utilty for skipping tests when Keras isn't available
skip_if_no_keras <- function(version = NULL) {
if (!is_keras_available(version))
skip("Required keras version not available for testing"”)

}

use the function within a test
test_that("keras function works correctly”, {
skip_if_no_keras()
test code here

b

End(Not run)

KerasCallback Base R6 class for Keras callbacks

Description

Base R6 class for Keras callbacks

Format

An R6Class generator object

Details

The logs named list that callback methods take as argument will contain keys for quantities relevant
to the current batch or epoch.

Currently, the fit.keras.engine.training.Model() method for sequential models will include
the following quantities in the logs that it passes to its callbacks:

* on_epoch_end: logs include acc and loss, and optionally include val_loss (if validation is
enabled in fit), and val_acc (if validation and accuracy monitoring are enabled).

* on_batch_begin: logs include size, the number of samples in the current batch.

* on_batch_end: logs include loss, and optionally acc (if accuracy monitoring is enabled).

Value

KerasCallback.

Fields

params Named list with training parameters (eg. verbosity, batch size, number of epochs...).

model Reference to the Keras model being trained.

KerasConstraint 87

Methods

on_epoch_begin(epoch, logs) Called at the beginning of each epoch.
on_epoch_end(epoch, logs) Called at the end of each epoch.
on_batch_begin(batch, logs) Called at the beginning of each batch.
on_batch_end(batch, logs) Called at the end of each batch.
on_train_begin(logs) Called at the beginning of training.

on_train_end(logs) Called at the end of training.

Examples

Not run:
library(keras)

LossHistory <- R6::R6Class("LossHistory”,
inherit = KerasCallback,

public = list(
losses = NULL,

on_batch_end = function(batch, logs = list()) {
self$losses <- c(self$losses, logs[["loss"]])
}
)
)

End(Not run)

KerasConstraint Base R6 class for Keras constraints

Description

Base R6 class for Keras constraints

Format

An R6Class generator object

Details

You can implement a custom constraint either by creating an R function that accepts a weights (w)
parameter, or by creating an R6 class that derives from KerasConstraint and implements a call
method.

Methods

call(w) Constrain the specified weights.

88 KerasLayer

Note

Models which use custom constraints cannot be serialized using save_model_hdf5(). Rather, the
weights of the model should be saved and restored using save_model_weights_hdf5().

See Also

constraints

Examples

Not run:
CustomNonNegConstraint <- R6::R6Class(
"CustomNonNegConstraint”,
inherit = KerasConstraint,
public = list(
call = function(x) {
w * k_cast(k_greater_equal(w, 9), k_floatx())

3
)
)

layer_dense(units = 32, input_shape = c(784),
kernel_constraint = CustomNonNegConstraint$new())

End(Not run)

KerasLayer Base R6 class for Keras layers

Description

Base R6 class for Keras layers

Format

An R6Class generator object #°

Value

KerasLayer.

Methods

build(input_shape) Creates the layer weights (must be implemented by all layers that have
weights)

call(inputs,mask) Call the layer on an input tensor.

compute_output_shape(input_shape) Compute the output shape for the layer.

KerasWrapper 89

add_loss(losses, inputs) Add losses to the layer.

add_weight(name, shape,dtype,initializer,regularizer,trainable,constraint) Addsa
weight variable to the layer.

KerasWrapper Base R6 class for Keras wrappers

Description

Base R6 class for Keras wrappers

Format

An R6Class generator object

Value

KerasWrapper.

Methods
build(input_shape) Builds the wrapped layer. Subclasses can extend this to perform custom
operations on that layer.
call(inputs,mask) Calls the wrapped layer on an input tensor.
compute_output_shape(input_shape) Computes the output shape for the wrapped layer.
add_loss(losses, inputs) Subclasses can use this to add losses to the wrapped layer.

add_weight(name, shape,dtype,initializer,regularizer,trainable,constraint) Subclasses
can use this to add weights to the wrapped layer.

keras_array Keras array object

Description
Convert an R vector, matrix, or array object to an array that has the optimal in-memory layout and
floating point data type for the current Keras backend.

Usage

keras_array(x, dtype = NULL)

Arguments
X Object or list of objects to convert
dtype NumPy data type (e.g. float32, float64). If this is unspecified then R doubles will

be converted to the default floating point type for the current Keras backend.

90 keras_model

Details

Keras does frequent row-oriented access to arrays (for shuffling and drawing batches) so the order
of arrays created by this function is always row-oriented ("C" as opposed to "Fortran" ordering,
which is the default for R arrays).

If the passed array is already a NumPy array with the desired dtype and "C" order then it is returned
unmodified (no additional copies are made).

Value

NumPy array with the specified dtype (or list of NumPy arrays if a list was passed for x).

keras_model Keras Model

Description

A model is a directed acyclic graph of layers.

Usage

keras_model (inputs, outputs = NULL)

Arguments
inputs Input layer
outputs Output layer
See Also

Other model functions: compile.keras.engine.training.Model (), evaluate.keras.engine.training.Model(),
evaluate_generator(), fit.keras.engine.training.Model (), fit_generator(), get_config(),

get_layer(), keras_model_sequential (), multi_gpu_model(), pop_layer(),predict.keras.engine.training.Moc
predict_generator(), predict_on_batch(), predict_proba(), summary.keras.engine.training.Model(),
train_on_batch()

Examples

Not run:
library(keras)

input layer
inputs <- layer_input(shape = c(784))

outputs compose input + dense layers

predictions <- inputs %>%
layer_dense(units = 64, activation = 'relu') %>%
layer_dense(units = 64, activation = 'relu') %>%
layer_dense(units = 10, activation = 'softmax')

keras_model_custom 91

create and compile model
model <- keras_model(inputs = inputs, outputs = predictions)
model %>% compile(

optimizer = 'rmsprop',

loss = 'categorical_crossentropy',

metrics = c('accuracy')

)

End(Not run)

keras_model_custom Create a Keras custom model

Description

Create a Keras custom model

Usage

keras_model_custom(model_fn, name = NULL)

Arguments
model_fn Function that returns an R custom model
name Optional name for model

Details

For documentation on using custom models, see https://keras.rstudio.com/articles/custom_
models.html.

Value

A Keras model

keras_model_sequential
Keras Model composed of a linear stack of layers

Description

Keras Model composed of a linear stack of layers

Usage

keras_model_sequential(layers = NULL, name = NULL)

https://keras.rstudio.com/articles/custom_models.html
https://keras.rstudio.com/articles/custom_models.html

92 k_abs

Arguments
layers List of layers to add to the model
name Name of model

Note

The first layer passed to a Sequential model should have a defined input shape. What that means is
that it should have received an input_shape or batch_input_shape argument, or for some type
of layers (recurrent, Dense...) an input_dim argument.

See Also

Other model functions: compile.keras.engine.training.Model (), evaluate.keras.engine.training.Model(),
evaluate_generator(), fit.keras.engine.training.Model (), fit_generator(), get_config(),
get_layer(), keras_model (), multi_gpu_model(), pop_layer(), predict.keras.engine.training.Model(),
predict_generator(), predict_on_batch(), predict_proba(), summary.keras.engine.training.Model(),
train_on_batch()

Examples

Not run:
library(keras)

model <- keras_model_sequential()

model %>%
layer_dense(units = 32, input_shape = c(784)) %>%
layer_activation('relu') %>%
layer_dense(units = 10) %>%
layer_activation('softmax')

model %>% compile(
optimizer = 'rmsprop',
loss = 'categorical_crossentropy',
metrics = c('accuracy')

)

End(Not run)

k_abs Element-wise absolute value.

Description

Element-wise absolute value.

Usage
k_abs(x)

k_all 93

Arguments

X Tensor or variable.

Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_all Bitwise reduction (logical AND).

Description

Bitwise reduction (logical AND).

Usage

k_all(x, axis = NULL, keepdims = FALSE)

Arguments
X Tensor or variable.
axis Axis along which to perform the reduction (axis indexes are 1-based).
keepdims whether the drop or broadcast the reduction axes.

Value

A uint8 tensor (Os and 1s).

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

94 k_arange

k_any Bitwise reduction (logical OR).

Description

Bitwise reduction (logical OR).

Usage

k_any(x, axis = NULL, keepdims = FALSE)

Arguments
X Tensor or variable.
axis Axis along which to perform the reduction (axis indexes are 1-based).
keepdims whether the drop or broadcast the reduction axes.

Value

A uint8 tensor (0s and 1s).

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_arange Creates a 1D tensor containing a sequence of integers.

Description

The function arguments use the same convention as Theano’s arange: if only one argument is
provided, it is in fact the "stop" argument. The default type of the returned tensor is 'int32' to
match TensorFlow’s default.

Usage

k_arange(start, stop = NULL, step = 1, dtype = "int32")

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_argmax 95

Arguments
start Start value.
stop Stop value.
step Difference between two successive values.
dtype Integer dtype to use.
Value

An integer tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_argmax Returns the index of the maximum value along an axis.

Description

Returns the index of the maximum value along an axis.

Usage
k_argmax(x, axis = -1)
Arguments
X Tensor or variable.
axis Axis along which to perform the reduction (axis indexes are 1-based). Pass -1
(the default) to select the last axis.
Value
A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

96 k_backend

k_argmin Returns the index of the minimum value along an axis.

Description

Returns the index of the minimum value along an axis.

Usage
k_argmin(x, axis = -1)
Arguments
X Tensor or variable.
axis Axis along which to perform the reduction (axis indexes are 1-based). Pass -1
(the default) to select the last axis.
Value
A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_backend Active Keras backend

Description

Active Keras backend

Usage
k_backend()

Value

The name of the backend Keras is currently using.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k _batch_dot 97

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_batch_dot Batchwise dot product.

Description

batch_dot is used to compute dot product of x and y when x and y are data in batch, i.e. in a shape
of (batch_size). batch_dot results in a tensor or variable with less dimensions than the input. If
the number of dimensions is reduced to 1, we use expand_dims to make sure that ndim is at least 2.

Usage

k_batch_dot(x, y, axes)

Arguments
X Keras tensor or variable with 2 more more axes.
y Keras tensor or variable with 2 or more axes
axes List of (or single) integer with target dimensions (axis indexes are 1-based). The
lengths of axes[[1]] and axes[[2]] should be the same.
Value

A tensor with shape equal to the concatenation of x’s shape (less the dimension that was summed
over) and y’s shape (less the batch dimension and the dimension that was summed over). If the final
rank is 1, we reshape it to (batch_size, 1).

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

98 k_batch_get_value

k_batch_flatten Turn a nD tensor into a 2D tensor with same 1st dimension.

Description

In other words, it flattens each data samples of a batch.

Usage

k_batch_flatten(x)

Arguments

X A tensor or variable.

Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_batch_get_value Returns the value of more than one tensor variable.

Description

Returns the value of more than one tensor variable.

Usage

k_batch_get_value(ops)

Arguments

ops List of ops to evaluate.

Value

A list of arrays.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_batch_normalization 99

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

See Also

k_batch_set_value()

k_batch_normalization Applies batch normalization on x given mean, var, beta and gamma.

Description

i.e. returns output <-(x -mean) / (sqrt(var) + epsilon) * gamma + beta

Usage
k_batch_normalization(x, mean, var, beta, gamma, axis = -1, epsilon = 0.001)
Arguments
X Input tensor or variable.
mean Mean of batch.
var Variance of batch.
beta Tensor with which to center the input.
gamma Tensor by which to scale the input.
axis Axis (axis indexes are 1-based). Pass -1 (the default) to select the last axis.
epsilon Fuzz factor.
Value
A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

100 k_bias_add

k_batch_set_value Sets the values of many tensor variables at once.

Description

Sets the values of many tensor variables at once.

Usage

k_batch_set_value(lists)

Arguments

lists a list of lists (tensor, value). value should be an R array.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

See Also
k_batch_get_value()

k_bias_add Adds a bias vector to a tensor.

Description

Adds a bias vector to a tensor.

Usage
k_bias_add(x, bias, data_format = NULL)

Arguments

X Tensor or variable.

bias Bias tensor to add.

data_format string, "channels_last” or "channels_first".
Value

Output tensor.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_binary_crossentropy 101

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_binary_crossentropy Binary crossentropy between an output tensor and a target tensor.

Description

Binary crossentropy between an output tensor and a target tensor.

Usage

k_binary_crossentropy(target, output, from_logits = FALSE)

Arguments
target A tensor with the same shape as output.
output A tensor.
from_logits Whether output is expected to be a logits tensor. By default, we consider that
output encodes a probability distribution.
Value
A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

102 k_cast_to_floatx

k_cast Casts a tensor to a different dtype and returns it.

Description

You can cast a Keras variable but it still returns a Keras tensor.

Usage

k_cast(x, dtype)

Arguments

X Keras tensor (or variable).

dtype String, either (' float16', 'float32', or 'float64").
Value

Keras tensor with dtype dtype.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_cast_to_floatx Cast an array to the default Keras float type.

Description

Cast an array to the default Keras float type.

Usage

k_cast_to_floatx(x)

Arguments

X Array.

Value

The same array, cast to its new type.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_categorical_crossentropy 103

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_categorical_crossentropy

Categorical crossentropy between an output tensor and a target tensor.

Description

Categorical crossentropy between an output tensor and a target tensor.

Usage

k_categorical_crossentropy(target, output, from_logits = FALSE, axis = -1)

Arguments

target

output

from_logits

axis

Value

Output tensor.

Keras Backend

A tensor of the same shape as output.

A tensor resulting from a softmax (unless from_logits is TRUE, in which case
output is expected to be the logits).

Logical, whether output is the result of a softmax, or is a tensor of logits.

Axis (axis indexes are 1-based). Pass -1 (the default) to select the last axis.

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

104 k_clip

k_clear_session Destroys the current TF graph and creates a new one.

Description

Useful to avoid clutter from old models / layers.

Usage

k_clear_session()

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_clip Element-wise value clipping.

Description

Element-wise value clipping.

Usage

k_clip(x, min_value, max_value)

Arguments
X Tensor or variable.
min_value Float or integer.
max_value Float or integer.
Value
A tensor.

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_concatenate 105

k_concatenate Concatenates a list of tensors alongside the specified axis.

Description

Concatenates a list of tensors alongside the specified axis.

Usage
k_concatenate(tensors, axis = -1)
Arguments
tensors list of tensors to concatenate.
axis concatenation axis (axis indexes are 1-based). Pass -1 (the default) to select the
last axis.
Value
A tensor.

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_constant Creates a constant tensor.

Description

Creates a constant tensor.

Usage

k_constant(value, dtype = NULL, shape = NULL, name = NULL)

Arguments
value A constant value
dtype The type of the elements of the resulting tensor.
shape Optional dimensions of resulting tensor.

name Optional name for the tensor.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

106 k convld

Value

A Constant Tensor.

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_convild 1D convolution.

Description

1D convolution.

Usage

k_conv1d(
X,
kernel,
strides = 1,
padding = "valid”,
data_format = NULL,
dilation_rate = 1

)
Arguments
X Tensor or variable.
kernel kernel tensor.
strides stride integer.
padding string, "same”, "causal” or "valid".
data_format string, "channels_last"” or "channels_first".

dilation_rate integer dilate rate.

Value

A tensor, result of 1D convolution.

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k conv2d 107

k_conv2d 2D convolution.

Description

2D convolution.

Usage

k_conv2d(
X,
kernel,
strides = c(1, 1),
padding = "valid”,
data_format = NULL,
dilation_rate = c(1, 1)

)
Arguments
X Tensor or variable.
kernel kernel tensor.
strides strides
padding string, "same"” or "valid".
data_format string, "channels_last"” or "channels_first"”. Whether to use Theano or

TensorFlow/CNTK data format for inputs/kernels/outputs.

dilation_rate vector of 2 integers.

Value

A tensor, result of 2D convolution.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

108 k_conv2d_transpose

k_conv2d_transpose 2D deconvolution (i.e. transposed convolution).

Description

2D deconvolution (i.e. transposed convolution).

Usage

k_conv2d_transpose(
X,
kernel,
output_shape,
strides = c(1, 1),
padding = "valid”,
data_format = NULL

)

Arguments
X Tensor or variable.
kernel kernel tensor.

output_shape 1D int tensor for the output shape.

strides strides list.
padding string, "same"” or "valid".
data_format string, "channels_last"” or "channels_first"”. Whether to use Theano or

TensorFlow/CNTK data format for inputs/kernels/outputs.

Value

A tensor, result of transposed 2D convolution.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k conv3d 109

k_conv3d 3D convolution.

Description

3D convolution.

Usage

k_conv3d(
X,
kernel,
strides = c(1, 1, 1),
padding = "valid”,
data_format = NULL,
dilation_rate = c(1, 1, 1)

)
Arguments
X Tensor or variable.
kernel kernel tensor.
strides strides
padding string, "same"” or "valid".
data_format string, "channels_last"” or "channels_first"”. Whether to use Theano or

TensorFlow/CNTK data format for inputs/kernels/outputs.

dilation_rate list of 3 integers.

Value

A tensor, result of 3D convolution.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

110 k_conv3d_transpose

k_conv3d_transpose 3D deconvolution (i.e. transposed convolution).

Description

3D deconvolution (i.e. transposed convolution).

Usage

k_conv3d_transpose(
X,
kernel,
output_shape,
strides = c(1, 1, 1),
padding = "valid”,
data_format = NULL

)

Arguments
X input tensor.
kernel kernel tensor.

output_shape 1D int tensor for the output shape.

strides strides
padding string, "same" or "valid".
data_format string, "channels_last"” or "channels_first"”. Whether to use Theano or

TensorFlow/CNTK data format for inputs/kernels/outputs.

Value

A tensor, result of transposed 3D convolution.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k cos 111

k_cos Computes cos of x element-wise.

Description

Computes cos of x element-wise.

Usage

k_cos(x)

Arguments

X Tensor or variable.

Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_count_params Returns the static number of elements in a Keras variable or tensor.

Description

Returns the static number of elements in a Keras variable or tensor.

Usage

k_count_params(x)

Arguments

X Keras variable or tensor.

Value

Integer, the number of elements in X, i.e., the product of the array’s static dimensions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

112 k ctc_batch_cost

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_ctc_batch_cost Runs CTC loss algorithm on each batch element.

Description

Runs CTC loss algorithm on each batch element.

Usage

k_ctc_batch_cost(y_true, y_pred, input_length, label_length)

Arguments
y_true tensor (samples, max_string_length) containing the truth labels.
y_pred tensor (samples, time_steps, num_categories) containing the prediction, or out-

put of the softmax.
input_length tensor (samples, 1) containing the sequence length for each batch item in y_pred.

label_length tensor (samples, 1) containing the sequence length for each batch item in y_true.

Value

Tensor with shape (samples,1) containing the CTC loss of each element.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k ctc_decode 113

k_ctc_decode Decodes the output of a softmax.

Description

Can use either greedy search (also known as best path) or a constrained dictionary search.

Usage

k_ctc_decode(
y_pred,
input_length,
greedy = TRUE,
beam_width = 100L,
top_paths = 1

Arguments

y_pred tensor (samples, time_steps, num_categories) containing the prediction, or out-
put of the softmax.

input_length tensor (samples,) containing the sequence length for each batch item in y_pred.

greedy perform much faster best-path search if TRUE. This does not use a dictionary.
beam_width if greedy is FALSE: a beam search decoder will be used with a beam of this
width.
top_paths if greedy is FALSE, how many of the most probable paths will be returned.
Value

If greedy is TRUE, returns a list of one element that contains the decoded sequence. If FALSE,
returns the top_paths most probable decoded sequences. Important: blank labels are returned as
-1. Tensor (top_paths) that contains the log probability of each decoded sequence.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

114 k_cumprod

k_ctc_label_dense_to_sparse
Converts CTC labels from dense to sparse.

Description

Converts CTC labels from dense to sparse.

Usage

k_ctc_label_dense_to_sparse(labels, label_lengths)

Arguments

labels dense CTC labels.
label_lengths length of the labels.

Value

A sparse tensor representation of the labels.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_cumprod Cumulative product of the values in a tensor, alongside the specified
axis.

Description

Cumulative product of the values in a tensor, alongside the specified axis.

Usage

k_cumprod(x, axis = 1)

Arguments

X A tensor or variable.

axis An integer, the axis to compute the product (axis indexes are 1-based).

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k _cumsum 115

Value

A tensor of the cumulative product of values of x along axis.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_cumsum Cumulative sum of the values in a tensor, alongside the specified axis.

Description

Cumulative sum of the values in a tensor, alongside the specified axis.

Usage

k_cumsum(x, axis = 1)

Arguments

X A tensor or variable.

axis An integer, the axis to compute the sum (axis indexes are 1-based).
Value

A tensor of the cumulative sum of values of x along axis.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

116 k_depthwise_conv2d

k_depthwise_conv2d Depthwise 2D convolution with separable filters.

Description

Depthwise 2D convolution with separable filters.

Usage

k_depthwise_conv2d(
X,
depthwise_kernel,
strides = c(1, 1),
padding = "valid”,
data_format = NULL,
dilation_rate = c(1, 1)

Arguments

X input tensor

depthwise_kernel
convolution kernel for the depthwise convolution.

strides strides (length 2).
padding string, "same" or "valid".
data_format string, "channels_last” or "channels_first".

dilation_rate vector of integers, dilation rates for the separable convolution.

Value

Output tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_dot 117

k_dot Multiplies 2 tensors (and/or variables) and returns a tensor.

Description
When attempting to multiply a nD tensor with a nD tensor, it reproduces the Theano behavior. (e.g.
(2,3)*(4,3,5->(2,4,5)

Usage
k_dot(x, y)

Arguments

X Tensor or variable.

y Tensor or variable.

Value

A tensor, dot product of x and y.

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_dropout Sets entries in x to zero at random, while scaling the entire tensor.

Description

Sets entries in x to zero at random, while scaling the entire tensor.

Usage
k_dropout(x, level, noise_shape = NULL, seed = NULL)

Arguments
X tensor
level fraction of the entries in the tensor that will be set to 0.
noise_shape shape for randomly generated keep/drop flags, must be broadcastable to the

shape of x

seed random seed to ensure determinism.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

118 k_dtype

Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_dtype Returns the dtype of a Keras tensor or variable, as a string.

Description

Returns the dtype of a Keras tensor or variable, as a string.

Usage

k_dtype(x)

Arguments

X Tensor or variable.

Value

String, dtype of x.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k elu 119

k_elu Exponential linear unit.

Description

Exponential linear unit.

Usage
k_elu(x, alpha = 1)

Arguments
X A tensor or variable to compute the activation function for.
alpha A scalar, slope of negative section.

Value
A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_epsilon Fuzz factor used in numeric expressions.

Description

Fuzz factor used in numeric expressions.

Usage
k_epsilon()
k_set_epsilon(e)

Arguments

e float. New value of epsilon.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

120 k eval

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_equal Element-wise equality between two tensors.

Description

Element-wise equality between two tensors.

Usage
k_equal(x, y)

Arguments
X Tensor or variable.
y Tensor or variable.
Value

A bool tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_eval Evaluates the value of a variable.

Description

Evaluates the value of a variable.

Usage
k_eval(x)

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_exp 121

Arguments

X A variable.

Value

An R array.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_exp Element-wise exponential.

Description

Element-wise exponential.

Usage

k_exp(x)

Arguments

X Tensor or variable.

Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

122 k_eye

k_expand_dims Adds a 1-sized dimension at index axis.

Description

Adds a 1-sized dimension at index axis.

Usage
k_expand_dims(x, axis = -1)
Arguments
X A tensor or variable.
axis Position where to add a new axis (axis indexes are 1-based). Pass -1 (the default)
to select the last axis.
Value

A tensor with expanded dimensions.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_eye Instantiate an identity matrix and returns it.

Description

Instantiate an identity matrix and returns it.

Usage
k_eye(size, dtype = NULL, name = NULL)

Arguments
size Integer, number of rows/columns.
dtype String, data type of returned Keras variable.

name String, name of returned Keras variable.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_flatten 123

Value

A Keras variable, an identity matrix.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_flatten Flatten a tensor.

Description

Flatten a tensor.

Usage

k_flatten(x)

Arguments

X A tensor or variable.

Value

A tensor, reshaped into 1-D

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

124 k_foldl

k_floatx Default float type

Description

Default float type

Usage
k_floatx()

k_set_floatx(floatx)

Arguments

floatx String, *float16’, "float32’, or *float64’.

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_foldl Reduce elems using fn to combine them from left to right.

Description

Reduce elems using fn to combine them from left to right.

Usage
k_foldl(fn, elems, initializer = NULL, name = NULL)

Arguments
fn Function that will be called upon each element in elems and an accumulator
elems tensor
initializer The first value used (first element of elems in case of ‘NULL")
name A string name for the foldl node in the graph
Value

Tensor with same type and shape as initializer.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_foldr 125

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_foldr Reduce elems using fn to combine them from right to left.

Description

Reduce elems using fn to combine them from right to left.

Usage

k_foldr(fn, elems, initializer = NULL, name = NULL)

Arguments
fn Function that will be called upon each element in elems and an accumulator
elems tensor
initializer The first value used (last element of elems in case of NULL)
name A string name for the foldr node in the graph
Value

Tensor with same type and shape as initializer.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

126 k_gather

k_function Instantiates a Keras function

Description

Instantiates a Keras function

Usage

k_function(inputs, outputs, updates = NULL, ...)
Arguments

inputs List of placeholder tensors.

outputs List of output tensors.

updates List of update ops.

Named arguments passed to tf$Session$run.

Value

Output values as R arrays.

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_gather Retrieves the elements of indices indices in the tensor reference.

Description

Retrieves the elements of indices indices in the tensor reference.

Usage

k_gather(reference, indices)

Arguments
reference A tensor.
indices Indices. Dimension indices are 1-based. Note however that if you pass a tensor

for indices they will be passed as-is, in which case indices will be 0 based
because no normalizing of R 1-based axes to Python 0-based axes is performed.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_get_session 127

Value

A tensor of same type as reference.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_get_session TF session to be used by the backend.

Description

If a default TensorFlow session is available, we will return it. Else, we will return the global Keras
session. If no global Keras session exists at this point: we will create a new global session. Note
that you can manually set the global session via k_set_session().

Usage

k_get_session()

k_set_session(session)

Arguments

session A TensorFlow Session.

Value

A TensorFlow session

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

128 k_get_value

k_get_uid Get the uid for the default graph.

Description

Get the uid for the default graph.

Usage

k_get_uid(prefix = "")
Arguments

prefix An optional prefix of the graph.
Value

A unique identifier for the graph.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_get_value Returns the value of a variable.

Description

Returns the value of a variable.

Usage

k_get_value(x)

Arguments

X input variable.

Value

An R array.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_get_variable_shape 129

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_get_variable_shape Returns the shape of a variable.

Description

Returns the shape of a variable.

Usage

k_get_variable_shape(x)

Arguments

X A variable.

Value

A vector of integers.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_gradients Returns the gradients of variables w.rt. loss.

Description

Returns the gradients of variables w.r.t. loss.

Usage

k_gradients(loss, variables)

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

130 k_greater

Arguments
loss Scalar tensor to minimize.
variables List of variables.

Value

A gradients tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_greater Element-wise truth value of (x > y).

Description

Element-wise truth value of (x > y).

Usage

k_greater(x, y)

Arguments
X Tensor or variable.
y Tensor or variable.
Value

A bool tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_greater_equal 131

k_greater_equal Element-wise truth value of (x >=y).

Description

Element-wise truth value of (x >=y).

Usage

k_greater_equal(x, y)

Arguments
X Tensor or variable.
y Tensor or variable.
Value

A bool tensor.

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_hard_sigmoid Segment-wise linear approximation of sigmoid.

Description
Faster than sigmoid. Returns 0. if x <-2.5, 1. if x>2.5. In -2.5 <= x <= 2.5, returns 0.2 x x +
0.5.

Usage
k_hard_sigmoid(x)

Arguments

X A tensor or variable.

Value

A tensor.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

132 k_image_data_format

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_identity Returns a tensor with the same content as the input tensor.

Description

Returns a tensor with the same content as the input tensor.

Usage

k_identity(x, name = NULL)

Arguments

X The input tensor.

name String, name for the variable to create.
Value

A tensor of the same shape, type and content.

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_image_data_format Default image data format convention (’channels_first’ or ’chan-
nels_last’).

Description

Default image data format convention (’channels_first’ or ’channels_last’).

Usage

k_image_data_format()

k_set_image_data_format(data_format)

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_int_shape 133

Arguments

data_format string. 'channels_first' or 'channels_last'.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_int_shape Returns the shape of tensor or variable as a list of int or NULL entries.

Description

Returns the shape of tensor or variable as a list of int or NULL entries.

Usage

k_int_shape(x)

Arguments

X Tensor or variable.

Value

A list of integers (or NULL entries).

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

134 k_in_top_k

k_in_test_phase Selects x in test phase, and alt otherwise.

Description

Note that alt should have the same shape as x.

Usage
k_in_test_phase(x, alt, training = NULL)

Arguments

X What to return in test phase (tensor or function that returns a tensor).

alt ‘What to return otherwise (tensor or function that returns a tensor).

training Optional scalar tensor (or R logical or integer) specifying the learning phase.
Value

Either x or alt based on k_learning_phase().

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_in_top_k Returns whether the targets are in the top k predictions.

Description

Returns whether the targets are in the top k predictions.

Usage

k_in_top_k(predictions, targets, k)

Arguments
predictions A tensor of shape (batch_size, classes) and type float32.
targets A 1D tensor of length batch_size and type int32 or int64.

k An int, number of top elements to consider.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_in_train_phase 135

Value

A 1D tensor of length batch_size and type bool. output[[i]] is TRUE if predictions[i, targets[[i]]
is within top-k values of predictions[[i]].

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_in_train_phase Selects x in train phase, and alt otherwise.

Description

Note that alt should have the same shape as x.

Usage

k_in_train_phase(x, alt, training = NULL)

Arguments

X What to return in train phase (tensor or function that returns a tensor).

alt ‘What to return otherwise (tensor or function that returns a tensor).

training Optional scalar tensor (or R logical or integer) specifying the learning phase.
Value

Either x or alt based on the training flag. the training flag defaults to k_learning_phase().

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

136 k_is_placeholder

k_is_keras_tensor Returns whether x is a Keras tensor.

Description

A "Keras tensor" is a tensor that was returned by a Keras layer

Usage

k_is_keras_tensor(x)

Arguments

X A candidate tensor.

Value

A logical: Whether the argument is a Keras tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_is_placeholder Returns whether x is a placeholder.

Description

Returns whether x is a placeholder.

Usage

k_is_placeholder(x)

Arguments

X A candidate placeholder.

Value

A logical

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_is_sparse 137

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_is_sparse Returns whether a tensor is a sparse tensor.

Description

Returns whether a tensor is a sparse tensor.

Usage

k_is_sparse(tensor)

Arguments

tensor A tensor instance.

Value

A logical

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_is_tensor Returns whether x is a symbolic tensor.

Description

Returns whether x is a symbolic tensor.

Usage

k_is_tensor(x)

Arguments

X A candidate tensor.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

138 k 12 _normalize

Value

A logical: Whether the argument is a symbolic tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_12_normalize Normalizes a tensor wrt the L2 norm alongside the specified axis.

Description

Normalizes a tensor wrt the L2 norm alongside the specified axis.

Usage

k_12_normalize(x, axis = NULL)

Arguments

X Tensor or variable.

axis Axis along which to perform normalization (axis indexes are 1-based)
Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_learning_phase 139

k_learning_phase Returns the learning phase flag.

Description

The learning phase flag is a bool tensor (0 = test, 1 = train) to be passed as input to any Keras
function that uses a different behavior at train time and test time.

Usage

k_learning_phase()

Value

Learning phase (scalar integer tensor or R integer).

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_less Element-wise truth value of (x < y).

Description

Element-wise truth value of (x <y).

Usage

k_less(x, y)

Arguments

X Tensor or variable.

y Tensor or variable.

Value

A bool tensor.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

140 k local convld

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_less_equal Element-wise truth value of (x <=y).

Description

Element-wise truth value of (x <=y).

Usage
k_less_equal(x, y)

Arguments
X Tensor or variable.
y Tensor or variable.
Value

A bool tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_local_convid Apply 1D conv with un-shared weights.

Description

Apply 1D conv with un-shared weights.

Usage

k_local_convid(inputs, kernel, kernel_size, strides, data_format = NULL)

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k local conv2d 141

Arguments
inputs 3D tensor with shape: (batch_size, steps, input_dim)
kernel the unshared weight for convolution, with shape (output_length, feature_dim,

filters)

kernel_size a list of a single integer, specifying the length of the 1D convolution window
strides a list of a single integer, specifying the stride length of the convolution
data_format the data format, channels_first or channels_last

Value

the tensor after 1d conv with un-shared weights, with shape (batch_size, output_length, filters)

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_local_conv2d Apply 2D conv with un-shared weights.

Description

Apply 2D conv with un-shared weights.

Usage

k_local_conv2d(
inputs,
kernel,
kernel_size,
strides,
output_shape,
data_format = NULL

)
Arguments
inputs 4D tensor with shape: (batch_size, filters, new_rows, new_cols) if data_format="channels_first’
or 4D tensor with shape: (batch_size, new_rows, new_cols, filters) if data_format="channels_last’.
kernel the unshared weight for convolution, with shape (output_items, feature_dim,
filters)
kernel_size a list of 2 integers, specifying the width and height of the 2D convolution win-

dow.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

142 k_log

strides a list of 2 integers, specifying the strides of the convolution along the width and
height.
output_shape a list with (output_row, output_col)
data_format the data format, channels_first or channels_last
Value

A 4d tensor with shape: (batch_size, filters, new_rows, new_cols) if data_format="channels_first’
or 4D tensor with shape: (batch_size, new_rows, new_cols, filters) if data_format="channels_last’.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_log Element-wise log.

Description

Element-wise log.

Usage

k_log(x)

Arguments

X Tensor or variable.

Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_logsumexp 143

k_logsumexp Computes log(sum(exp(elements across dimensions of a tensor))).

Description

This function is more numerically stable than log(sum(exp(x))). It avoids overflows caused by
taking the exp of large inputs and underflows caused by taking the log of small inputs.

Usage

k_logsumexp(x, axis = NULL, keepdims = FALSE)

Arguments
X A tensor or variable.
axis An integer, the axis to reduce over (axis indexes are 1-based).
keepdims A boolean, whether to keep the dimensions or not. If keepdims is FALSE, the
rank of the tensor is reduced by 1. If keepdims is TRUE, the reduced dimension
is retained with length 1.
Value

The reduced tensor.

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_manual_variable_initialization

Sets the manual variable initialization flag.

Description

This boolean flag determines whether variables should be initialized as they are instantiated (de-
fault), or if the user should handle the initialization (e.g. via tf$initialize_all_variables()).

Usage

k_manual_variable_initialization(value)

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

144 k_map_fn

Arguments

value Logical

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_map_fn Map the function fn over the elements elems and return the outputs.

Description

Map the function fn over the elements elems and return the outputs.

Usage

k_map_fn(fn, elems, name = NULL, dtype = NULL)

Arguments
fn Function that will be called upon each element in elems
elems tensor
name A string name for the map node in the graph
dtype Output data type.
Value

Tensor with dtype dtype.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k max 145

k_max Maximum value in a tensor.

Description

Maximum value in a tensor.

Usage
k_max(x, axis = NULL, keepdims = FALSE)

Arguments
X A tensor or variable.
axis An integer, the axis to find maximum values (axis indexes are 1-based).
keepdims A boolean, whether to keep the dimensions or not. If keepdims is FALSE, the
rank of the tensor is reduced by 1. If keepdims is TRUE, the reduced dimension
is retained with length 1.
Value

A tensor with maximum values of x.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_maximum Element-wise maximum of two tensors.

Description

Element-wise maximum of two tensors.

Usage

k_maximum(x, y)

Arguments

X Tensor or variable.

y Tensor or variable.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

146 k _mean

Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_mean Mean of a tensor, alongside the specified axis.

Description

Mean of a tensor, alongside the specified axis.

Usage

k_mean(x, axis = NULL, keepdims = FALSE)

Arguments
X A tensor or variable.
axis A list of axes to compute the mean over (axis indexes are 1-based).
keepdims A boolean, whether to keep the dimensions or not. If keepdims is FALSE, the
rank of the tensor is reduced by 1 for each entry in axis. If keep_dims is TRUE,
the reduced dimensions are retained with length 1.
Value

A tensor with the mean of elements of x.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k min 147

k_min Minimum value in a tensor.

Description

Minimum value in a tensor.

Usage
k_min(x, axis = NULL, keepdims = FALSE)

Arguments
X A tensor or variable.
axis An integer, axis to find minimum values (axis indexes are 1-based).
keepdims A boolean, whether to keep the dimensions or not. If keepdims is FALSE, the
rank of the tensor is reduced by 1. If keepdims is TRUE, the reduced dimension
is retained with length 1.
Value

A tensor with miminum values of x.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_minimum Element-wise minimum of two tensors.

Description

Element-wise minimum of two tensors.

Usage

k_minimum(x, y)

Arguments

X Tensor or variable.

y Tensor or variable.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

148 k_moving_average_update

Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_moving_average_update
Compute the moving average of a variable.

Description

Compute the moving average of a variable.

Usage

k_moving_average_update(x, value, momentum)

Arguments
X A Variable.
value A tensor with the same shape as x.
momentum The moving average momentum.
Value

An operation to update the variable.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_ndim 149

k_ndim Returns the number of axes in a tensor, as an integer:

Description

Returns the number of axes in a tensor, as an integer.

Usage
k_ndim(x)

Arguments

X Tensor or variable.

Value

Integer (scalar), number of axes.

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_normalize_batch_in_training
Computes mean and std for batch then apply batch_normalization on

batch.

Description

Computes mean and std for batch then apply batch_normalization on batch.

Usage

k_normalize_batch_in_training(x, gamma, beta, reduction_axes, epsilon = 0.001)

Arguments
X Input tensor or variable.
gamma Tensor by which to scale the input.
beta Tensor with which to center the input.

reduction_axes iterable of integers, axes over which to normalize.

epsilon Fuzz factor.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

150 k_not_equal

Value

A list length of 3, (normalized_tensor, mean, variance).

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_not_equal Element-wise inequality between two tensors.

Description

Element-wise inequality between two tensors.

Usage

k_not_equal(x, y)

Arguments
X Tensor or variable.
y Tensor or variable.
Value

A bool tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k ones 151

k_ones Instantiates an all-ones tensor variable and returns it.

Description

Instantiates an all-ones tensor variable and returns it.

Usage

k_ones(shape, dtype = NULL, name = NULL)

Arguments
shape Tuple of integers, shape of returned Keras variable.
dtype String, data type of returned Keras variable.
name String, name of returned Keras variable.

Value

A Keras variable, filled with 1.0.

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_ones_like Instantiates an all-ones variable of the same shape as another tensor.

Description

Instantiates an all-ones variable of the same shape as another tensor.

Usage

k_ones_like(x, dtype = NULL, name = NULL)

Arguments
X Keras variable or tensor.
dtype String, dtype of returned Keras variable. NULL uses the dtype of x.

name String, name for the variable to create.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

152 k one_hot

Value

A Keras variable with the shape of x filled with ones.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_one_hot Computes the one-hot representation of an integer tensor.

Description

Computes the one-hot representation of an integer tensor.

Usage

k_one_hot(indices, num_classes)

Arguments
indices nD integer tensor of shape (batch_size, diml, dim2, ... dim(n-1))
num_classes Integer, number of classes to consider.

Value

(n+ 1)D one hot representation of the input with shape (batch_size, dim1, dim2, ... dim(n-1), num_classes)

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_permute_dimensions 153

k_permute_dimensions Permutes axes in a tensor.

Description

Permutes axes in a tensor.

Usage

k_permute_dimensions(x, pattern)

Arguments

X Tensor or variable.

pattern A list of dimension indices, e.g. (1, 3, 2). Dimension indices are 1-based.

Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_placeholder Instantiates a placeholder tensor and returns it.

Description

Instantiates a placeholder tensor and returns it.

Usage
k_placeholder(
shape = NULL,
ndim = NULL,
dtype = NULL,
sparse = FALSE,
name = NULL

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

154 k_pool2d

Arguments
shape Shape of the placeholder (integer list, may include NULL entries).
ndim Number of axes of the tensor. At least one of shape, ndim must be specified. If
both are specified, shape is used.
dtype Placeholder type.
sparse Logical, whether the placeholder should have a sparse type.
name Optional name string for the placeholder.
Value

Tensor instance (with Keras metadata included).

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_pool2d 2D Pooling.

Description

2D Pooling.

Usage

k_pool2d(
X,
pool_size,
strides = c(1, 1),
padding = "valid”,
data_format = NULL,

pool_mode = "max"
)
Arguments
X Tensor or variable.
pool_size list of 2 integers.
strides list of 2 integers.
padding string, "same” or "valid".
data_format string, "channels_last” or "channels_first".

pool_mode string, "max" or "avg".

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_pool3d 155

Value

A tensor, result of 2D pooling.

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_pool3d 3D Pooling.

Description

3D Pooling.

Usage

k_pool3d(
X,
pool_size,
strides = c(1, 1, 1),
padding = "valid”,
data_format = NULL,

pool_mode = "max"
)
Arguments
X Tensor or variable.
pool_size list of 3 integers.
strides list of 3 integers.
padding string, "same"” or "valid".
data_format string, "channels_last” or "channels_first".
pool_mode string, "max” or "avg".
Value

A tensor, result of 3D pooling.

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

156 k_print_tensor

k_pow Element-wise exponentiation.

Description

Element-wise exponentiation.

Usage

k_pow(x, a)

Arguments

X Tensor or variable.

a R integer.

Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_print_tensor Prints message and the tensor value when evaluated.

Description

Note that print_tensor returns a new tensor identical to x which should be used in the following
code. Otherwise the print operation is not taken into account during evaluation.

Usage

k_print_tensor(x, message = "")
Arguments

X Tensor to print.

message Message to print jointly with the tensor.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_prod 157

Value

The same tensor x, unchanged.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_prod Multiplies the values in a tensor, alongside the specified axis.

Description

Multiplies the values in a tensor, alongside the specified axis.

Usage

k_prod(x, axis = NULL, keepdims = FALSE)

Arguments
X A tensor or variable.
axis An integer, axis to compute the product over (axis indexes are 1-based).
keepdims A boolean, whether to keep the dimensions or not. If keepdims is FALSE, the
rank of the tensor is reduced by 1. If keepdims is TRUE, the reduced dimension
is retained with length 1.
Value

A tensor with the product of elements of x.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

158 k _random_normal

k_random_binomial Returns a tensor with random binomial distribution of values.

Description

Returns a tensor with random binomial distribution of values.

Usage

k_random_binomial (shape, p = 0, dtype = NULL, seed = NULL)

Arguments
shape A list of integers, the shape of tensor to create.
p A float, 0. <= p <= 1, probability of binomial distribution.
dtype String, dtype of returned tensor.
seed Integer, random seed.
Value
A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_random_normal Returns a tensor with normal distribution of values.

Description

Returns a tensor with normal distribution of values.

Usage

k_random_normal (shape, mean = @, stddev = 1, dtype = NULL, seed = NULL)

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k _random_normal_variable 159

Arguments
shape A list of integers, the shape of tensor to create.
mean A float, mean of the normal distribution to draw samples.
stddev A float, standard deviation of the normal distribution to draw samples.
dtype String, dtype of returned tensor.
seed Integer, random seed.
Value
A tensor.

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_random_normal_variable
Instantiates a variable with values drawn from a normal distribution.

Description

Instantiates a variable with values drawn from a normal distribution.

Usage
k_random_normal_variable(
shape,
mean,
scale,
dtype = NULL,
name = NULL,
seed = NULL
)
Arguments
shape Tuple of integers, shape of returned Keras variable.
mean Float, mean of the normal distribution.
scale Float, standard deviation of the normal distribution.
dtype String, dtype of returned Keras variable.
name String, name of returned Keras variable.

seed Integer, random seed.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

160 k_random_uniform

Value

A Keras variable, filled with drawn samples.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_random_uniform Returns a tensor with uniform distribution of values.

Description

Returns a tensor with uniform distribution of values.

Usage

k_random_uniform(shape, minval = @, maxval = 1, dtype = NULL, seed = NULL)

Arguments
shape A list of integers, the shape of tensor to create.
minval A float, lower boundary of the uniform distribution to draw samples.
maxval A float, upper boundary of the uniform distribution to draw samples.
dtype String, dtype of returned tensor.
seed Integer, random seed.

Value
A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k _random_uniform_variable 161

k_random_uniform_variable
Instantiates a variable with values drawn from a uniform distribution.

Description

Instantiates a variable with values drawn from a uniform distribution.

Usage
k_random_uniform_variable(
shape,
low,
high,
dtype = NULL,
name = NULL,
seed = NULL
)
Arguments
shape Tuple of integers, shape of returned Keras variable.
low Float, lower boundary of the output interval.
high Float, upper boundary of the output interval.
dtype String, dtype of returned Keras variable.
name String, name of returned Keras variable.
seed Integer, random seed.
Value

A Keras variable, filled with drawn samples.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

162 k_repeat

k_relu Rectified linear unit.

Description

With default values, it returns element-wise max(x,).

Usage
k_relu(x, alpha = @, max_value = NULL)

Arguments
X A tensor or variable.
alpha A scalar, slope of negative section (default=0.).
max_value Saturation threshold.
Value
A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_repeat Repeats a 2D tensor.

Description

If x has shape (samples, dim) and n is 2, the output will have shape (samples, 2, dim).

Usage

k_repeat(x, n)

Arguments

X Tensor or variable.

n Integer, number of times to repeat.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_repeat_elements 163

Value

A tensor

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_repeat_elements Repeats the elements of a tensor along an axis.

Description

If x has shape (s1, s2, s3) and axis is 2, the output will have shape (s1, s2 * rep, s3).

Usage

k_repeat_elements(x, rep, axis)

Arguments

X Tensor or variable.

rep Integer, number of times to repeat.

axis Axis along which to repeat (axis indexes are 1-based)
Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

164 k_reshape

k_reset_uids Reset graph identifiers.

Description

Reset graph identifiers.

Usage

k_reset_uids()

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_reshape Reshapes a tensor to the specified shape.

Description

Reshapes a tensor to the specified shape.

Usage
k_reshape(x, shape)

Arguments
X Tensor or variable.
shape Target shape list.
Value
A tensor.

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_resize_images 165

k_resize_images Resizes the images contained in a 4D tensor.

Description

Resizes the images contained in a 4D tensor.

Usage

k_resize_images(x, height_factor, width_factor, data_format)

Arguments

X Tensor or variable to resize.
height_factor Positive integer.
width_factor Positive integer.

data_format string, "channels_last” or "channels_first".

Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_resize_volumes Resizes the volume contained in a 5D tensor.

Description

Resizes the volume contained in a 5D tensor.

Usage

k_resize_volumes(x, depth_factor, height_factor, width_factor, data_format)

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

166 k_reverse

Arguments

X Tensor or variable to resize.
depth_factor Positive integer.
height_factor Positive integer.
width_factor Positive integer.

data_format string, "channels_last” or "channels_first".

Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_reverse Reverse a tensor along the specified axes.

Description

Reverse a tensor along the specified axes.

Usage

k_reverse(x, axes)

Arguments

X Tensor to reverse.

axes Integer or list of integers of axes to reverse (axis indexes are 1-based).
Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k rnn

167

k_rnn

Iterates over the time dimension of a tensor

Description

Iterates over the time dimension of a tensor

Usage

k_rnn(

step_function,

inputs,

initial_states,

go_backwards
mask = NULL,
constants =

= FALSE,

NULL,

unroll = FALSE,

input_length

Arguments

step_function

inputs

initial_states

go_backwards

mask

constants

unroll

input_length

Value

A list with:

= NULL

RNN step function.

Tensor with shape (samples, ...) (no time dimension), representing input for the
batch of samples at a certain time step.

Tensor with shape (samples, output_dim) (no time dimension), containing the
initial values for the states used in the step function.

Logical If TRUE, do the iteration over the time dimension in reverse order and
return the reversed sequence.

Binary tensor with shape (samples, time, 1), with a zero for every element that
is masked.

A list of constant values passed at each step.

Whether to unroll the RNN or to use a symbolic loop (while_loop or scan de-
pending on backend).

Not relevant in the TensorFlow implementation. Must be specified if using un-
rolling with Theano.

* last_output: the latest output of the rnn, of shape (samples, ...)

* outputs: tensor with shape (samples, time, ...) where each entry outputs[s,t] is the output
of the step function at time t for sample s.

* new_states: list of tensors, latest states returned by the step function, of shape (samples, ...).

168 k_separable_conv2d

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_round Element-wise rounding to the closest integer.

Description

In case of tie, the rounding mode used is "half to even".

Usage

k_round(x)

Arguments

X Tensor or variable.

Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_separable_conv2d 2D convolution with separable filters.

Description

2D convolution with separable filters.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_set_learning_phase 169

Usage

k_separable_conv2d(
X,
depthwise_kernel,
pointwise_kernel,
strides = c(1, 1),
padding = "valid”,
data_format = NULL,
dilation_rate = c(1, 1)

Arguments

X input tensor
depthwise_kernel

convolution kernel for the depthwise convolution.
pointwise_kernel

kernel for the 1x1 convolution.

strides strides list (length 2).
padding string, "same"” or "valid".
data_format string, "channels_last” or "channels_first".

dilation_rate list of integers, dilation rates for the separable convolution.

Value

Output tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_set_learning_phase Sets the learning phase to a fixed value.

Description

Sets the learning phase to a fixed value.

Usage

k_set_learning_phase(value)

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

170 k_shape

Arguments

value Learning phase value, either O or 1 (integers).

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_set_value Sets the value of a variable, from an R array.

Description

Sets the value of a variable, from an R array.

Usage

k_set_value(x, value)

Arguments

X Tensor to set to a new value.

value Value to set the tensor to, as an R array (of the same shape).
Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_shape Returns the symbolic shape of a tensor or variable.

Description

Returns the symbolic shape of a tensor or variable.

Usage
k_shape(x)

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_sigmoid 171

Arguments

X A tensor or variable.

Value

A symbolic shape (which is itself a tensor).

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_sigmoid Element-wise sigmoid.

Description

Element-wise sigmoid.

Usage

k_sigmoid(x)

Arguments

X A tensor or variable.

Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

172 k_sin

k_sign Element-wise sign.

Description

Element-wise sign.

Usage
k_sign(x)

Arguments

X Tensor or variable.

Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_sin Computes sin of x element-wise.

Description

Computes sin of x element-wise.

Usage

k_sin(x)

Arguments

X Tensor or variable.

Value

A tensor.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_softmax 173

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_softmax Softmax of a tensor.

Description

Softmax of a tensor.

Usage
k_softmax(x, axis = -1)
Arguments
X A tensor or variable.
axis The dimension softmax would be performed on. The default is -1 which indi-
cates the last dimension.
Value
A tensor.
Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

174 k_softsign

k_softplus Softplus of a tensor.

Description

Softplus of a tensor.

Usage
k_softplus(x)

Arguments

X A tensor or variable.

Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_softsign Softsign of a tensor.

Description

Softsign of a tensor.

Usage

k_softsign(x)

Arguments

X A tensor or variable.

Value

A tensor.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_sparse_categorical_crossentropy 175

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_sparse_categorical_crossentropy

Categorical crossentropy with integer targets.

Description

Categorical crossentropy with integer targets.

Usage

k_sparse_categorical_crossentropy(

target,
output,

from_logits = FALSE,

axis = -1

Arguments

target
output

from_logits

axis

Value

Output tensor.

Keras Backend

An integer tensor.

A tensor resulting from a softmax (unless from_logits is TRUE, in which case
output is expected to be the logits).

Boolean, whether output is the result of a softmax, or is a tensor of logits.

Axis (axis indexes are 1-based). Pass -1 (the default) to select the last axis.

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

176 k_spatial_3d_padding

k_spatial_2d_padding Pads the 2nd and 3rd dimensions of a 4D tensor.

Description

Pads the 2nd and 3rd dimensions of a 4D tensor.

Usage

k_spatial_2d_padding(
X’
padding = list(list(1, 1), list(1, 1)),
data_format = NULL

)
Arguments

X Tensor or variable.

padding Tuple of 2 lists, padding pattern.

data_format string, "channels_last” or "channels_first".
Value

A padded 4D tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_spatial_3d_padding Pads 5D tensor with zeros along the depth, height, width dimensions.

Description

Pads these dimensions with respectively padding[[1]], padding[[2]], and padding[[3]] zeros
left and right. For ’channels_last’ data_format, the 2nd, 3rd and 4th dimension will be padded. For
’channels_first” data_format, the 3rd, 4th and 5th dimension will be padded.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_sqrt 177

Usage

k_spatial_3d_padding(
X,
padding = list(list(1, 1), list(1, 1), list(1, 1)),
data_format = NULL

)
Arguments

X Tensor or variable.

padding List of 3 lists, padding pattern.

data_format string, "channels_last"” or "channels_first".
Value

A padded 5D tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_sqrt Element-wise square root.

Description

Element-wise square root.

Usage

k_sqrt(x)

Arguments

X Tensor or variable.

Value

A tensor.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

178 k_squeeze

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_square Element-wise square.

Description

Element-wise square.

Usage

k_square(x)

Arguments

X Tensor or variable.

Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_squeeze Removes a 1-dimension from the tensor at index axis.

Description

Removes a 1-dimension from the tensor at index axis.

Usage

k_squeeze(x, axis)

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_stack 179

Arguments

X A tensor or variable.

axis Axis to drop (axis indexes are 1-based).
Value

A tensor with the same data as x but reduced dimensions.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_stack Stacks a list of rank R tensors into a rank R+1 tensor.

Description

Stacks a list of rank R tensors into a rank R+1 tensor.

Usage

k_stack(x, axis = 1)

Arguments

X List of tensors.

axis Axis along which to perform stacking (axis indexes are 1-based).
Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

180 k_stop_gradient

k_std Standard deviation of a tensor, alongside the specified axis.

Description

Standard deviation of a tensor, alongside the specified axis.

Usage
k_std(x, axis = NULL, keepdims = FALSE)

Arguments
X A tensor or variable.
axis An integer, the axis to compute the standard deviation over (axis indexes are
1-based).
keepdims A boolean, whether to keep the dimensions or not. If keepdims is FALSE, the
rank of the tensor is reduced by 1. If keepdims is TRUE, the reduced dimension
is retained with length 1.
Value

A tensor with the standard deviation of elements of x.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_stop_gradient Returns variables but with zero gradient w.r.t. every other variable.

Description

Returns variables but with zero gradient w.r.t. every other variable.

Usage

k_stop_gradient(variables)

Arguments

variables tensor or list of tensors to consider constant with respect to any other variable.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k sum 181

Value

A single tensor or a list of tensors (depending on the passed argument) that has constant gradient
with respect to any other variable.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_sum Sum of the values in a tensor, alongside the specified axis.

Description

Sum of the values in a tensor, alongside the specified axis.

Usage

k_sum(x, axis = NULL, keepdims = FALSE)

Arguments
X A tensor or variable.
axis An integer, the axis to sum over (axis indexes are 1-based).
keepdims A boolean, whether to keep the dimensions or not. If keepdims is FALSE, the
rank of the tensor is reduced by 1. If keepdims is TRUE, the reduced dimension
is retained with length 1.
Value

A tensor with sum of x.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

182 k tanh

k_switch Switches between two operations depending on a scalar value.

Description

Note that both then_expression and else_expression should be symbolic tensors of the same
shape.

Usage

k_switch(condition, then_expression, else_expression)

Arguments

condition tensor (int or bool).
then_expression

either a tensor, or a function that returns a tensor.
else_expression

either a tensor, or a function that returns a tensor.

Value

The selected tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_tanh Element-wise tanh.

Description

Element-wise tanh.

Usage
k_tanh(x)

Arguments

X A tensor or variable.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_temporal_padding 183

Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_temporal_padding Pads the middle dimension of a 3D tensor.

Description

Pads the middle dimension of a 3D tensor.

Usage

k_temporal_padding(x, padding = c(1, 1))

Arguments

X Tensor or variable.

padding List of 2 integers, how many zeros to add at the start and end of dim 1.
Value

A padded 3D tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

184 k to _dense

k_tile Creates a tensor by tiling x by n.

Description

Creates a tensor by tiling x by n.

Usage
k_tile(x, n)
Arguments
X A tensor or variable
n A list of integers. The length must be the same as the number of dimensions in
X.
Value

A tiled tensor.

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_to_dense Converts a sparse tensor into a dense tensor and returns it.

Description

Converts a sparse tensor into a dense tensor and returns it.

Usage

k_to_dense(tensor)

Arguments

tensor A tensor instance (potentially sparse).

Value

A dense tensor.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_transpose 185

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_transpose Transposes a tensor and returns it.

Description

Transposes a tensor and returns it.

Usage

k_transpose(x)

Arguments

X Tensor or variable.

Value

A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_truncated_normal Returns a tensor with truncated random normal distribution of values.

Description

The generated values follow a normal distribution with specified mean and standard deviation, ex-
cept that values whose magnitude is more than two standard deviations from the mean are dropped
and re-picked.

Usage

k_truncated_normal(shape, mean = @, stddev = 1, dtype = NULL, seed = NULL)

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

186 k_update

Arguments
shape A list of integers, the shape of tensor to create.
mean Mean of the values.
stddev Standard deviation of the values.
dtype String, dtype of returned tensor.
seed Integer, random seed.
Value
A tensor.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_update Update the value of x to new_x.

Description

Update the value of x to new_x.

Usage

k_update(x, new_x)

Arguments

X A Variable.

new_x A tensor of same shape as x.
Value

The variable x updated.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_update_add 187

k_update_add Update the value of x by adding increment.

Description

Update the value of x by adding increment.

Usage

k_update_add(x, increment)

Arguments

X A Variable.

increment A tensor of same shape as x.
Value

The variable x updated.

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_update_sub Update the value of x by subtracting decrement.

Description

Update the value of x by subtracting decrement.

Usage

k_update_sub(x, decrement)

Arguments

X A Variable.

decrement A tensor of same shape as x.
Value

The variable x updated.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

188 k var

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_var Variance of a tensor, alongside the specified axis.

Description

Variance of a tensor, alongside the specified axis.

Usage

k_var(x, axis = NULL, keepdims = FALSE)

Arguments
X A tensor or variable.
axis An integer, the axis to compute the variance over (axis indexes are 1-based).
keepdims A boolean, whether to keep the dimensions or not. If keepdims is FALSE, the
rank of the tensor is reduced by 1. If keepdims is TRUE, the reduced dimension
is retained with length 1.
Value

A tensor with the variance of elements of x.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

k_variable 189

k_variable Instantiates a variable and returns it.

Description

Instantiates a variable and returns it.

Usage

k_variable(value, dtype = NULL, name = NULL, constraint = NULL)

Arguments
value Numpy array, initial value of the tensor.
dtype Tensor type.
name Optional name string for the tensor.
constraint Optional projection function to be applied to the variable after an optimizer up-
date.
Value

A variable instance (with Keras metadata included).

Keras Backend
This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_zeros Instantiates an all-zeros variable and returns it.

Description

Instantiates an all-zeros variable and returns it.

Usage

k_zeros(shape, dtype = NULL, name = NULL)

Arguments
shape Tuple of integers, shape of returned Keras variable
dtype String, data type of returned Keras variable

name String, name of returned Keras variable

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

190 k_zeros_like

Value

A variable (including Keras metadata), filled with 0. @.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

k_zeros_like Instantiates an all-zeros variable of the same shape as another tensor.

Description

Instantiates an all-zeros variable of the same shape as another tensor.

Usage

k_zeros_like(x, dtype = NULL, name = NULL)

Arguments
X Keras variable or Keras tensor.
dtype String, dtype of returned Keras variable. NULL uses the dtype of x.
name String, name for the variable to create.

Value

A Keras variable with the shape of x filled with zeros.

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core
operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/
backend.html#backend-functions.

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

layer_activation 191

layer_activation Apply an activation function to an output.

Description

Apply an activation function to an output.

Usage

layer_activation(
object,
activation,
input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,
dtype = NULL,
name = NULL,
trainable = NULL,
weights = NULL

)
Arguments
object Model or layer object
activation Name of activation function to use. If you don’t specify anything, no activation
is applied (ie. "linear" activation: a(x) = X).
input_shape Input shape (list of integers, does not include the samples axis) which is required

when using this layer as the first layer in a model.

batch_input_shape
Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number
of 32-dimensional vectors.

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
See Also

Other core layers: layer_activity_regularization(), layer_attention(), layer_dense_features(),
layer_dense(), layer_dropout (), layer_flatten(), layer_input(), layer_lambda(), layer_masking(),
layer_permute(), layer_repeat_vector(), layer_reshape()

192 layer_activation_elu

Other activation layers: layer_activation_elu(), layer_activation_leaky_relu(), layer_activation_parametric.
layer_activation_relu(), layer_activation_selu(), layer_activation_softmax(), layer_activation_thresho.

layer_activation_elu Exponential Linear Unit.

Description

It follows: f(x) = alpha * (exp(x) -1.0) for x <@, f(x) = x for x >= 0.

Usage
layer_activation_elu(
object,
alpha = 1,

input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,

dtype = NULL,

name = NULL,

trainable = NULL,

weights = NULL

)
Arguments
object Model or layer object
alpha Scale for the negative factor.
input_shape Input shape (list of integers, does not include the samples axis) which is required

when using this layer as the first layer in a model.

batch_input_shape
Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number
of 32-dimensional vectors.

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse

the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.

weights Initial weights for layer.

layer_activation_leaky_relu 193

See Also

Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs).

Other activation layers: layer_activation_leaky_relu(), layer_activation_parametric_relu(),
layer_activation_relu(), layer_activation_selu(), layer_activation_softmax(), layer_activation_thresho.
layer_activation()

layer_activation_leaky_relu
Leaky version of a Rectified Linear Unit.

Description

Allows a small gradient when the unit is not active: f(x) = alpha * x for x <0, f(x) = x for x >=
0.

Usage
layer_activation_leaky_relu(
object,
alpha = 0.3,

input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,

dtype = NULL,

name = NULL,

trainable = NULL,

weights = NULL

)
Arguments
object Model or layer object
alpha float >= 0. Negative slope coefficient.
input_shape Input shape (list of integers, does not include the samples axis) which is required

when using this layer as the first layer in a model.

batch_input_shape
Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number
of 32-dimensional vectors.

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse

the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.

https://arxiv.org/abs/1511.07289v1

194 layer_activation_parametric_relu

See Also

Rectifier Nonlinearities Improve Neural Network Acoustic Models.

Other activation layers: layer_activation_elu(), layer_activation_parametric_relu(), layer_activation_relu(
layer_activation_selu(), layer_activation_softmax(), layer_activation_thresholded_relu(),
layer_activation()

layer_activation_parametric_relu
Parametric Rectified Linear Unit.

Description

It follows: f(x) = alpha * x* for x < 0, f(x) = xforx >= 0°, where alpha is a learned array with the
same shape as x.

Usage
layer_activation_parametric_relu(
object,
alpha_initializer = "zeros",

alpha_regularizer = NULL,
alpha_constraint = NULL,
shared_axes = NULL,
input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,

dtype = NULL,

name = NULL,

trainable = NULL,

weights = NULL

Arguments

object Model or layer object

alpha_initializer
Initializer function for the weights.

alpha_regularizer
Regularizer for the weights.

alpha_constraint
Constraint for the weights.

shared_axes The axes along which to share learnable parameters for the activation func-
tion. For example, if the incoming feature maps are from a 2D convolution
with output shape (batch, height, width, channels), and you wish to share pa-
rameters across space so that each filter only has one set of parameters, set
shared_axes=c(1, 2).

https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf

layer_activation_relu 195

input_shape Input shape (list of integers, does not include the samples axis) which is required
when using this layer as the first layer in a model.

batch_input_shape
Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number
of 32-dimensional vectors.

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
See Also

Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.

Other activation layers: layer_activation_elu(), layer_activation_leaky_relu(), layer_activation_relu(),
layer_activation_selu(), layer_activation_softmax(), layer_activation_thresholded_relu(),
layer_activation()

layer_activation_relu Rectified Linear Unit activation function

Description

Rectified Linear Unit activation function

Usage

layer_activation_relu(
object,
max_value = NULL,
negative_slope = 0,
threshold = 0,
input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,
dtype = NULL,
name = NULL,
trainable = NULL,
weights = NULL

https://arxiv.org/abs/1502.01852

196 layer_activation_selu

Arguments
object Model or layer object
max_value loat, the maximum output value.

negative_slope float >= 0 Negative slope coefficient.
threshold float. Threshold value for thresholded activation.

input_shape Input shape (list of integers, does not include the samples axis) which is required
when using this layer as the first layer in a model.

batch_input_shape
Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number
of 32-dimensional vectors.

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
See Also

Other activation layers: layer_activation_elu(), layer_activation_leaky_relu(), layer_activation_parametric.
layer_activation_selu(), layer_activation_softmax(), layer_activation_thresholded_relu(),
layer_activation()

layer_activation_selu Scaled Exponential Linear Unit.

Description

SELU is equal to: scale * elu(x,alpha), where alpha and scale are pre-defined constants.

Usage

layer_activation_selu(
object,
input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,
dtype = NULL,
name = NULL,
trainable = NULL,
weights = NULL

layer_activation_softmax 197

Arguments
object Model or layer object
input_shape Input shape (list of integers, does not include the samples axis) which is required

when using this layer as the first layer in a model.

batch_input_shape
Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number
of 32-dimensional vectors.

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse

the same name twice). It will be autogenerated if it isn’t provided.

trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Details

The values of alpha and scale are chosen so that the mean and variance of the inputs are pre-
served between two consecutive layers as long as the weights are initialized correctly (see initial-
izer_lecun_normal) and the number of inputs is "large enough" (see article for more information).

Note:

* To be used together with the initialization "lecun_normal".

* To be used together with the dropout variant "AlphaDropout".

See Also

Self-Normalizing Neural Networks, initializer_lecun_normal, layer_alpha_dropout

Other activation layers: layer_activation_elu(), layer_activation_leaky_relu(), layer_activation_parametric.
layer_activation_relu(), layer_activation_softmax(), layer_activation_thresholded_relu(),
layer_activation()

layer_activation_softmax
Softmax activation function.

Description

It follows: f(x) = alpha * (exp(x) -1.0) for x <@, f(x) = x for x >= 0.

https://arxiv.org/abs/1706.02515

198 layer_activation_thresholded_relu

Usage
layer_activation_softmax(
object,
axis = -1,

input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,

dtype = NULL,

name = NULL,

trainable = NULL,

weights = NULL

)
Arguments
object Model or layer object
axis Integer, axis along which the softmax normalization is applied.
input_shape Input shape (list of integers, does not include the samples axis) which is required

when using this layer as the first layer in a model.

batch_input_shape
Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL,32) indicates batches of an arbitrary number
of 32-dimensional vectors.

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
See Also

Other activation layers: layer_activation_elu(), layer_activation_leaky_relu(), layer_activation_parametric.
layer_activation_relu(), layer_activation_selu(), layer_activation_thresholded_relu(),
layer_activation()

layer_activation_thresholded_relu
Thresholded Rectified Linear Unit.

Description

It follows: f(x) = x for x > theta, f(x) = @ otherwise.

layer_activity_regularization 199

Usage
layer_activation_thresholded_relu(
object,
theta = 1,

input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,

dtype = NULL,

name = NULL,

trainable = NULL,

weights = NULL

)
Arguments
object Model or layer object
theta float >= 0. Threshold location of activation.
input_shape Input shape (list of integers, does not include the samples axis) which is required

when using this layer as the first layer in a model.

batch_input_shape
Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number
of 32-dimensional vectors.

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
See Also

Zero-bias autoencoders and the benefits of co-adapting features.

Other activation layers: layer_activation_elu(), layer_activation_leaky_relu(), layer_activation_parametric.
layer_activation_relu(), layer_activation_selu(), layer_activation_softmax(), layer_activation()

layer_activity_regularization
Layer that applies an update to the cost function based input activity.

Description

Layer that applies an update to the cost function based input activity.

https://arxiv.org/abs/1402.3337

200 layer_activity_regularization

Usage

layer_activity_regularization(
object,
11 = o,
12 = 9,
input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,
dtype = NULL,
name = NULL,
trainable = NULL,
weights = NULL

)
Arguments
object Model or layer object
11 L1 regularization factor (positive float).
12 L2 regularization factor (positive float).
input_shape Dimensionality of the input (integer) not including the samples axis. This argu-

ment is required when using this layer as the first layer in a model.
batch_input_shape

Shapes, including the batch size. For instance, batch_input_shape=c(10,32)

indicates that the expected input will be batches of 10 32-dimensional vectors.

batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number

of 32-dimensional vectors.

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

Arbitrary. Use the keyword argument input_shape (list of integers, does not include the samples
axis) when using this layer as the first layer in a model.
Output shape

Same shape as input.

See Also

Other core layers: layer_activation(), layer_attention(), layer_dense_features(), layer_dense(),
layer_dropout(), layer_flatten(), layer_input(), layer_lambda(), layer_masking(), layer_permute(),
layer_repeat_vector(), layer_reshape()

layer_add 201

layer_add Layer that adds a list of inputs.

Description

It takes as input a list of tensors, all of the same shape, and returns a single tensor (also of the same
shape).

Usage

layer_add(
inputs,
batch_size = NULL,
dtype = NULL,
name = NULL,
trainable = NULL,
weights = NULL

)
Arguments
inputs A list of input tensors (at least 2).
batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Value

A tensor, the sum of the inputs.

See Also

Other merge layers: layer_average(), layer_concatenate(), layer_dot (), layer_maximum(),
layer_minimum(), layer_multiply(), layer_subtract()

202 layer_alpha_dropout

layer_alpha_dropout Applies Alpha Dropout to the input.

Description

Alpha Dropout is a dropout that keeps mean and variance of inputs to their original values, in order
to ensure the self-normalizing property even after this dropout.

Usage
layer_alpha_dropout(
object,
rate,
noise_shape = NULL,
seed = NULL,

input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,

dtype = NULL,

name = NULL,

trainable = NULL,

weights = NULL

)
Arguments
object Model or layer object
rate float, drop probability (as with layer_dropout()). The multiplicative noise
will have standard deviation sqrt(rate / (1 -rate)).
noise_shape Noise shape
seed An integer to use as random seed.
input_shape Dimensionality of the input (integer) not including the samples axis. This argu-

ment is required when using this layer as the first layer in a model.
batch_input_shape

Shapes, including the batch size. For instance, batch_input_shape=c(10,32)

indicates that the expected input will be batches of 10 32-dimensional vectors.

batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number

of 32-dimensional vectors.

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse

the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.

weights Initial weights for layer.

layer_attention 203

Details

Alpha Dropout fits well to Scaled Exponential Linear Units by randomly setting activations to the
negative saturation value.

Input shape

Arbitrary. Use the keyword argument input_shape (list of integers, does not include the samples
axis) when using this layer as the first layer in a model.

Output shape

Same shape as input.

References

* Self-Normalizing Neural Networks

See Also

Other noise layers: layer_gaussian_dropout(), layer_gaussian_noise()

layer_attention Creates attention layer

Description

Dot-product attention layer, a.k.a. Luong-style attention.

Usage

layer_attention(
inputs,
use_scale = FALSE,
causal = FALSE,
batch_size = NULL,
dtype = NULL,
name = NULL,
trainable = NULL,
weights = NULL

https://arxiv.org/abs/1706.02515

204 layer_average

Arguments
inputs a list of inputs first should be the query tensor, the second the value tensor
use_scale If True, will create a scalar variable to scale the attention scores.
causal Boolean. Set to True for decoder self-attention. Adds a mask such that position
i cannot attend to positions j > i. This prevents the flow of information from the
future towards the past.
batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
See Also

Other core layers: layer_activation(), layer_activity_regularization(), layer_dense_features(),
layer_dense(), layer_dropout (), layer_flatten(), layer_input (), layer_lambda(), layer_masking(),
layer_permute(), layer_repeat_vector(), layer_reshape()

layer_average Layer that averages a list of inputs.

Description

It takes as input a list of tensors, all of the same shape, and returns a single tensor (also of the same
shape).

Usage

layer_average(
inputs,
batch_size = NULL,
dtype = NULL,
name = NULL,
trainable = NULL,
weights = NULL

)

Arguments
inputs A list of input tensors (at least 2).
batch_size Fixed batch size for layer

dtype The data type expected by the input, as a string (float32, float64, int32...)

layer_average_pooling_1d 205

name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Value

A tensor, the average of the inputs.

See Also

Other merge layers: layer_add(), layer_concatenate(), layer_dot (), layer_maximum(), layer_minimum(),
layer_multiply(), layer_subtract()

layer_average_pooling_1d
Average pooling for temporal data.

Description

Average pooling for temporal data.

Usage

layer_average_pooling_1d(
object,
pool_size = 2L,
strides = NULL,
padding = "valid”,

data_format = "channels_last”,
batch_size = NULL,
name = NULL,

trainable = NULL,
weights = NULL

)
Arguments
object Model or layer object
pool_size Integer, size of the average pooling windows.
strides Integer, or NULL. Factor by which to downscale. E.g. 2 will halve the input. If
NULL, it will default to pool_size.
padding One of "valid"” or "same" (case-insensitive).
data_format One of channels_last (default) or channels_first. The ordering of the di-

mensions in the inputs.

206 layer_average_pooling_2d

batch_size Fixed batch size for layer
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

3D tensor with shape: (batch_size, steps, features).

Output shape

3D tensor with shape: (batch_size, downsampled_steps, features).

See Also

Other pooling layers: layer_average_pooling_2d(), layer_average_pooling_3d(), layer_global_average_pooling
layer_global_average_pooling_2d(), layer_global_average_pooling_3d(), layer_global_max_pooling_1d(),
layer_global_max_pooling_2d(), layer_global_max_pooling_3d(), layer_max_pooling_1d(),
layer_max_pooling_2d(), layer_max_pooling_3d()

layer_average_pooling_2d
Average pooling operation for spatial data.

Description

Average pooling operation for spatial data.

Usage

layer_average_pooling_2d(
object,
pool_size = c(2L, 2L),
strides = NULL,
padding = "valid”,
data_format = NULL,
batch_size = NULL,
name = NULL,
trainable = NULL,
weights = NULL

layer_average_pooling_2d 207

Arguments

object Model or layer object

pool_size integer or list of 2 integers, factors by which to downscale (vertical, horizontal).
(2, 2) will halve the input in both spatial dimension. If only one integer is
specified, the same window length will be used for both dimensions.

strides Integer, list of 2 integers, or NULL. Strides values. If NULL, it will default to
pool_size.

padding One of "valid" or "same" (case-insensitive).

data_format A string, one of channels_last (default) or channels_first. The ordering of
the dimensions in the inputs. channels_last corresponds to inputs with shape
(batch, height, width, channels) while channels_first corresponds to inputs
with shape (batch, channels, height, width). It defaults to the image_data_format
value found in your Keras config file at ~/.keras/keras.json. If you never set it,
then it will be "channels_last".

batch_size Fixed batch size for layer

name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.

trainable Whether the layer weights will be updated during training.

weights Initial weights for layer.

Input shape

* If data_format="'channels_last': 4D tensor with shape: (batch_size, rows, cols, channels)

e Ifdata_format="'channels_first': 4D tensor with shape: (batch_size, channels, rows, cols)

Output shape

» Ifdata_format="'channels_last': 4D tensor with shape: (batch_size, pooled_rows, pooled_cols, chan-
nels)

e Ifdata_format="channels_first': 4D tensor with shape: (batch_size, channels, pooled_rows, pooled_cols)

See Also

Other pooling layers: layer_average_pooling_1d(), layer_average_pooling_3d(), layer_global_average_pooling
layer_global_average_pooling_2d(), layer_global_average_pooling_3d(), layer_global_max_pooling_1d(),
layer_global_max_pooling_2d(), layer_global_max_pooling_3d(), layer_max_pooling_1d(),
layer_max_pooling_2d(), layer_max_pooling_3d()

208

layer_average_pooling_3d

layer_average_pooling_3d

Average pooling operation for 3D data (spatial or spatio-temporal).

Description

Average pooling operation for 3D data (spatial or spatio-temporal).

Usage
layer_average_pooling_3d(
object,
pool_size = c(2L, 2L, 2L),
strides = NULL,
padding = "valid”,
data_format = NULL,
batch_size = NULL,
name = NULL,
trainable = NULL,
weights = NULL
)
Arguments
object Model or layer object
pool_size list of 3 integers, factors by which to downscale (dim1, dim2, dim3). (2, 2, 2)
will halve the size of the 3D input in each dimension.
strides list of 3 integers, or NULL. Strides values.
padding One of "valid"” or "same" (case-insensitive).

data_format

batch_size

name

trainable

weights

A string, one of channels_last (default) or channels_first. The order-

ing of the dimensions in the inputs. channels_last corresponds to inputs

with shape (batch, spatial_diml, spatial_dim2, spatial_dim3, channels) while
channels_first corresponds to inputs with shape (batch, channels, spatial_dim1, spa-
tial_dim2, spatial_dim3). It defaults to the image_data_format value found in

your Keras config file at ~/.keras/keras.json. If you never set it, then it will be
"channels_last".

Fixed batch size for layer

An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.

Whether the layer weights will be updated during training.

Initial weights for layer.

layer_batch_normalization 209

Input shape

» If data_format="'channels_last': 5D tensor with shape: (batch_size, spatial_diml, spa-
tial_dim2, spatial_dim3, channels)

* Ifdata_format="'channels_first': 5D tensor with shape: (batch_size, channels, spatial_dim1, spa-
tial_dim2, spatial_dim3)

Output shape

e Ifdata_format="'channels_last': 5D tensor with shape: (batch_size, pooled_dim1, pooled_dim2, pooled_dim3, cha
nels)

e Ifdata_format="channels_first': 5D tensor with shape: (batch_size, channels, pooled_dim1, pooled_dim2, pooled

See Also

Other pooling layers: layer_average_pooling_1d(), layer_average_pooling_2d(), layer_global_average_pooling
layer_global_average_pooling_2d(), layer_global_average_pooling_3d(), layer_global_max_pooling_1d(),
layer_global_max_pooling_2d(), layer_global_max_pooling_3d(), layer_max_pooling_1d(),
layer_max_pooling_2d(), layer_max_pooling_3d()

layer_batch_normalization
Batch normalization layer (Ioffe and Szegedy, 2014).

Description

Normalize the activations of the previous layer at each batch, i.e. applies a transformation that
maintains the mean activation close to 0 and the activation standard deviation close to 1.

Usage
layer_batch_normalization(
object,
axis = -1L,

momentum = 0.99,
epsilon = 0.001,
center = TRUE,

scale = TRUE,

beta_initializer = "zeros",
gamma_initializer = "ones",
moving_mean_initializer = "zeros",
moving_variance_initializer = "ones”,

beta_regularizer = NULL,
gamma_regularizer = NULL,
beta_constraint = NULL,
gamma_constraint = NULL,
renorm = FALSE,

210 layer_batch_normalization
renorm_clipping = NULL,
renorm_momentum = .99,
fused = NULL,
virtual_batch_size = NULL,
adjustment = NULL,
input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,
dtype = NULL,
name = NULL,
trainable = NULL,
weights = NULL
)
Arguments
object Model or layer object
axis Integer, the axis that should be normalized (typically the features axis). For in-
stance, after a Conv2D layer with data_format="channels_first", set axis=1
in BatchNormalization.
momentum Momentum for the moving mean and the moving variance.
epsilon Small float added to variance to avoid dividing by zero.
center If TRUE, add offset of beta to normalized tensor. If FALSE, beta is ignored.
scale If TRUE, multiply by gamma. If FALSE, gamma is not used. When the next layer

is linear (also e.g. nn.relu), this can be disabled since the scaling will be done

by the next layer.
beta_initializer

Initializer for the beta weight.
gamma_initializer

Initializer for the gamma weight.
moving_mean_initializer

Initializer for the moving mean.
moving_variance_initializer

Initializer for the moving variance.
beta_regularizer

Optional regularizer for the beta weight.
gamma_regularizer

Optional regularizer for the gamma weight.
beta_constraint

Optional constraint for the beta weight.
gamma_constraint

Optional constraint for the gamma weight.

renorm Whether to use Batch Renormalization (https://arxiv.org/abs/1702.03275). This
adds extra variables during training. The inference is the same for either value
of this parameter.

layer_batch_normalization 211

renorm_clipping
A named list or dictionary that may map keys rmax, rmin, dmax to scalar Tensors
used to clip the renorm correction. The correction (r, d) is used as corrected_value
=normalized_value * r + d, with r clipped to [rmin, rmax], and d to [-dmax, dmax].
Missing rmax, rmin, dmax are set to Inf, @, Inf, respectively.

renorm_momentum
Momentum used to update the moving means and standard deviations with
renorm. Unlike momentum, this affects training and should be neither too small
(which would add noise) nor too large (which would give stale estimates). Note
that momentum is still applied to get the means and variances for inference.

fused TRUE, use a faster, fused implementation, or raise a ValueError if the fused im-
plementation cannot be used. If NULL, use the faster implementation if possible.
If FALSE, do not use the fused implementation.

virtual_batch_size
An integer. By default, virtual_batch_size is NULL, which means batch normal-
ization is performed across the whole batch. When virtual_batch_size is not
NULL, instead perform "Ghost Batch Normalization", which creates virtual sub-
batches which are each normalized separately (with shared gamma, beta, and
moving statistics). Must divide the actual batch size during execution.

adjustment A function taking the Tensor containing the (dynamic) shape of the input ten-
sor and returning a pair (scale, bias) to apply to the normalized values (be-
fore gamma and beta), only during training. For example, if axis==-1, adjustment
<-function(shape) { tuple(tf$random$uniform(shape[-1:NULL,style = "python"],0.93,1.07)
= "python"],-0.1,0.1)) } will scale the normalized value by up to 7% up or
down, then shift the result by up to 0.1 (with independent scaling and bias for
each feature but shared across all examples), and finally apply gamma and/or
beta. If NULL, no adjustment is applied. Cannot be specified if virtual_batch_size
is specified.

input_shape Dimensionality of the input (integer) not including the samples axis. This argu-
ment is required when using this layer as the first layer in a model.
batch_input_shape
Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number
of 32-dimensional vectors.

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

Arbitrary. Use the keyword argument input_shape (list of integers, does not include the samples
axis) when using this layer as the first layer in a model.

212 layer_concatenate

Output shape

Same shape as input.

References

» Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate
Shift

layer_concatenate Layer that concatenates a list of inputs.

Description

It takes as input a list of tensors, all of the same shape expect for the concatenation axis, and returns
a single tensor, the concatenation of all inputs.

Usage
layer_concatenate(
inputs,
axis = -1,
batch_size = NULL,
dtype = NULL,
name = NULL,

trainable = NULL,
weights = NULL

)
Arguments
inputs A list of input tensors (at least 2).
axis Concatenation axis.
batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Value

A tensor, the concatenation of the inputs alongside axis axis.

See Also

Other merge layers: layer_add(), layer_average(), layer_dot(), layer_maximum(), layer_minimum(),
layer_multiply(), layer_subtract()

https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167

layer_conv_1d 213

layer_conv_1d 1D convolution layer (e.g. temporal convolution).

Description

This layer creates a convolution kernel that is convolved with the layer input over a single spatial
(or temporal) dimension to produce a tensor of outputs. If use_bias is TRUE, a bias vector is
created and added to the outputs. Finally, if activation is not NULL, it is applied to the outputs
as well. When using this layer as the first layer in a model, provide an input_shape argument
(list of integers or NULL , e.g. (10, 128) for sequences of 10 vectors of 128-dimensional vectors, or
(NULL, 128) for variable-length sequences of 128-dimensional vectors.

Usage

layer_conv_1d(
object,
filters,
kernel_size,
strides = 1L,
padding = "valid”,
data_format = "channels_last”,

dilation_rate = 1L,
activation = NULL,

use_bias = TRUE,
kernel_initializer = "glorot_uniform”,
bias_initializer = "zeros",
kernel_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
bias_constraint = NULL,
input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,

dtype = NULL,

name = NULL,

trainable = NULL,

weights = NULL

)
Arguments
object Model or layer object
filters Integer, the dimensionality of the output space (i.e. the number of output filters
in the convolution).
kernel_size An integer or list of a single integer, specifying the length of the 1D convolution

window.

214

strides

padding

data_format

dilation_rate

activation

use_bias

layer_conv_1d

An integer or list of a single integer, specifying the stride length of the con-
volution. Specifying any stride value != 1 is incompatible with specifying any
dilation_rate value !=1.

One of "valid”, "causal” or "same" (case-insensitive). "valid” means "no
padding”. "same" results in padding the input such that the output has the same
length as the original input. "causal” results in causal (dilated) convolutions,
e.g. output[t] does not depend on input[t+1:]. Useful when modeling tempo-
ral data where the model should not violate the temporal order. See WaveNet:
A Generative Model for Raw Audio, section 2.1.

A string, one of "channels_last"” (default) or "channels_first”. The or-
dering of the dimensions in the inputs. "channels_last” corresponds to in-
puts with shape (batch, length, channels) (default format for temporal data in
Keras) while "channels_first" corresponds to inputs with shape (batch, chan-
nels, length).

an integer or list of a single integer, specifying the dilation rate to use for dilated
convolution. Currently, specifying any dilation_rate value != 1 is incompat-
ible with specifying any strides value != 1.

Activation function to use. If you don’t specify anything, no activation is applied
(ie. "linear" activation: a(x) = x).

Boolean, whether the layer uses a bias vector.

kernel_initializer

Initializer for the kernel weights matrix.

bias_initializer

Initializer for the bias vector.

kernel_regularizer

Regularizer function applied to the kernel weights matrix.

bias_regularizer

Regularizer function applied to the bias vector.

activity_regularizer

Regularizer function applied to the output of the layer (its "activation")..

kernel_constraint

bias_constraint

input_shape

Constraint function applied to the kernel matrix.

Constraint function applied to the bias vector.

Dimensionality of the input (integer) not including the samples axis. This argu-
ment is required when using this layer as the first layer in a model.

batch_input_shape

batch_size
dtype

name

Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number
of 32-dimensional vectors.

Fixed batch size for layer
The data type expected by the input, as a string (float32, float64, int32...)

An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.

https://arxiv.org/abs/1609.03499
https://arxiv.org/abs/1609.03499

layer_conv_2d 215

trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

3D tensor with shape: (batch_size, steps, input_dim)

Output shape

3D tensor with shape: (batch_size, new_steps, filters) steps value might have changed due to
padding or strides.

See Also

Other convolutional layers: layer_conv_2d_transpose(), layer_conv_2d(), layer_conv_3d_transpose(),
layer_conv_3d(), layer_conv_1lstm_2d(), layer_cropping_1d(), layer_cropping_2d(), layer_cropping_3d(),
layer_depthwise_conv_2d(), layer_separable_conv_1d(), layer_separable_conv_2d(), layer_upsampling_1d(),
layer_upsampling_2d(), layer_upsampling_3d(), layer_zero_padding_1d(), layer_zero_padding_2d(),
layer_zero_padding_3d()

layer_conv_2d 2D convolution layer (e.g. spatial convolution over images).

Description

This layer creates a convolution kernel that is convolved with the layer input to produce a ten-
sor of outputs. If use_bias is TRUE, a bias vector is created and added to the outputs. Fi-
nally, if activation is not NULL, it is applied to the outputs as well. When using this layer
as the first layer in a model, provide the keyword argument input_shape (list of integers, does
not include the sample axis), e.g. input_shape=c(128,128,3) for 128x128 RGB pictures in
data_format="channels_last".

Usage

layer_conv_2d(
object,
filters,
kernel_size,
strides = c(1L, 1L),
padding = "valid”,
data_format = NULL,
dilation_rate = c(1L, 1L),
activation = NULL,
use_bias = TRUE,
kernel_initializer = "glorot_uniform”,
bias_initializer = "zeros",
kernel_regularizer = NULL,

216 layer_conv_2d

bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
bias_constraint = NULL,
input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,

dtype = NULL,

name = NULL,

trainable = NULL,

weights = NULL

)
Arguments
object Model or layer object
filters Integer, the dimensionality of the output space (i.e. the number of output filters

kernel_size

strides

padding

data_format

dilation_rate

activation

use_bias

in the convolution).

An integer or list of 2 integers, specifying the width and height of the 2D convo-
lution window. Can be a single integer to specify the same value for all spatial
dimensions.

An integer or list of 2 integers, specifying the strides of the convolution along
the width and height. Can be a single integer to specify the same value for
all spatial dimensions. Specifying any stride value != 1 is incompatible with
specifying any dilation_rate value != 1.

one of "valid” or "same"” (case-insensitive). Note that "same” is slightly in-
consistent across backends with strides != 1, as described here

A string, one of channels_last (default) or channels_first. The ordering of
the dimensions in the inputs. channels_last corresponds to inputs with shape
(batch, height, width, channels) while channels_first corresponds to inputs
with shape (batch, channels, height, width). It defaults to the image_data_format
value found in your Keras config file at ~/.keras/keras.json. If you never set it,
then it will be "channels_last".

an integer or list of 2 integers, specifying the dilation rate to use for dilated
convolution. Can be a single integer to specify the same value for all spatial di-
mensions. Currently, specifying any dilation_rate value !=1 is incompatible
with specifying any stride value != 1.

Activation function to use. If you don’t specify anything, no activation is applied
(ie. "linear" activation: a(x) = x).

Boolean, whether the layer uses a bias vector.

kernel_initializer

Initializer for the kernel weights matrix.

bias_initializer

Initializer for the bias vector.

kernel_regularizer

Regularizer function applied to the kernel weights matrix.

https://github.com/keras-team/keras/pull/9473#issuecomment-372166860

layer_conv_2d 217

bias_regularizer
Regularizer function applied to the bias vector.

activity_regularizer
Regularizer function applied to the output of the layer (its "activation")..

kernel_constraint
Constraint function applied to the kernel matrix.

bias_constraint
Constraint function applied to the bias vector.

input_shape Dimensionality of the input (integer) not including the samples axis. This argu-
ment is required when using this layer as the first layer in a model.

batch_input_shape
Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number
of 32-dimensional vectors.

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse

the same name twice). It will be autogenerated if it isn’t provided.

trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

4D tensor with shape: (samples, channels, rows, cols) if data_format="channels_first’ or 4D tensor
with shape: (samples, rows, cols, channels) if data_format="channels_last’.

Output shape

4D tensor with shape: (samples, filters, new_rows, new_cols) if data_format="channels_first’ or 4D
tensor with shape: (samples, new_rows, new_cols, filters) if data_format="channels_last’. rows and
cols values might have changed due to padding.

See Also

Other convolutional layers: layer_conv_1d(), layer_conv_2d_transpose(), layer_conv_3d_transpose(),
layer_conv_3d(), layer_conv_1stm_2d(), layer_cropping_1d(), layer_cropping_2d(), layer_cropping_3d(),
layer_depthwise_conv_2d(), layer_separable_conv_1d(), layer_separable_conv_2d(), layer_upsampling_1d(),
layer_upsampling_2d(), layer_upsampling_3d(), layer_zero_padding_1d(), layer_zero_padding_2d(),
layer_zero_padding_3d()

218 layer_conv_2d_transpose

layer_conv_2d_transpose
Transposed 2D convolution layer (sometimes called Deconvolution).

Description

The need for transposed convolutions generally arises from the desire to use a transformation going
in the opposite direction of a normal convolution, i.e., from something that has the shape of the out-
put of some convolution to something that has the shape of its input while maintaining a connectivity
pattern that is compatible with said convolution. When using this layer as the first layer in a model,
provide the keyword argument input_shape (list of integers, does not include the sample axis), e.g.
input_shape=c(128L,128L,3L) for 128x128 RGB pictures in data_format="channels_last".

Usage

layer_conv_2d_transpose(
object,
filters,
kernel_size,
strides = c(1, 1),
padding = "valid”,
output_padding = NULL,
data_format = NULL,
dilation_rate = c(1, 1),
activation = NULL,
use_bias = TRUE,
kernel_initializer = "glorot_uniform"”,
bias_initializer = "zeros",
kernel_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
bias_constraint = NULL,
input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,
dtype = NULL,
name = NULL,
trainable = NULL,
weights = NULL

)
Arguments
object Model or layer object
filters Integer, the dimensionality of the output space (i.e. the number of output filters

in the convolution).

layer_conv_2d_transpose 219

kernel_size

strides

padding
output_padding

data_format

dilation_rate

activation

use_bias

An integer or list of 2 integers, specifying the width and height of the 2D convo-
lution window. Can be a single integer to specify the same value for all spatial
dimensions.

An integer or list of 2 integers, specifying the strides of the convolution along
the width and height. Can be a single integer to specify the same value for
all spatial dimensions. Specifying any stride value != 1 is incompatible with
specifying any dilation_rate value != 1.

one of "valid” or "same" (case-insensitive).

An integer or list of 2 integers, specifying the amount of padding along the
height and width of the output tensor. Can be a single integer to specify the
same value for all spatial dimensions. The amount of output padding along a
given dimension must be lower than the stride along that same dimension. If set
to NULL (default), the output shape is inferred.

A string, one of channels_last (default) or channels_first. The ordering of
the dimensions in the inputs. channels_last corresponds to inputs with shape
(batch, height, width, channels) while channels_first corresponds to inputs
with shape (batch, channels, height, width). It defaults to the image_data_format
value found in your Keras config file at ~/.keras/keras.json. If you never set it,
then it will be "channels_last".

Dialation rate.

Activation function to use. If you don’t specify anything, no activation is applied
(ie. "linear" activation: a(x) = x).

Boolean, whether the layer uses a bias vector.

kernel_initializer

Initializer for the kernel weights matrix.

bias_initializer

Initializer for the bias vector.

kernel_regularizer

Regularizer function applied to the kernel weights matrix.

bias_regularizer

Regularizer function applied to the bias vector.

activity_regularizer

Regularizer function applied to the output of the layer (its "activation")..

kernel_constraint

bias_constraint

input_shape

Constraint function applied to the kernel matrix.

Constraint function applied to the bias vector.

Dimensionality of the input (integer) not including the samples axis. This argu-
ment is required when using this layer as the first layer in a model.

batch_input_shape

Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number
of 32-dimensional vectors.

220 layer_conv_3d

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

4D tensor with shape: (batch, channels, rows, cols) if data_format="channels_first’ or 4D tensor
with shape: (batch, rows, cols, channels) if data_format="channels_last’.

Output shape

4D tensor with shape: (batch, filters, new_rows, new_cols) if data_format="channels_first’ or 4D
tensor with shape: (batch, new_rows, new_cols, filters) if data_format="channels_last’. rows and
cols values might have changed due to padding.

References

* A guide to convolution arithmetic for deep learning

¢ Deconvolutional Networks

See Also

Other convolutional layers: layer_conv_1d(), layer_conv_2d(), layer_conv_3d_transpose(),

layer_conv_3d(), layer_conv_lstm_2d(), layer_cropping_1d(), layer_cropping_2d(), layer_cropping_3d(),
layer_depthwise_conv_2d(), layer_separable_conv_1d(), layer_separable_conv_2d(), layer_upsampling_1d(),
layer_upsampling_2d(), layer_upsampling_3d(), layer_zero_padding_1d(), layer_zero_padding_2d(),
layer_zero_padding_3d()

layer_conv_3d 3D convolution layer (e.g. spatial convolution over volumes).

Description

This layer creates a convolution kernel that is convolved with the layer input to produce a tensor
of outputs. If use_bias is TRUE, a bias vector is created and added to the outputs. Finally, if
activation is not NULL, it is applied to the outputs as well. When using this layer as the first
layer in a model, provide the keyword argument input_shape (list of integers, does not include the
sample axis), e.g. input_shape=c(128L,128L,128L,3L) for 128x128x128 volumes with a single
channel, in data_format="channels_last".

https://arxiv.org/abs/1603.07285v1
https://www.uoguelph.ca/~gwtaylor/publications/mattcvpr2010/deconvolutionalnets.pdf

layer_conv_3d 221

Usage

layer_conv_3d(
object,
filters,
kernel_size,
strides = c(1L, 1L, 1L),
padding = "valid”,
data_format = NULL,
dilation_rate = c(1L, 1L, 1L),
activation = NULL,
use_bias = TRUE,
kernel_initializer = "glorot_uniform”,
bias_initializer = "zeros",
kernel_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
bias_constraint = NULL,
input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,
dtype = NULL,
name = NULL,
trainable = NULL,
weights = NULL

)
Arguments
object Model or layer object
filters Integer, the dimensionality of the output space (i.e. the number of output filters

in the convolution).

kernel_size An integer or list of 3 integers, specifying the depth, height, and width of the 3D
convolution window. Can be a single integer to specify the same value for all
spatial dimensions.

strides An integer or list of 3 integers, specifying the strides of the convolution along
each spatial dimension. Can be a single integer to specify the same value for
all spatial dimensions. Specifying any stride value != 1 is incompatible with
specifying any dilation_rate value !=1.

padding one of "valid"” or "same" (case-insensitive).

data_format A string, one of channels_last (default) or channels_first. The order-
ing of the dimensions in the inputs. channels_last corresponds to inputs
with shape (batch, spatial_dim1, spatial_dim2, spatial_dim3, channels) while
channels_first corresponds to inputs with shape (batch, channels, spatial_dim1, spa-
tial_dim2, spatial_dim3). It defaults to the image_data_format value found in
your Keras config file at ~/.keras/keras.json. If you never set it, then it will be
"channels_last".

222 layer_conv_3d

dilation_rate an integer or list of 3 integers, specifying the dilation rate to use for dilated
convolution. Can be a single integer to specify the same value for all spatial di-
mensions. Currently, specifying any dilation_rate value != 1 is incompatible
with specifying any stride value != 1.
activation Activation function to use. If you don’t specify anything, no activation is applied
(ie. "linear" activation: a(x) = x).
use_bias Boolean, whether the layer uses a bias vector.
kernel_initializer
Initializer for the kernel weights matrix.
bias_initializer
Initializer for the bias vector.
kernel_regularizer
Regularizer function applied to the kernel weights matrix.
bias_regularizer
Regularizer function applied to the bias vector.
activity_regularizer
Regularizer function applied to the output of the layer (its "activation")..
kernel_constraint
Constraint function applied to the kernel matrix.
bias_constraint
Constraint function applied to the bias vector.
input_shape Dimensionality of the input (integer) not including the samples axis. This argu-
ment is required when using this layer as the first layer in a model.
batch_input_shape
Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number
of 32-dimensional vectors.

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

5D tensor with shape: (samples, channels, conv_dim1, conv_dim2, conv_dim3) if data_format="channels_first’
or 5D tensor with shape: (samples, conv_dim1, conv_dim2, conv_dim3, channels) if data_format="channels_last’.

Output shape

5D tensor with shape: (samples, filters, new_conv_dim1, new_conv_dim2, new_conv_dim3) if
data_format="channels_first’ or 5D tensor with shape: (samples, new_conv_dim1, new_conv_dim2, new_conv_dim3, fil-
ters) if data_format="channels_last’. new_conv_dim1, new_conv_dim2 and new_conv_dim3 values

might have changed due to padding.

layer_conv_3d_transpose 223

See Also

Other convolutional layers: layer_conv_1d(), layer_conv_2d_transpose(), layer_conv_2d(),
layer_conv_3d_transpose(), layer_conv_1lstm_2d(), layer_cropping_1d(), layer_cropping_2d(),
layer_cropping_3d(), layer_depthwise_conv_2d(), layer_separable_conv_1d(), layer_separable_conv_2d(),
layer_upsampling_1d(), layer_upsampling_2d(), layer_upsampling_3d(), layer_zero_padding_1d(),
layer_zero_padding_2d(), layer_zero_padding_3d()

layer_conv_3d_transpose
Transposed 3D convolution layer (sometimes called Deconvolution).

Description

The need for transposed convolutions generally arises from the desire to use a transformation go-
ing in the opposite direction of a normal convolution, i.e., from something that has the shape of
the output of some convolution to something that has the shape of its input while maintaining a
connectivity pattern that is compatible with said convolution.

Usage

layer_conv_3d_transpose(
object,
filters,
kernel_size,
strides = c(1, 1, 1),
padding = "valid”,
output_padding = NULL,
data_format = NULL,
activation = NULL,
use_bias = TRUE,
kernel_initializer = "glorot_uniform”,
bias_initializer = "zeros",
kernel_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
bias_constraint = NULL,
input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,
dtype = NULL,
name = NULL,
trainable = NULL,
weights = NULL

224

Arguments

object
filters

kernel_size

strides

padding
output_padding

data_format

activation

use_bias

layer_conv_3d_transpose

Model or layer object

Integer, the dimensionality of the output space (i.e. the number of output filters
in the convolution).

An integer or list of 3 integers, specifying the depth, height, and width of the 3D
convolution window. Can be a single integer to specify the same value for all
spatial dimensions.

An integer or list of 3 integers, specifying the strides of the convolution along
the depth, height and width.. Can be a single integer to specify the same value
for all spatial dimensions. Specifying any stride value != 1 is incompatible with
specifying any dilation_rate value != 1.

one of "valid” or "same" (case-insensitive).

An integer or list of 3 integers, specifying the amount of padding along the
depth, height, and width of the output tensor. Can be a single integer to specify
the same value for all spatial dimensions. The amount of output padding along
a given dimension must be lower than the stride along that same dimension. If
set to NULL (default), the output shape is inferred.

A string, one of channels_last (default) or channels_first. The ordering of
the dimensions in the inputs. channels_last corresponds to inputs with shape
(batch, depth, height, width, channels) while channels_first corresponds to
inputs with shape (batch, channels, depth, height, width). It defaults to the
image_data_format value found in your Keras config file at ~/ keras/keras.json.
If you never set it, then it will be "channels_last".

Activation function to use. If you don’t specify anything, no activation is applied
(ie. "linear" activation: a(x) = x).

Boolean, whether the layer uses a bias vector.

kernel_initializer

Initializer for the kernel weights matrix.

bias_initializer

Initializer for the bias vector.

kernel_regularizer

Regularizer function applied to the kernel weights matrix,

bias_regularizer

Regularizer function applied to the bias vector.

activity_regularizer

Regularizer function applied to the output of the layer (its "activation").

kernel_constraint

bias_constraint

input_shape

Constraint function applied to the kernel matrix.

Constraint function applied to the bias vector.

Dimensionality of the input (integer) not including the samples axis. This argu-
ment is required when using this layer as the first layer in a model.

layer_conv_Istm_2d 225

batch_input_shape
Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number
of 32-dimensional vectors.

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Details

When using this layer as the first layer in a model, provide the keyword argument input_shape
(list of integers, does not include the sample axis), e.g. input_shape = 1ist (128,128,128, 3) for
a 128x128x128 volume with 3 channels if data_format="channels_last".

References

* A guide to convolution arithmetic for deep learning

¢ Deconvolutional Networks

See Also

Other convolutional layers: layer_conv_1d(), layer_conv_2d_transpose(), layer_conv_2d(),

layer_conv_3d(), layer_conv_1lstm_2d(), layer_cropping_1d(), layer_cropping_2d(), layer_cropping_3d(),
layer_depthwise_conv_2d(), layer_separable_conv_1d(), layer_separable_conv_2d(), layer_upsampling_1d(),
layer_upsampling_2d(), layer_upsampling_3d(), layer_zero_padding_1d(), layer_zero_padding_2d(),
layer_zero_padding_3d()

layer_conv_lstm_2d Convolutional LSTM.

Description

It is similar to an LSTM layer, but the input transformations and recurrent transformations are both
convolutional.

Usage

layer_conv_lstm_2d(
object,
filters,
kernel_size,
strides = c(1L, 1L),

https://arxiv.org/abs/1603.07285v1
https://www.uoguelph.ca/~gwtaylor/publications/mattcvpr2010/deconvolutionalnets.pdf

226

padding = "valid”,
data_format = NULL,
dilation_rate = c(1L, 1L),

activation = "tanh",
recurrent_activation = "hard_sigmoid”,
use_bias = TRUE,

kernel_initializer = "glorot_uniform”,
recurrent_initializer = "orthogonal”,
bias_initializer = "zeros",

unit_forget_bias = TRUE,
kernel_regularizer = NULL,
recurrent_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
recurrent_constraint = NULL,
bias_constraint = NULL,
return_sequences = FALSE,
go_backwards = FALSE,
stateful = FALSE,

dropout = 0,
recurrent_dropout = 0,
batch_size = NULL,

name = NULL,

trainable = NULL,

weights = NULL,

input_shape = NULL

layer_conv_Istm_2d

Arguments

object
filters

kernel_size

strides

padding

data_format

Model or layer object

Integer, the dimensionality of the output space (i.e. the number of output filters
in the convolution).

An integer or list of n integers, specifying the dimensions of the convolution
window.

An integer or list of n integers, specifying the strides of the convolution. Speci-
fying any stride value != 1 is incompatible with specifying any dilation_rate
value !=1.

One of "valid"” or "same" (case-insensitive).

A string, one of channels_last (default) or channels_first. The ordering of
the dimensions in the inputs. channels_last corresponds to inputs with shape
(batch, time, ..., channels) while channels_first corresponds to inputs with
shape (batch, time, channels, ...). It defaults to the image_data_format value
found in your Keras config file at ~/.keras/keras.json. If you never set it, then it
will be "channels_last".

layer_conv_Istm_2d 227

dilation_rate An integer or list of n integers, specifying the dilation rate to use for dilated con-
volution. Currently, specifying any dilation_rate value != 1 is incompatible
with specifying any strides value !=1.

activation Activation function to use. If you don’t specify anything, no activation is applied
(ie. "linear" activation: a(x) = x).

recurrent_activation
Activation function to use for the recurrent step.

use_bias Boolean, whether the layer uses a bias vector.
kernel_initializer
Initializer for the kernel weights matrix, used for the linear transformation of
the inputs..
recurrent_initializer
Initializer for the recurrent_kernel weights matrix, used for the linear trans-
formation of the recurrent state..
bias_initializer
Initializer for the bias vector.
unit_forget_bias
Boolean. If TRUE, add 1 to the bias of the forget gate at initialization. Use
in combination with bias_initializer="zeros"”. This is recommended in
Jozefowicz et al.
kernel_regularizer
Regularizer function applied to the kernel weights matrix.
recurrent_regularizer
Regularizer function applied to the recurrent_kernel weights matrix.
bias_regularizer
Regularizer function applied to the bias vector.
activity_regularizer
Regularizer function applied to the output of the layer (its "activation")..
kernel_constraint
Constraint function applied to the kernel weights matrix.
recurrent_constraint
Constraint function applied to the recurrent_kernel weights matrix.
bias_constraint
Constraint function applied to the bias vector.
return_sequences
Boolean. Whether to return the last output in the output sequence, or the full

sequence.
go_backwards Boolean (default FALSE). If TRUE, rocess the input sequence backwards.
stateful Boolean (default FALSE). If TRUE, the last state for each sample at index i in a

batch will be used as initial state for the sample of index i in the following batch.
dropout Float between 0 and 1. Fraction of the units to drop for the linear transformation
of the inputs.
recurrent_dropout

Float between 0 and 1. Fraction of the units to drop for the linear transformation
of the recurrent state.

http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf

228 layer_cropping_1d

batch_size Fixed batch size for layer

name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.

trainable Whether the layer weights will be updated during training.

weights Initial weights for layer.

input_shape Dimensionality of the input (integer) not including the samples axis. This argu-

ment is required when using this layer as the first layer in a model.

Input shape

* if data_format="channels_first’ 5D tensor with shape: (samples,time, channels, rows, cols)

— if data_format="channels_last’ 5D tensor with shape: (samples,time, rows, cols, chan-
nels)

References

» Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting
The current implementation does not include the feedback loop on the cells output

See Also

Other convolutional layers: layer_conv_1d(), layer_conv_2d_transpose(), layer_conv_2d(),
layer_conv_3d_transpose(), layer_conv_3d(), layer_cropping_1d(), layer_cropping_2d(),
layer_cropping_3d(), layer_depthwise_conv_2d(), layer_separable_conv_1d(), layer_separable_conv_2d(),
layer_upsampling_1d(), layer_upsampling_2d(), layer_upsampling_3d(), layer_zero_padding_1d(),
layer_zero_padding_2d(), layer_zero_padding_3d()

layer_cropping_1d Cropping layer for 1D input (e.g. temporal sequence).

Description

It crops along the time dimension (axis 1).

Usage

layer_cropping_1d(
object,
cropping = c(1L, 1L),
batch_size = NULL,
name = NULL,
trainable = NULL,
weights = NULL

http://arxiv.org/abs/1506.04214v1

layer_cropping_2d 229

Arguments
object Model or layer object
cropping int or list of int (length 2) How many units should be trimmed off at the begin-
ning and end of the cropping dimension (axis 1). If a single int is provided, the
same value will be used for both.
batch_size Fixed batch size for layer
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

3D tensor with shape (batch, axis_to_crop, features)

Output shape

3D tensor with shape (batch, cropped_axis, features)

See Also

Other convolutional layers: layer_conv_1d(), layer_conv_2d_transpose(), layer_conv_2d(),
layer_conv_3d_transpose(), layer_conv_3d(), layer_conv_1lstm_2d(), layer_cropping_2d(),
layer_cropping_3d(), layer_depthwise_conv_2d(), layer_separable_conv_1d(), layer_separable_conv_2d(),
layer_upsampling_1d(), layer_upsampling_2d(), layer_upsampling_3d(), layer_zero_padding_1d(),
layer_zero_padding_2d(), layer_zero_padding_3d()

layer_cropping_2d Cropping layer for 2D input (e.g. picture).

Description

It crops along spatial dimensions, i.e. width and height.

Usage

layer_cropping_2d(
object,
cropping = list(c(oL, OL), c(eoL, oL)),
data_format = NULL,
batch_size = NULL,
name = NULL,
trainable = NULL,
weights = NULL

230 layer_cropping_2d

Arguments
object Model or layer object
cropping int, or list of 2 ints, or list of 2 lists of 2 ints.
 If int: the same symmetric cropping is applied to width and height.
 If list of 2 ints: interpreted as two different symmetric cropping values for
height and width: (symmetric_height_crop, symmetric_width_crop).
o Iflist of 2 lists of 2 ints: interpreted as ((top_crop, bottom_crop), (left_crop, right_crop))
data_format A string, one of channels_last (default) or channels_first. The ordering of
the dimensions in the inputs. channels_last corresponds to inputs with shape
(batch, height, width, channels) while channels_first corresponds to inputs
with shape (batch, channels, height, width). It defaults to the image_data_format
value found in your Keras config file at ~/.keras/keras.json. If you never set it,
then it will be "channels_last".
batch_size Fixed batch size for layer
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

4D tensor with shape:

e If data_format is "channels_last": (batch, rows, cols, channels)

e If data_format is "channels_first": (batch, channels, rows, cols)

Output shape

4D tensor with shape:

» If data_format is "channels_last": (batch, cropped_rows, cropped_cols, channels)

e If data_format is "channels_first": (batch, channels, cropped_rows, cropped_cols)

See Also

Other convolutional layers: layer_conv_1d(), layer_conv_2d_transpose(), layer_conv_2d(),
layer_conv_3d_transpose(), layer_conv_3d(), layer_conv_1lstm_2d(), layer_cropping_1d(),
layer_cropping_3d(), layer_depthwise_conv_2d(), layer_separable_conv_1d(), layer_separable_conv_2d(),
layer_upsampling_1d(), layer_upsampling_2d(), layer_upsampling_3d(), layer_zero_padding_1d(),
layer_zero_padding_2d(), layer_zero_padding_3d()

layer_cropping_3d 231

layer_cropping_3d Cropping layer for 3D data (e.g. spatial or spatio-temporal).

Description

Cropping layer for 3D data (e.g. spatial or spatio-temporal).

Usage

layer_cropping_3d(
object,
cropping = list(c(1L, 1L), c(IL, 1L), c(IL, 1L)),
data_format = NULL,
batch_size = NULL,
name = NULL,
trainable = NULL,
weights = NULL

)
Arguments
object Model or layer object
cropping int, or list of 3 ints, or list of 3 lists of 2 ints.

 If int: the same symmetric cropping is applied to depth, height, and width.

o If list of 3 ints: interpreted as two different symmetric cropping values for
depth, height, and width: (symmetric_dim1_crop, symmetric_dim2_crop, sym-
metric_dim3_crop).

o Iflist of 3 list of 2 ints: interpreted as ((left_dim1_crop, right_dim1_crop), (left_dim2_crop, right_din

data_format A string, one of channels_last (default) or channels_first. The order-
ing of the dimensions in the inputs. channels_last corresponds to inputs
with shape (batch, spatial_diml, spatial_dim2, spatial_dim3, channels) while
channels_first corresponds to inputs with shape (batch, channels, spatial_dim1, spa-
tial_dim2, spatial_dim3). It defaults to the image_data_format value found in
your Keras config file at ~/.keras/keras.json. If you never set it, then it will be
"channels_last".

batch_size Fixed batch size for layer

name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.

trainable Whether the layer weights will be updated during training.

weights Initial weights for layer.

Input shape

5D tensor with shape:

o Ifdata_formatis "channels_last": (batch, first_axis_to_crop, second_axis_to_crop, third_axis_to_crop, depth)
» Ifdata_formatis "channels_first": (batch, depth, first_axis_to_crop, second_axis_to_crop, third_axis_to_crop)

232 layer_cudnn_gru

Output shape
5D tensor with shape:

e Ifdata_formatis "channels_last": (batch, first_cropped_axis, second_cropped_axis, third_cropped_axis, depth)

e Ifdata_formatis "channels_first": (batch, depth, first_cropped_axis, second_cropped_axis, third_cropped_axis)

See Also

Other convolutional layers: layer_conv_1d(), layer_conv_2d_transpose(), layer_conv_2d(),
layer_conv_3d_transpose(), layer_conv_3d(), layer_conv_lstm_2d(), layer_cropping_1d(),
layer_cropping_2d(), layer_depthwise_conv_2d(), layer_separable_conv_1d(), layer_separable_conv_2d(),
layer_upsampling_1d(), layer_upsampling_2d(), layer_upsampling_3d(), layer_zero_padding_1d(),
layer_zero_padding_2d(), layer_zero_padding_3d()

layer_cudnn_gru Fast GRU implementation backed by
Rhrefhttps://developer.nvidia.com/cudnnCuDNN.

Description

Can only be run on GPU, with the TensorFlow backend.

Usage

layer_cudnn_gru(
object,
units,
kernel_initializer = "glorot_uniform"”,
recurrent_initializer = "orthogonal”,
bias_initializer = "zeros”,
kernel_regularizer = NULL,
recurrent_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
recurrent_constraint = NULL,
bias_constraint = NULL,
return_sequences = FALSE,
return_state = FALSE,
stateful = FALSE,
input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,
dtype = NULL,
name = NULL,
trainable = NULL,
weights = NULL

layer_cudnn_gru 233

Arguments
object Model or layer object
units Positive integer, dimensionality of the output space.

kernel_initializer
Initializer for the kernel weights matrix, used for the linear transformation of
the inputs.
recurrent_initializer
Initializer for the recurrent_kernel weights matrix, used for the linear trans-
formation of the recurrent state.
bias_initializer
Initializer for the bias vector.
kernel_regularizer
Regularizer function applied to the kernel weights matrix.
recurrent_regularizer
Regularizer function applied to the recurrent_kernel weights matrix.
bias_regularizer
Regularizer function applied to the bias vector.
activity_regularizer
Regularizer function applied to the output of the layer (its "activation")..
kernel_constraint
Constraint function applied to the kernel weights matrix.
recurrent_constraint
Constraint function applied to the recurrent_kernel weights matrix.
bias_constraint
Constraint function applied to the bias vector.
return_sequences
Boolean. Whether to return the last output in the output sequence, or the full

sequence.

return_state Boolean (default FALSE). Whether to return the last state in addition to the
output.

stateful Boolean (default FALSE). If TRUE, the last state for each sample at index i in a

batch will be used as initial state for the sample of index i in the following batch.

input_shape Dimensionality of the input (integer) not including the samples axis. This argu-
ment is required when using this layer as the first layer in a model.
batch_input_shape
Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number
of 32-dimensional vectors.

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse

the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.

234 layer_cudnn_Istm

References

* On the Properties of Neural Machine Translation: Encoder-Decoder Approaches
* Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling

* A Theoretically Grounded Application of Dropout in Recurrent Neural Networks

See Also

Other recurrent layers: layer_cudnn_lstm(), layer_gru(), layer_lstm(), layer_simple_rnn()

layer_cudnn_1stm Fast LSTM implementation backed by
Rhrefhttps://developer.nvidia.com/cudnnCuDNN.

Description

Can only be run on GPU, with the TensorFlow backend.

Usage

layer_cudnn_1stm(
object,
units,
kernel_initializer = "glorot_uniform"”,
recurrent_initializer = "orthogonal”,
bias_initializer = "zeros",
unit_forget_bias = TRUE,
kernel_regularizer = NULL,
recurrent_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
recurrent_constraint = NULL,
bias_constraint = NULL,
return_sequences = FALSE,
return_state = FALSE,
stateful = FALSE,
input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,
dtype = NULL,
name = NULL,
trainable = NULL,
weights = NULL

https://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1412.3555v1
http://arxiv.org/abs/1512.05287

layer_cudnn_Istm 235

Arguments
object Model or layer object
units Positive integer, dimensionality of the output space.

kernel_initializer
Initializer for the kernel weights matrix, used for the linear transformation of
the inputs.
recurrent_initializer
Initializer for the recurrent_kernel weights matrix, used for the linear trans-
formation of the recurrent state.
bias_initializer
Initializer for the bias vector.
unit_forget_bias
Boolean. If TRUE, add 1 to the bias of the forget gate at initialization. Setting
it to true will also force bias_initializer="zeros". This is recommended in
Jozefowicz et al.
kernel_regularizer
Regularizer function applied to the kernel weights matrix.
recurrent_regularizer
Regularizer function applied to the recurrent_kernel weights matrix.
bias_regularizer
Regularizer function applied to the bias vector.
activity_regularizer
Regularizer function applied to the output of the layer (its "activation")..
kernel_constraint
Constraint function applied to the kernel weights matrix.
recurrent_constraint
Constraint function applied to the recurrent_kernel weights matrix.
bias_constraint
Constraint function applied to the bias vector.
return_sequences
Boolean. Whether to return the last output in the output sequence, or the full

sequence.

return_state Boolean (default FALSE). Whether to return the last state in addition to the
output.

stateful Boolean (default FALSE). If TRUE, the last state for each sample at index i in a

batch will be used as initial state for the sample of index i in the following batch.

input_shape Dimensionality of the input (integer) not including the samples axis. This argu-
ment is required when using this layer as the first layer in a model.
batch_input_shape
Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number
of 32-dimensional vectors.

batch_size Fixed batch size for layer

http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf

236 layer_dense

dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
References

* Long short-term memory (original 1997 paper)
» Supervised sequence labeling with recurrent neural networks

* A Theoretically Grounded Application of Dropout in Recurrent Neural Networks

See Also

Other recurrent layers: layer_cudnn_gru(), layer_gru(), layer_lstm(), layer_simple_rnn()

layer_dense Add a densely-connected NN layer to an output

Description

Implements the operation: output = activation(dot(input,kernel) + bias) where activation
is the element-wise activation function passed as the activation argument, kernel is a weights

matrix created by the layer, and bias is a bias vector created by the layer (only applicable if

use_bias is TRUE). Note: if the input to the layer has a rank greater than 2, then it is flattened

prior to the initial dot product with kernel.

Usage

layer_dense(
object,
units,
activation = NULL,
use_bias = TRUE,
kernel_initializer = "glorot_uniform"”,
bias_initializer = "zeros",
kernel_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
bias_constraint = NULL,
input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,
dtype = NULL,
name = NULL,

http://www.bioinf.jku.at/publications/older/2604.pdf
http://www.cs.toronto.edu/~graves/preprint.pdf
http://arxiv.org/abs/1512.05287

layer_dense 237

trainable = NULL,
weights = NULL

)
Arguments
object Model or layer object
units Positive integer, dimensionality of the output space.
activation Name of activation function to use. If you don’t specify anything, no activation
is applied (ie. "linear" activation: a(x) = x).
use_bias Whether the layer uses a bias vector.

kernel_initializer
Initializer for the kernel weights matrix.
bias_initializer
Initializer for the bias vector.
kernel_regularizer
Regularizer function applied to the kernel weights matrix.
bias_regularizer
Regularizer function applied to the bias vector.
activity_regularizer
Regularizer function applied to the output of the layer (its "activation")..
kernel_constraint
Constraint function applied to the kernel weights matrix.
bias_constraint
Constraint function applied to the bias vector.
input_shape Dimensionality of the input (integer) not including the samples axis. This argu-
ment is required when using this layer as the first layer in a model.
batch_input_shape
Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number
of 32-dimensional vectors.

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input and Output Shapes

Input shape: nD tensor with shape: (batch_size, ..., input_dim). The most common situation would
be a 2D input with shape (batch_size, input_dim).

Output shape: nD tensor with shape: (batch_size, ..., units). For instance, for a 2D input with shape
(batch_size, input_dim), the output would have shape (batch_size, unit).

238 layer_dense_features

See Also

Other core layers: layer_activation(), layer_activity_regularization(), layer_attention(),
layer_dense_features(), layer_dropout(), layer_flatten(), layer_input(), layer_lambda(),
layer_masking(), layer_permute(), layer_repeat_vector(), layer_reshape()

layer_dense_features Constructs a DenseFeatures.

Description

A layer that produces a dense Tensor based on given feature_columns.

Usage

layer_dense_features(
object,
feature_columns,
name = NULL,
trainable = NULL,
input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,

dtype = NULL,
weights = NULL
)
Arguments
object Model or layer object

feature_columns
An iterable containing the FeatureColumns to use as inputs to your model.
All items should be instances of classes derived from DenseColumn such as
numeric_column, embedding_column, bucketized_column, indicator_column.
If you have categorical features, you can wrap them with an embedding_column
or indicator_column. See tfestimators: :feature_columns().

name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.

trainable Whether the layer weights will be updated during training.

input_shape Dimensionality of the input (integer) not including the samples axis. This argu-

ment is required when using this layer as the first layer in a model.
batch_input_shape

Shapes, including the batch size. For instance, batch_input_shape=c(10,32)

indicates that the expected input will be batches of 10 32-dimensional vectors.

batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number

of 32-dimensional vectors.

layer_depthwise_conv_2d 239

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
weights Initial weights for layer.

See Also

Other core layers: layer_activation(), layer_activity_regularization(), layer_attention(),
layer_dense(), layer_dropout (), layer_flatten(), layer_input(), layer_lambda(), layer_masking(),
layer_permute(), layer_repeat_vector(), layer_reshape()

layer_depthwise_conv_2d
Depthwise separable 2D convolution.

Description

Depthwise Separable convolutions consists in performing just the first step in a depthwise spatial
convolution (which acts on each input channel separately). The depth_multiplier argument con-
trols how many output channels are generated per input channel in the depthwise step.

Usage

layer_depthwise_conv_2d(
object,
kernel_size,
strides = c(1, 1),
padding = "valid”,
depth_multiplier = 1,
data_format = NULL,
activation = NULL,
use_bias = TRUE,
depthwise_initializer = "glorot_uniform”,
bias_initializer = "zeros",
depthwise_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
depthwise_constraint = NULL,
bias_constraint = NULL,
input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,
dtype = NULL,
name = NULL,
trainable = NULL,
weights = NULL

240

Arguments

object

kernel_size

strides

padding

layer_depthwise_conv_2d

Model or layer object

An integer or list of 2 integers, specifying the width and height of the 2D convo-
lution window. Can be a single integer to specify the same value for all spatial
dimensions.

An integer or list of 2 integers, specifying the strides of the convolution along
the width and height. Can be a single integer to specify the same value for
all spatial dimensions. Specifying any stride value != 1 is incompatible with
specifying any dilation_rate value !=1.

one of "valid” or "same" (case-insensitive).

depth_multiplier

data_format

activation

use_bias

The number of depthwise convolution output channels for each input channel.
The total number of depthwise convolution output channels will be equal to
filters_in x depth_multiplier.

A string, one of channels_last (default) or channels_first. The ordering of
the dimensions in the inputs. channels_last corresponds to inputs with shape
(batch, height, width, channels) while channels_first corresponds to inputs
with shape (batch, channels, height, width). It defaults to the image_data_format
value found in your Keras config file at ~/.keras/keras.json. If you never set it,
then it will be "channels_last".

Activation function to use. If you don’t specify anything, no activation is applied
(ie. "linear" activation: a(x) = x).

Boolean, whether the layer uses a bias vector.

depthwise_initializer

Initializer for the depthwise kernel matrix.

bias_initializer

Initializer for the bias vector.

depthwise_regularizer

Regularizer function applied to the depthwise kernel matrix.

bias_regularizer

Regularizer function applied to the bias vector.

activity_regularizer

Regularizer function applied to the output of the layer (its "activation")..

depthwise_constraint

bias_constraint

input_shape

Constraint function applied to the depthwise kernel matrix.

Constraint function applied to the bias vector.

Dimensionality of the input (integer) not including the samples axis. This argu-
ment is required when using this layer as the first layer in a model.

batch_input_shape

Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number
of 32-dimensional vectors.

layer_dot

batch_size
dtype

name

trainable

weights

See Also

241

Fixed batch size for layer
The data type expected by the input, as a string (float32, float64, int32...)

An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.

Whether the layer weights will be updated during training.

Initial weights for layer.

Other convolutional layers: layer_conv_1d(), layer_conv_2d_transpose(), layer_conv_2d(),
layer_conv_3d_transpose(), layer_conv_3d(), layer_conv_1lstm_2d(), layer_cropping_1d(),
layer_cropping_2d(), layer_cropping_3d(), layer_separable_conv_1d(), layer_separable_conv_2d(),
layer_upsampling_1d(), layer_upsampling_2d(), layer_upsampling_3d(), layer_zero_padding_1d(),
layer_zero_padding_2d(), layer_zero_padding_3d()

layer_dot

Layer that computes a dot product between samples in two tensors.

Description

Layer that computes a dot product between samples in two tensors.

Usage
layer_dot(

inputs,
axes,
normalize
batch_size
dtype = NULL,
name = NULL,

FALSE,
NULL,

trainable = NULL,

weights

Arguments

inputs
axes

normalize

batch_size

dtype

NULL

A list of input tensors (at least 2).
Integer or list of integers, axis or axes along which to take the dot product.

Whether to L2-normalize samples along the dot product axis before taking the
dot product. If set to TRUE, then the output of the dot product is the cosine
proximity between the two samples. **kwargs: Standard layer keyword argu-
ments.

Fixed batch size for layer

The data type expected by the input, as a string (float32, float64, int32...)

242 layer_dropout

name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Value

A tensor, the dot product of the samples from the inputs.

See Also

Other merge layers: layer_add(), layer_average(), layer_concatenate(), layer_maximum(),
layer_minimum(), layer_multiply(), layer_subtract()

layer_dropout Applies Dropout to the input.

Description

Dropout consists in randomly setting a fraction rate of input units to 0 at each update during
training time, which helps prevent overfitting.

Usage

layer_dropout (
object,
rate,
noise_shape
seed = NULL,
input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,
name = NULL,
trainable = NULL,
weights = NULL

NULL,

)
Arguments
object Model or layer object
rate float between 0 and 1. Fraction of the input units to drop.
noise_shape 1D integer tensor representing the shape of the binary dropout mask that will be

multiplied with the input. For instance, if your inputs have shape (batch_size, timesteps, fea-
tures) and you want the dropout mask to be the same for all timesteps, you can
use noise_shape=c(batch_size, 1, features).

seed integer to use as random seed.

layer_embedding 243

input_shape Dimensionality of the input (integer) not including the samples axis. This argu-
ment is required when using this layer as the first layer in a model.
batch_input_shape
Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number
of 32-dimensional vectors.

batch_size Fixed batch size for layer
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
See Also

Other core layers: layer_activation(), layer_activity_regularization(), layer_attention(),
layer_dense_features(), layer_dense(), layer_flatten(), layer_input(), layer_lambda(),
layer_masking(), layer_permute(), layer_repeat_vector(), layer_reshape()

Other dropout layers: layer_spatial_dropout_1d(), layer_spatial_dropout_2d(), layer_spatial_dropout_3d()

layer_embedding Turns positive integers (indexes) into dense vectors of fixed size.

Description

For example, 1ist(4L,20L) -> 1ist(c(0.25,0.1),c(@.6,-0.2)) This layer can only be used as
the first layer in a model.

Usage

layer_embedding(
object,
input_dim,
output_dim,
embeddings_initializer = "uniform”,
embeddings_regularizer = NULL,
activity_regularizer = NULL,
embeddings_constraint = NULL,
mask_zero = FALSE,
input_length = NULL,
batch_size = NULL,
name = NULL,
trainable = NULL,
weights = NULL

244

Arguments
object
input_dim

output_dim

layer_embedding

Model or layer object
int > 0. Size of the vocabulary, i.e. maximum integer index + 1.

int >= 0. Dimension of the dense embedding.

embeddings_initializer

Initializer for the embeddings matrix.

embeddings_regularizer

Regularizer function applied to the embeddings matrix.

activity_regularizer

activity_regularizer

embeddings_constraint

mask_zero

input_length

batch_size

name

trainable

weights

Input shape

Constraint function applied to the embeddings matrix.

Whether or not the input value O is a special "padding" value that should be
masked out. This is useful when using recurrent layers, which may take variable
length inputs. If this is TRUE then all subsequent layers in the model need to
support masking or an exception will be raised. If mask_zero is set to TRUE,
as a consequence, index 0 cannot be used in the vocabulary (input_dim should
equal size of vocabulary + 1).

Length of input sequences, when it is constant. This argument is required if you
are going to connect Flatten then Dense layers upstream (without it, the shape
of the dense outputs cannot be computed).

Fixed batch size for layer

An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.

Whether the layer weights will be updated during training.

Initial weights for layer.

2D tensor with shape: (batch_size, sequence_length).

Output shape

3D tensor with shape: (batch_size, sequence_length, output_dim).

References

* A Theoretically Grounded Application of Dropout in Recurrent Neural Networks

http://arxiv.org/abs/1512.05287

layer_flatten 245

layer_flatten Flattens an input

Description

Flatten a given input, does not affect the batch size.

Usage

layer_flatten(
object,

data_format = NULL,
input_shape = NULL,
dtype = NULL,
name = NULL,

trainable = NULL,
weights = NULL

)
Arguments
object Model or layer object
data_format A string. one of channels_last (default) or channels_first. The order-
ing of the dimensions in the inputs. The purpose of this argument is to pre-
serve weight ordering when switching a model from one data format to an-
other. channels_last corresponds to inputs with shape (batch, ..., channels)
while channels_first corresponds to inputs with shape (batch, channels, ...)
It defaults to the image_data_format value found in your Keras config file at
~/ keras/keras.json. If you never set it, then it will be "channels_last".
input_shape Input shape (list of integers, does not include the samples axis) which is required
when using this layer as the first layer in a model.
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
See Also

Other core layers: layer_activation(), layer_activity_regularization(), layer_attention(),
layer_dense_features(), layer_dense(), layer_dropout(), layer_input(), layer_lambda(),
layer_masking(), layer_permute(), layer_repeat_vector(), layer_reshape()

246

layer_gaussian_dropout

layer_gaussian_dropout

Apply multiplicative I-centered Gaussian noise.

Description

As it is a regularization layer, it is only active at training time.

Usage

layer_gaussian_dropout(

object,
rate,

input_shape
batch_input_shape = NULL,
batch_size = NULL,

= NULL,

dtype = NULL,
name = NULL,
trainable = NULL,
weights = NULL

)

Arguments
object Model or layer object
rate float, drop probability (as with Dropout). The multiplicative noise will have

input_shape

standard deviation sqrt(rate / (1 -rate)).

Dimensionality of the input (integer) not including the samples axis. This argu-
ment is required when using this layer as the first layer in a model.

batch_input_shape

batch_size
dtype

name

trainable

weights

Input shape

Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL,32) indicates batches of an arbitrary number
of 32-dimensional vectors.

Fixed batch size for layer
The data type expected by the input, as a string (float32, float64, int32...)

An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.

Whether the layer weights will be updated during training.

Initial weights for layer.

Arbitrary. Use the keyword argument input_shape (list of integers, does not include the samples
axis) when using this layer as the first layer in a model.

layer_gaussian_noise 247

Output shape

Same shape as input.

References

* Dropout: A Simple Way to Prevent Neural Networks from Overfitting Srivastava, Hinton, et
al. 2014

See Also

Other noise layers: layer_alpha_dropout(), layer_gaussian_noise()

layer_gaussian_noise Apply additive zero-centered Gaussian noise.

Description

This is useful to mitigate overfitting (you could see it as a form of random data augmentation).
Gaussian Noise (GS) is a natural choice as corruption process for real valued inputs. As it is a
regularization layer, it is only active at training time.

Usage

layer_gaussian_noise(
object,
stddev,
input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,
dtype = NULL,
name = NULL,
trainable = NULL,
weights = NULL

)
Arguments
object Model or layer object
stddev float, standard deviation of the noise distribution.
input_shape Dimensionality of the input (integer) not including the samples axis. This argu-

ment is required when using this layer as the first layer in a model.
batch_input_shape

Shapes, including the batch size. For instance, batch_input_shape=c(10,32)

indicates that the expected input will be batches of 10 32-dimensional vectors.

batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number

of 32-dimensional vectors.

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf
http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

248 layer_global_average_pooling_1d

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

Arbitrary. Use the keyword argument input_shape (list of integers, does not include the samples
axis) when using this layer as the first layer in a model.

Output shape

Same shape as input.

See Also

Other noise layers: layer_alpha_dropout(), layer_gaussian_dropout()

layer_global_average_pooling_1d
Global average pooling operation for temporal data.

Description

Global average pooling operation for temporal data.

Usage
layer_global_average_pooling_1d(
object,
data_format = "channels_last”,
batch_size = NULL,
name = NULL,

trainable = NULL,
weights = NULL

)
Arguments
object Model or layer object
data_format One of channels_last (default) or channels_first. The ordering of the di-

mensions in the inputs.

batch_size Fixed batch size for layer

layer_global_average_pooling 2d 249

name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

3D tensor with shape: (batch_size, steps, features).

Output shape

2D tensor with shape: (batch_size, channels)

See Also

Other pooling layers: layer_average_pooling_1d(), layer_average_pooling_2d(), layer_average_pooling_3d(),
layer_global_average_pooling_2d(), layer_global_average_pooling_3d(), layer_global_max_pooling_1d(),
layer_global_max_pooling_2d(), layer_global_max_pooling_3d(), layer_max_pooling_1d(),
layer_max_pooling_2d(), layer_max_pooling_3d()

layer_global_average_pooling_2d
Global average pooling operation for spatial data.

Description

Global average pooling operation for spatial data.

Usage

layer_global_average_pooling_2d(
object,
data_format = NULL,
batch_size = NULL,
name = NULL,
trainable = NULL,
weights = NULL

)
Arguments
object Model or layer object
data_format A string, one of channels_last (default) or channels_first. The ordering of

the dimensions in the inputs. channels_last corresponds to inputs with shape
(batch, height, width, channels) while channels_first corresponds to inputs
with shape (batch, channels, height, width). It defaults to the image_data_format
value found in your Keras config file at ~/.keras/keras.json. If you never set it,
then it will be "channels_last".

250 layer_global_average_pooling_3d

batch_size Fixed batch size for layer
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

e If data_format="'channels_last': 4D tensor with shape: (batch_size, rows, cols, channels)

e Ifdata_format="'channels_first': 4D tensor with shape: (batch_size, channels, rows, cols)

Output shape

2D tensor with shape: (batch_size, channels)

See Also

Other pooling layers: layer_average_pooling_1d(), layer_average_pooling_2d(), layer_average_pooling_3d(),
layer_global_average_pooling_1d(), layer_global_average_pooling_3d(), layer_global_max_pooling_1d(),
layer_global_max_pooling_2d(), layer_global_max_pooling_3d(), layer_max_pooling_1d(),
layer_max_pooling_2d(), layer_max_pooling_3d()

layer_global_average_pooling_3d
Global Average pooling operation for 3D data.

Description

Global Average pooling operation for 3D data.

Usage

layer_global_average_pooling_3d(
object,
data_format = NULL,
batch_size = NULL,
name = NULL,
trainable = NULL,
weights = NULL

layer_global_max_pooling_1d 251

Arguments
object Model or layer object
data_format A string, one of channels_last (default) or channels_first. The order-
ing of the dimensions in the inputs. channels_last corresponds to inputs
with shape (batch, spatial_diml, spatial_dim2, spatial_dim3, channels) while
channels_first corresponds to inputs with shape (batch, channels, spatial_dim1, spa-
tial_dim2, spatial_dim3). It defaults to the image_data_format value found in
your Keras config file at ~/.keras/keras.json. If you never set it, then it will be
"channels_last".
batch_size Fixed batch size for layer
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

* If data_format='channels_last': 5D tensor with shape: (batch_size, spatial_diml, spa-
tial_dim2, spatial_dim3, channels)

e Ifdata_format="'channels_first': 5D tensor with shape: (batch_size, channels, spatial_dim1, spa-
tial_dim2, spatial_dim3)
Output shape

2D tensor with shape: (batch_size, channels)

See Also

Other pooling layers: layer_average_pooling_1d(), layer_average_pooling_2d(), layer_average_pooling_3d(),
layer_global_average_pooling_1d(), layer_global_average_pooling_2d(), layer_global_max_pooling_1d(),
layer_global_max_pooling_2d(), layer_global_max_pooling_3d(), layer_max_pooling_1d(),
layer_max_pooling_2d(), layer_max_pooling_3d()

layer_global_max_pooling_1d
Global max pooling operation for temporal data.

Description

Global max pooling operation for temporal data.

252 layer_global_max_pooling_2d

Usage
layer_global_max_pooling_1d(
object,
data_format = "channels_last”,
batch_size = NULL,
name = NULL,

trainable = NULL,
weights = NULL

)
Arguments
object Model or layer object
data_format One of channels_last (default) or channels_first. The ordering of the di-
mensions in the inputs.
batch_size Fixed batch size for layer
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

3D tensor with shape: (batch_size, steps, features).

Output shape

2D tensor with shape: (batch_size, channels)

See Also

Other pooling layers: layer_average_pooling_1d(), layer_average_pooling_2d(), layer_average_pooling_3d(),
layer_global_average_pooling_1d(), layer_global_average_pooling_2d(), layer_global_average_pooling_3d
layer_global_max_pooling_2d(), layer_global_max_pooling_3d(), layer_max_pooling_1d(),
layer_max_pooling_2d(), layer_max_pooling_3d()

layer_global_max_pooling_2d
Global max pooling operation for spatial data.

Description

Global max pooling operation for spatial data.

layer_global_max_pooling_2d 253

Usage

layer_global_max_pooling_2d(
object,
data_format = NULL,
batch_size = NULL,
name = NULL,
trainable = NULL,
weights = NULL

)
Arguments
object Model or layer object
data_format A string, one of channels_last (default) or channels_first. The ordering of
the dimensions in the inputs. channels_last corresponds to inputs with shape
(batch, height, width, channels) while channels_first corresponds to inputs
with shape (batch, channels, height, width). It defaults to the image_data_format
value found in your Keras config file at ~/.keras/keras.json. If you never set it,
then it will be "channels_last".
batch_size Fixed batch size for layer
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

* If data_format='channels_last': 4D tensor with shape: (batch_size, rows, cols, channels)

e Ifdata_format="'channels_first': 4D tensor with shape: (batch_size, channels, rows, cols)

Output shape

2D tensor with shape: (batch_size, channels)

See Also

Other pooling layers: layer_average_pooling_1d(), layer_average_pooling_2d(), layer_average_pooling_3d(),
layer_global_average_pooling_1d(), layer_global_average_pooling_2d(), layer_global_average_pooling_3d
layer_global_max_pooling_1d(), layer_global_max_pooling_3d(), layer_max_pooling_1d(),
layer_max_pooling_2d(), layer_max_pooling_3d()

254 layer_global_max_pooling_3d

layer_global_max_pooling_3d
Global Max pooling operation for 3D data.

Description

Global Max pooling operation for 3D data.

Usage

layer_global_max_pooling_3d(
object,
data_format = NULL,
batch_size = NULL,
name = NULL,
trainable = NULL,
weights = NULL

)
Arguments
object Model or layer object
data_format A string, one of channels_last (default) or channels_first. The order-
ing of the dimensions in the inputs. channels_last corresponds to inputs
with shape (batch, spatial_diml, spatial_dim?2, spatial_dim3, channels) while
channels_first corresponds to inputs with shape (batch, channels, spatial_dim1, spa-
tial_dim2, spatial_dim3). It defaults to the image_data_format value found in
your Keras config file at ~/.keras/keras.json. If you never set it, then it will be
"channels_last".
batch_size Fixed batch size for layer
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

* If data_format='channels_last': 5D tensor with shape: (batch_size, spatial_diml, spa-
tial_dim2, spatial_dim3, channels)

* Ifdata_format="'channels_first': 5D tensor with shape: (batch_size, channels, spatial_dim1, spa-
tial_dim2, spatial_dim3)

Output shape

2D tensor with shape: (batch_size, channels)

layer_gru 255

See Also

Other pooling layers: layer_average_pooling_1d(), layer_average_pooling_2d(), layer_average_pooling_3d(),
layer_global_average_pooling_1d(), layer_global_average_pooling_2d(), layer_global_average_pooling_3d
layer_global_max_pooling_1d(), layer_global_max_pooling_2d(), layer_max_pooling_1d(),
layer_max_pooling_2d(), layer_max_pooling_3d()

layer_gru Gated Recurrent Unit - Cho et al.

Description

There are two variants. The default one is based on 1406.1078v3 and has reset gate applied to
hidden state before matrix multiplication. The other one is based on original 1406.1078v1 and has
the order reversed.

Usage
layer_gru(
object,
units,
activation = "tanh",
recurrent_activation = "hard_sigmoid”,

use_bias = TRUE,
return_sequences = FALSE,
return_state = FALSE,
go_backwards = FALSE,
stateful = FALSE,

unroll = FALSE,
reset_after = FALSE,

kernel_initializer = "glorot_uniform"”,
recurrent_initializer = "orthogonal”,
bias_initializer = "zeros",

kernel_regularizer = NULL,
recurrent_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
recurrent_constraint = NULL,
bias_constraint = NULL,
dropout = 0,
recurrent_dropout = 0,
input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,

dtype = NULL,

name = NULL,

256 layer_gru

trainable = NULL,
weights = NULL

)
Arguments
object Model or layer object
units Positive integer, dimensionality of the output space.
activation Activation function to use. Default: hyperbolic tangent (tanh). If you pass

NULL, no activation is applied (ie. "linear" activation: a(x) = x).
recurrent_activation
Activation function to use for the recurrent step.

use_bias Boolean, whether the layer uses a bias vector.

return_sequences
Boolean. Whether to return the last output in the output sequence, or the full
sequence.

return_state Boolean (default FALSE). Whether to return the last state in addition to the
output.

go_backwards Boolean (default FALSE). If TRUE, process the input sequence backwards and
return the reversed sequence.

stateful Boolean (default FALSE). If TRUE, the last state for each sample at index i in a
batch will be used as initial state for the sample of index i in the following batch.
unroll Boolean (default FALSE). If TRUE, the network will be unrolled, else a sym-

bolic loop will be used. Unrolling can speed-up a RNN, although it tends to be
more memory-intensive. Unrolling is only suitable for short sequences.
reset_after GRU convention (whether to apply reset gate after or before matrix multiplica-
tion). FALSE = "before" (default), TRUE = "after" (CuDNN compatible).
kernel_initializer
Initializer for the kernel weights matrix, used for the linear transformation of
the inputs.
recurrent_initializer
Initializer for the recurrent_kernel weights matrix, used for the linear trans-
formation of the recurrent state.
bias_initializer
Initializer for the bias vector.
kernel_regularizer
Regularizer function applied to the kernel weights matrix.
recurrent_regularizer
Regularizer function applied to the recurrent_kernel weights matrix.
bias_regularizer
Regularizer function applied to the bias vector.
activity_regularizer
Regularizer function applied to the output of the layer (its "activation")..
kernel_constraint
Constraint function applied to the kernel weights matrix.

layer_gru 257

recurrent_constraint

Constraint function applied to the recurrent_kernel weights matrix.
bias_constraint

Constraint function applied to the bias vector.

dropout Float between 0 and 1. Fraction of the units to drop for the linear transformation
of the inputs.

recurrent_dropout
Float between 0 and 1. Fraction of the units to drop for the linear transformation
of the recurrent state.

input_shape Dimensionality of the input (integer) not including the samples axis. This argu-
ment is required when using this layer as the first layer in a model.
batch_input_shape
Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number
of 32-dimensional vectors.

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Details

The second variant is compatible with CuDNNGRU (GPU-only) and allows inference on CPU.
Thus it has separate biases for kernel and recurrent_kernel. Use reset_after = TRUE and
recurrent_activation = "sigmoid".

Input shapes
3D tensor with shape (batch_size, timesteps, input_dim), (Optional) 2D tensors with shape (batch_size, out-
put_dim).

Output shape

* if return_state: a list of tensors. The first tensor is the output. The remaining tensors are
the last states, each with shape (batch_size, units).

* if return_sequences: 3D tensor with shape (batch_size, timesteps, units).

* else, 2D tensor with shape (batch_size, units).

Masking

This layer supports masking for input data with a variable number of timesteps. To introduce masks
to your data, use an embedding layer with the mask_zero parameter set to TRUE.

258 layer_input

Statefulness in RNNs

You can set RNN layers to be ’stateful’, which means that the states computed for the samples in
one batch will be reused as initial states for the samples in the next batch. This assumes a one-to-one
mapping between samples in different successive batches.

To enable statefulness:

» Specify stateful=TRUE in the layer constructor.

* Specify a fixed batch size for your model. For sequential models, pass batch_input_shape
=c(...) to the first layer in your model. For functional models with 1 or more Input layers,
pass batch_shape = c(...) to all the first layers in your model. This is the expected shape
of your inputs including the batch size. It should be a vector of integers, e.g. ¢(32,10,100).

* Specify shuffle = FALSE when calling fit().

To reset the states of your model, call reset_states() on either a specific layer, or on your entire
model.

Initial State of RNNs

You can specify the initial state of RNN layers symbolically by calling them with the keyword
argument initial_state. The value of initial_state should be a tensor or list of tensors repre-
senting the initial state of the RNN layer.

You can specify the initial state of RNN layers numerically by calling reset_states with the
keyword argument states. The value of states should be a numpy array or list of numpy arrays
representing the initial state of the RNN layer.

References

» Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Trans-
lation

* On the Properties of Neural Machine Translation: Encoder-Decoder Approaches
* Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling

* A Theoretically Grounded Application of Dropout in Recurrent Neural Networks

See Also

Other recurrent layers: layer_cudnn_gru(), layer_cudnn_lstm(), layer_lstm(), layer_simple_rnn()

layer_input Input layer

Description

Layer to be used as an entry point into a graph.

https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1412.3555v1
http://arxiv.org/abs/1512.05287

layer_lambda

layer_input(

259

shape = NULL,
batch_shape = NULL,
name = NULL,
dtype = NULL,
sparse = FALSE,
tensor =

)

Arguments
shape Shape, not including the batch size. For instance, shape=c(32) indicates that

batch_shape

the expected input will be batches of 32-dimensional vectors.

Shape, including the batch size. For instance, shape = c(10,32) indicates that
the expected input will be batches of 10 32-dimensional vectors. batch_shape
=1list(NULL,32) indicates batches of an arbitrary number of 32-dimensional
vectors.

name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
dtype The data type expected by the input, as a string (float32, float64, int32...)
sparse Boolean, whether the placeholder created is meant to be sparse.
tensor Existing tensor to wrap into the Input layer. If set, the layer will not create a
placeholder tensor.
Value
A tensor
See Also

Other core layers: layer_activation(), layer_activity_regularization(), layer_attention(),
layer_dense_features(), layer_dense(), layer_dropout(), layer_flatten(), layer_lambda(),

layer_masking(), layer_permute(), layer_repeat_vector(), layer_reshape()

layer_lambda

Wraps arbitrary expression as a layer

Description

Wraps arbitrary expression as a layer

260

Usage

layer_lambda(
object,
f,
output_shape
mask = NULL,

layer_lambda

= NULL,

arguments = NULL,
input_shape = NULL,
batch_input_shape = NULL,

batch_size =
dtype = NULL,
name = NULL,

NULL,

trainable = NULL,
weights = NULL

Arguments
object
f‘
output_shape

mask
arguments

input_shape

Model or layer object
The function to be evaluated. Takes input tensor as first argument.

Expected output shape from the function (not required when using TensorFlow
back-end).

mask
optional named list of keyword arguments to be passed to the function.

Dimensionality of the input (integer) not including the samples axis. This argu-
ment is required when using this layer as the first layer in a model.

batch_input_shape

batch_size
dtype

name

trainable

weights

Input shape

Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL,32) indicates batches of an arbitrary number
of 32-dimensional vectors.

Fixed batch size for layer
The data type expected by the input, as a string (float32, float64, int32...)

An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.

Whether the layer weights will be updated during training.

Initial weights for layer.

Arbitrary. Use the keyword argument input_shape (list of integers, does not include the samples
axis) when using this layer as the first layer in a model.

Output shape

Arbitrary (based on tensor returned from the function)

layer_locally_connected_1d 261

See Also

Other core layers: layer_activation(), layer_activity_regularization(), layer_attention(),
layer_dense_features(), layer_dense(), layer_dropout (), layer_flatten(), layer_input(),
layer_masking(), layer_permute(), layer_repeat_vector(), layer_reshape()

layer_locally_connected_1d
Locally-connected layer for 1D inputs.

Description

layer_locally_connected_1d() works similarly to layer_conv_1d() , except that weights are
unshared, that is, a different set of filters is applied at each different patch of the input.

Usage

layer_locally_connected_1d(
object,
filters,
kernel_size,
strides = 1L,
padding = "valid”,
data_format = NULL,
activation = NULL,
use_bias = TRUE,
kernel_initializer = "glorot_uniform”,
bias_initializer = "zeros",
kernel_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
bias_constraint = NULL,
batch_size = NULL,
name = NULL,
trainable = NULL,
weights = NULL

)
Arguments
object Model or layer object
filters Integer, the dimensionality of the output space (i.e. the number output of filters
in the convolution).
kernel_size An integer or list of a single integer, specifying the length of the 1D convolution

window.

262

strides

padding

data_format

activation

use_bias

layer_locally_connected_1d

An integer or list of a single integer, specifying the stride length of the con-
volution. Specifying any stride value != 1 is incompatible with specifying any
dilation_rate value !=1.

Currently only supports "valid” (case-insensitive). "same” may be supported
in the future.

A string, one of channels_last (default) or channels_first. The ordering of
the dimensions in the inputs. channels_last corresponds to inputs with shape
(batch, height, width, channels) while channels_first corresponds to inputs
with shape (batch, channels, height, width). It defaults to the image_data_format
value found in your Keras config file at ~/.keras/keras.json. If you never set it,
then it will be "channels_last".

Activation function to use. If you don’t specify anything, no activation is applied
(ie. "linear" activation: a(x) = x).

Boolean, whether the layer uses a bias vector.

kernel_initializer

Initializer for the kernel weights matrix.

bias_initializer

Initializer for the bias vector.

kernel_regularizer

Regularizer function applied to the kernel weights matrix.

bias_regularizer

Regularizer function applied to the bias vector.

activity_regularizer

Regularizer function applied to the output of the layer (its "activation")..

kernel_constraint

bias_constraint

batch_size
name

trainable
weights

Input shape

Constraint function applied to the kernel matrix.

Constraint function applied to the bias vector.
Fixed batch size for layer

An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.

Whether the layer weights will be updated during training.

Initial weights for layer.

3D tensor with shape: (batch_size, steps, input_dim)

Output shape

3D tensor with shape: (batch_size, new_steps, filters) steps value might have changed due to

padding or strides.

See Also

Other locally connected layers: layer_locally_connected_2d()

layer_locally_connected_2d 263

layer_locally_connected_2d
Locally-connected layer for 2D inputs.

Description

layer_locally_connected_2d works similarly to layer_conv_2d(), except that weights are un-
shared, that is, a different set of filters is applied at each different patch of the input.

Usage

layer_locally_connected_2d(
object,
filters,
kernel_size,
strides = c(1L, 1L),
padding = "valid”,
data_format = NULL,
activation = NULL,
use_bias = TRUE,
kernel_initializer = "glorot_uniform"”,
bias_initializer = "zeros",
kernel_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
bias_constraint = NULL,
batch_size = NULL,
name = NULL,
trainable = NULL,
weights = NULL

)
Arguments
object Model or layer object
filters Integer, the dimensionality of the output space (i.e. the number output of filters

in the convolution).

kernel_size An integer or list of 2 integers, specifying the width and height of the 2D convo-
lution window. Can be a single integer to specify the same value for all spatial
dimensions.

strides An integer or list of 2 integers, specifying the strides of the convolution along
the width and height. Can be a single integer to specify the same value for
all spatial dimensions. Specifying any stride value != 1 is incompatible with
specifying any dilation_rate value != 1.

264 layer_locally_connected_2d

padding Currently only supports "valid” (case-insensitive). "same” may be supported
in the future.

data_format A string, one of channels_last (default) or channels_first. The ordering of
the dimensions in the inputs. channels_last corresponds to inputs with shape
(batch, width, height, channels) while channels_first corresponds to inputs
with shape (batch, channels, width, height). It defaults to the image_data_format
value found in your Keras config file at ~/.keras/keras.json. If you never set it,
then it will be "channels_last".

activation Activation function to use. If you don’t specify anything, no activation is applied
(ie. "linear" activation: a(x) = x).
use_bias Boolean, whether the layer uses a bias vector.
kernel_initializer
Initializer for the kernel weights matrix.
bias_initializer
Initializer for the bias vector.
kernel_regularizer
Regularizer function applied to the kernel weights matrix.
bias_regularizer
Regularizer function applied to the bias vector.
activity_regularizer
Regularizer function applied to the output of the layer (its "activation")..
kernel_constraint
Constraint function applied to the kernel matrix.
bias_constraint
Constraint function applied to the bias vector.

batch_size Fixed batch size for layer
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

4D tensor with shape: (samples, channels, rows, cols) if data_format="channels_first’ or 4D tensor
with shape: (samples, rows, cols, channels) if data_format="channels_last’.
Output shape

4D tensor with shape: (samples, filters, new_rows, new_cols) if data_format="channels_first’ or 4D
tensor with shape: (samples, new_rows, new_cols, filters) if data_format="channels_last’. rows and
cols values might have changed due to padding.

See Also

Other locally connected layers: layer_locally_connected_1d()

layer_Istm

265

layer_lstm

Long Short-Term Memory unit - Hochreiter 1997.

Description

For a step-by-step description of the algorithm, see this tutorial.

Usage

layer_lstm(
object,
units,
activation = "tanh",
recurrent_activation = "hard_sigmoid”,

use_bias = TRUE,
return_sequences = FALSE,
return_state = FALSE,
go_backwards = FALSE,
stateful = FALSE,

unroll = FALSE,

kernel_initializer = "glorot_uniform”,
recurrent_initializer = "orthogonal”,
bias_initializer = "zeros”,

unit_forget_bias = TRUE,
kernel_regularizer = NULL,
recurrent_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
recurrent_constraint = NULL,
bias_constraint = NULL,
dropout = 0,
recurrent_dropout = 0,
input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,

dtype = NULL,

name = NULL,

trainable = NULL,

weights = NULL

Arguments

object Model or layer object

units

Positive integer, dimensionality of the output space.

http://deeplearning.net/tutorial/lstm.html

266 layer_Istm

activation Activation function to use. Default: hyperbolic tangent (tanh). If you pass
NULL, no activation is applied (ie. "linear" activation: a(x) = x).
recurrent_activation
Activation function to use for the recurrent step.

use_bias Boolean, whether the layer uses a bias vector.

return_sequences
Boolean. Whether to return the last output in the output sequence, or the full
sequence.

return_state Boolean (default FALSE). Whether to return the last state in addition to the
output.

go_backwards Boolean (default FALSE). If TRUE, process the input sequence backwards and
return the reversed sequence.

stateful Boolean (default FALSE). If TRUE, the last state for each sample at index i in a
batch will be used as initial state for the sample of index i in the following batch.
unroll Boolean (default FALSE). If TRUE, the network will be unrolled, else a sym-

bolic loop will be used. Unrolling can speed-up a RNN, although it tends to be
more memory-intensive. Unrolling is only suitable for short sequences.
kernel_initializer
Initializer for the kernel weights matrix, used for the linear transformation of
the inputs.
recurrent_initializer
Initializer for the recurrent_kernel weights matrix, used for the linear trans-
formation of the recurrent state.
bias_initializer
Initializer for the bias vector.
unit_forget_bias
Boolean. If TRUE, add 1 to the bias of the forget gate at initialization. Setting
it to true will also force bias_initializer="zeros". This is recommended in
Jozefowicz et al.
kernel_regularizer
Regularizer function applied to the kernel weights matrix.
recurrent_regularizer
Regularizer function applied to the recurrent_kernel weights matrix.
bias_regularizer
Regularizer function applied to the bias vector.
activity_regularizer
Regularizer function applied to the output of the layer (its "activation")..
kernel_constraint
Constraint function applied to the kernel weights matrix.
recurrent_constraint
Constraint function applied to the recurrent_kernel weights matrix.
bias_constraint
Constraint function applied to the bias vector.

dropout Float between 0 and 1. Fraction of the units to drop for the linear transformation
of the inputs.

http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf

layer_Istm 267

recurrent_dropout
Float between 0 and 1. Fraction of the units to drop for the linear transformation
of the recurrent state.

input_shape Dimensionality of the input (integer) not including the samples axis. This argu-
ment is required when using this layer as the first layer in a model.
batch_input_shape
Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number
of 32-dimensional vectors.

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shapes

3D tensor with shape (batch_size, timesteps, input_dim), (Optional) 2D tensors with shape (batch_size, out-
put_dim).

Output shape

* if return_state: a list of tensors. The first tensor is the output. The remaining tensors are
the last states, each with shape (batch_size, units).

¢ if return_sequences: 3D tensor with shape (batch_size, timesteps, units).

* else, 2D tensor with shape (batch_size, units).

Masking

This layer supports masking for input data with a variable number of timesteps. To introduce masks
to your data, use an embedding layer with the mask_zero parameter set to TRUE.

Statefulness in RNNs

You can set RNN layers to be ’stateful’, which means that the states computed for the samples in
one batch will be reused as initial states for the samples in the next batch. This assumes a one-to-one
mapping between samples in different successive batches.

To enable statefulness:

» Specify stateful=TRUE in the layer constructor.

» Specify a fixed batch size for your model. For sequential models, pass batch_input_shape
=c(...) to the first layer in your model. For functional models with 1 or more Input layers,
pass batch_shape = c(...) to all the first layers in your model. This is the expected shape
of your inputs including the batch size. It should be a vector of integers, e.g. c(32,10,100).

268 layer_masking

* Specify shuffle = FALSE when calling fit().

To reset the states of your model, call reset_states() on either a specific layer, or on your entire
model.

Initial State of RNNs

You can specify the initial state of RNN layers symbolically by calling them with the keyword
argument initial_state. The value of initial_state should be a tensor or list of tensors repre-
senting the initial state of the RNN layer.

You can specify the initial state of RNN layers numerically by calling reset_states with the
keyword argument states. The value of states should be a numpy array or list of numpy arrays
representing the initial state of the RNN layer.

References

* Long short-term memory (original 1997 paper)
 Supervised sequence labeling with recurrent neural networks

* A Theoretically Grounded Application of Dropout in Recurrent Neural Networks

See Also

Other recurrent layers: layer_cudnn_gru(), layer_cudnn_lstm(), layer_gru(), layer_simple_rnn()

Other recurrent layers: layer_cudnn_gru(), layer_cudnn_lstm(), layer_gru(), layer_simple_rnn()

layer_masking Masks a sequence by using a mask value to skip timesteps.

Description

For each timestep in the input tensor (dimension #1 in the tensor), if all values in the input tensor at
that timestep are equal to mask_value, then the timestep will be masked (skipped) in all downstream
layers (as long as they support masking). If any downstream layer does not support masking yet
receives such an input mask, an exception will be raised.

Usage

layer_masking(
object,
mask_value = 0,
input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,
dtype = NULL,
name = NULL,
trainable = NULL,
weights = NULL

http://www.bioinf.jku.at/publications/older/2604.pdf
http://www.cs.toronto.edu/~graves/preprint.pdf
http://arxiv.org/abs/1512.05287

layer_maximum

Arguments

object
mask_value

input_shape

269

Model or layer object
float, mask value

Dimensionality of the input (integer) not including the samples axis. This argu-
ment is required when using this layer as the first layer in a model.

batch_input_shape

batch_size
dtype

name

trainable

weights

See Also

Other core layers: layer_activation(), layer_activity_regularization(), layer_attention(),
layer_dense_features(), layer_dense(), layer_dropout (), layer_flatten(), layer_input(),

Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number
of 32-dimensional vectors.

Fixed batch size for layer
The data type expected by the input, as a string (float32, float64, int32...)

An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.

Whether the layer weights will be updated during training.

Initial weights for layer.

layer_lambda(), layer_permute(), layer_repeat_vector(), layer_reshape()

layer_maximum

Layer that computes the maximum (element-wise) a list of inputs.

Description

It takes as input a list of tensors, all of the same shape, and returns a single tensor (also of the same

shape).

Usage

layer_maximum(

inputs,

batch_size
dtype = NULL,
name = NULL,
trainable
weights =

NULL,

NULL,
NULL

270 layer_max_pooling_1d

Arguments
inputs A list of input tensors (at least 2).
batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Value

A tensor, the element-wise maximum of the inputs.

See Also

Other merge layers: layer_add(), layer_average(), layer_concatenate(), layer_dot(), layer_minimum(),
layer_multiply(), layer_subtract()

layer_max_pooling_1d Max pooling operation for temporal data.

Description

Max pooling operation for temporal data.

Usage

layer_max_pooling_1d(
object,
pool_size = 2L,
strides = NULL,
padding = "valid”,
batch_size = NULL,
name = NULL,
trainable = NULL,
weights = NULL

)
Arguments
object Model or layer object
pool_size Integer, size of the max pooling windows.
strides Integer, or NULL. Factor by which to downscale. E.g. 2 will halve the input. If

NULL, it will default to pool_size.

padding One of "valid" or "same" (case-insensitive).

layer_max_pooling_2d 271

batch_size Fixed batch size for layer

name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.

trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

3D tensor with shape: (batch_size, steps, features).

Output shape

3D tensor with shape: (batch_size, downsampled_steps, features).

See Also

Other pooling layers: layer_average_pooling_1d(), layer_average_pooling_2d(), layer_average_pooling_3d(),
layer_global_average_pooling_1d(), layer_global_average_pooling_2d(), layer_global_average_pooling_3d
layer_global_max_pooling_1d(), layer_global_max_pooling_2d(), layer_global_max_pooling_3d(),
layer_max_pooling_2d(), layer_max_pooling_3d()

layer_max_pooling_2d Max pooling operation for spatial data.

Description

Max pooling operation for spatial data.

Usage

layer_max_pooling_2d(
object,
pool_size = c(2L, 2L),
strides = NULL,
padding = "valid”,
data_format = NULL,
batch_size = NULL,
name = NULL,
trainable = NULL,
weights = NULL

272 layer_max_pooling_2d

Arguments

object Model or layer object

pool_size integer or list of 2 integers, factors by which to downscale (vertical, horizontal).
(2, 2) will halve the input in both spatial dimension. If only one integer is
specified, the same window length will be used for both dimensions.

strides Integer, list of 2 integers, or NULL. Strides values. If NULL, it will default to
pool_size.

padding One of "valid" or "same" (case-insensitive).

data_format A string, one of channels_last (default) or channels_first. The ordering of
the dimensions in the inputs. channels_last corresponds to inputs with shape
(batch, height, width, channels) while channels_first corresponds to inputs
with shape (batch, channels, height, width). It defaults to the image_data_format
value found in your Keras config file at ~/.keras/keras.json. If you never set it,
then it will be "channels_last".

batch_size Fixed batch size for layer

name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.

trainable Whether the layer weights will be updated during training.

weights Initial weights for layer.

Input shape

* If data_format="'channels_last': 4D tensor with shape: (batch_size, rows, cols, channels)

e Ifdata_format="'channels_first': 4D tensor with shape: (batch_size, channels, rows, cols)

Output shape

» Ifdata_format="'channels_last': 4D tensor with shape: (batch_size, pooled_rows, pooled_cols, chan-
nels)

e Ifdata_format="channels_first': 4D tensor with shape: (batch_size, channels, pooled_rows, pooled_cols)

See Also

Other pooling layers: layer_average_pooling_1d(), layer_average_pooling_2d(), layer_average_pooling_3d(),
layer_global_average_pooling_1d(), layer_global_average_pooling_2d(), layer_global_average_pooling_3d
layer_global_max_pooling_1d(), layer_global_max_pooling_2d(), layer_global_max_pooling_3d(),
layer_max_pooling_1d(), layer_max_pooling_3d()

layer_max_pooling_3d 273

layer_max_pooling_3d Max pooling operation for 3D data (spatial or spatio-temporal).

Description

Max pooling operation for 3D data (spatial or spatio-temporal).

Usage

layer_max_pooling_3d(
object,
pool_size = c(2L, 2L, 2L),
strides = NULL,
padding = "valid”,
data_format = NULL,
batch_size = NULL,
name = NULL,
trainable = NULL,
weights = NULL

)
Arguments

object Model or layer object

pool_size list of 3 integers, factors by which to downscale (diml, dim2, dim3). (2, 2, 2)
will halve the size of the 3D input in each dimension.

strides list of 3 integers, or NULL. Strides values.

padding One of "valid"” or "same" (case-insensitive).

data_format A string, one of channels_last (default) or channels_first. The order-
ing of the dimensions in the inputs. channels_last corresponds to inputs
with shape (batch, spatial_diml, spatial_dim?2, spatial_dim3, channels) while
channels_first corresponds to inputs with shape (batch, channels, spatial_dim1, spa-
tial_dim2, spatial_dim3). It defaults to the image_data_format value found in
your Keras config file at ~/.keras/keras.json. If you never set it, then it will be
"channels_last".

batch_size Fixed batch size for layer

name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.

trainable Whether the layer weights will be updated during training.

weights Initial weights for layer.

274 layer_minimum

Input shape

* If data_format='channels_last': 5D tensor with shape: (batch_size, spatial_diml, spa-
tial_dim2, spatial_dim3, channels)

e Ifdata_format="channels_first': 5D tensor with shape: (batch_size, channels, spatial_dim1, spa-
tial_dim2, spatial_dim3)

Output shape

» Ifdata_format="channels_last': 5D tensor with shape: (batch_size, pooled_dim1, pooled_dim2, pooled_dim3, cha
nels)
* Ifdata_format="channels_first': 5D tensor with shape: (batch_size, channels, pooled_dim1, pooled_dim2, pooled

See Also

Other pooling layers: layer_average_pooling_1d(), layer_average_pooling_2d(), layer_average_pooling_3d(),
layer_global_average_pooling_1d(), layer_global_average_pooling_2d(), layer_global_average_pooling_3d
layer_global_max_pooling_1d(), layer_global_max_pooling_2d(), layer_global_max_pooling_3d(),
layer_max_pooling_1d(), layer_max_pooling_2d()

layer_minimum Layer that computes the minimum (element-wise) a list of inputs.

Description

It takes as input a list of tensors, all of the same shape, and returns a single tensor (also of the same
shape).

Usage

layer_minimum(
inputs,
batch_size = NULL,
dtype = NULL,
name = NULL,
trainable = NULL,
weights = NULL

)
Arguments
inputs A list of input tensors (at least 2).
batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.

weights Initial weights for layer.

layer_multiply 275

Value

A tensor, the element-wise maximum of the inputs.

See Also

Other merge layers: layer_add(), layer_average(), layer_concatenate(), layer_dot(), layer_maximum(),
layer_multiply(), layer_subtract()

layer_multiply Layer that multiplies (element-wise) a list of inputs.

Description

It takes as input a list of tensors, all of the same shape, and returns a single tensor (also of the same
shape).

Usage

layer_multiply(
inputs,
batch_size = NULL,
dtype = NULL,
name = NULL,
trainable = NULL,
weights = NULL

)
Arguments
inputs A list of input tensors (at least 2).
batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Value

A tensor, the element-wise product of the inputs.

See Also

Other merge layers: layer_add(), layer_average(), layer_concatenate(), layer_dot(), layer_maximum(),
layer_minimum(), layer_subtract()

276 layer_permute

layer_permute Permute the dimensions of an input according to a given pattern

Description

Permute the dimensions of an input according to a given pattern

Usage

layer_permute(
object,
dims,
input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,
dtype = NULL,
name = NULL,
trainable = NULL,
weights = NULL

)
Arguments
object Model or layer object
dims List of integers. Permutation pattern, does not include the samples dimension.
Indexing starts at 1. For instance, (2, 1) permutes the first and second dimension
of the input.
input_shape Input shape (list of integers, does not include the samples axis) which is required

when using this layer as the first layer in a model.

batch_input_shape
Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number
of 32-dimensional vectors.

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input and Output Shapes

Input shape: Arbitrary

Output shape: Same as the input shape, but with the dimensions re-ordered according to the speci-
fied pattern.

layer_repeat_vector 277

Note

Useful for e.g. connecting RNNs and convnets together.

See Also

Other core layers: layer_activation(), layer_activity_regularization(), layer_attention(),
layer_dense_features(), layer_dense(), layer_dropout (), layer_flatten(), layer_input(),
layer_lambda(), layer_masking(), layer_repeat_vector(), layer_reshape()

layer_repeat_vector Repeats the input n times.

Description

Repeats the input n times.

Usage
layer_repeat_vector(
object,
n)
batch_size = NULL,
name = NULL,

trainable = NULL,
weights = NULL

)
Arguments
object Model or layer object
n integer, repetition factor.
batch_size Fixed batch size for layer
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

2D tensor of shape (num_samples, features).

Output shape

3D tensor of shape (num_samples, n, features).

278 layer_reshape

See Also

Other core layers: layer_activation(), layer_activity_regularization(), layer_attention(),
layer_dense_features(), layer_dense(), layer_dropout (), layer_flatten(), layer_input(),
layer_lambda(), layer_masking(), layer_permute(), layer_reshape()

layer_reshape Reshapes an output to a certain shape.

Description

Reshapes an output to a certain shape.

Usage

layer_reshape(
object,
target_shape,
input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,
dtype = NULL,
name = NULL,
trainable = NULL,
weights = NULL

Arguments

object Model or layer object
target_shape List of integers, does not include the samples dimension (batch size).

input_shape Input shape (list of integers, does not include the samples axis) which is required
when using this layer as the first layer in a model.

batch_input_shape
Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number
of 32-dimensional vectors.

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse

the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.

weights Initial weights for layer.

layer_separable_conv_1d 279

Input and Output Shapes

Input shape: Arbitrary, although all dimensions in the input shaped must be fixed.
Output shape: (batch_size,) + target_shape.

See Also

Other core layers: layer_activation(), layer_activity_regularization(), layer_attention(),
layer_dense_features(), layer_dense(), layer_dropout (), layer_flatten(), layer_input(),
layer_lambda(), layer_masking(), layer_permute(), layer_repeat_vector()

layer_separable_conv_1d
Depthwise separable 1D convolution.

Description

Separable convolutions consist in first performing a depthwise spatial convolution (which acts on
each input channel separately) followed by a pointwise convolution which mixes together the re-
sulting output channels. The depth_multiplier argument controls how many output channels are
generated per input channel in the depthwise step. Intuitively, separable convolutions can be under-
stood as a way to factorize a convolution kernel into two smaller kernels, or as an extreme version
of an Inception block.

Usage

layer_separable_conv_1d(
object,
filters,
kernel_size,
strides = 1,
padding = "valid”,
data_format = "channels_last”,
dilation_rate = 1,
depth_multiplier = 1,
activation = NULL,
use_bias = TRUE,

depthwise_initializer = "glorot_uniform”,
pointwise_initializer = "glorot_uniform”,
bias_initializer = "zeros”,

depthwise_regularizer = NULL,
pointwise_regularizer = NULL,
bias_regularizer = NULL,

activity_regularizer = NULL,
depthwise_constraint = NULL,
pointwise_constraint = NULL,
bias_constraint = NULL,

280

input_shape =

layer_separable_conv_1d

NULL,

batch_input_shape = NULL,
batch_size = NULL,

dtype = NULL,
name = NULL,

trainable = NULL,
weights = NULL

Arguments

object
filters

kernel_size

strides

padding

data_format

dilation_rate

Model or layer object

Integer, the dimensionality of the output space (i.e. the number of output filters
in the convolution).

An integer or list of 2 integers, specifying the width and height of the 2D convo-
lution window. Can be a single integer to specify the same value for all spatial
dimensions.

An integer or list of 2 integers, specifying the strides of the convolution along
the width and height. Can be a single integer to specify the same value for
all spatial dimensions. Specifying any stride value != 1 is incompatible with
specifying any dilation_rate value != 1.

one of "valid” or "same"” (case-insensitive).

A string, one of channels_last (default) or channels_first. The ordering of
the dimensions in the inputs. channels_last corresponds to inputs with shape
(batch, height, width, channels) while channels_first corresponds to inputs
with shape (batch, channels, height, width). It defaults to the image_data_format
value found in your Keras config file at ~/.keras/keras.json. If you never set it,
then it will be "channels_last".

an integer or list of 2 integers, specifying the dilation rate to use for dilated
convolution. Can be a single integer to specify the same value for all spatial di-
mensions. Currently, specifying any dilation_rate value !=1 is incompatible
with specifying any stride value !=1.

depth_multiplier

activation

use_bias

The number of depthwise convolution output channels for each input channel.
The total number of depthwise convolution output channels will be equal to
filterss_in x depth_multiplier.

Activation function to use. If you don’t specify anything, no activation is applied
(ie. "linear" activation: a(x) = x).

Boolean, whether the layer uses a bias vector.

depthwise_initializer

Initializer for the depthwise kernel matrix.

pointwise_initializer

Initializer for the pointwise kernel matrix.

bias_initializer

Initializer for the bias vector.

layer_separable_conv_1d 281

depthwise_regularizer
Regularizer function applied to the depthwise kernel matrix.
pointwise_regularizer
Regularizer function applied to the pointwise kernel matrix.
bias_regularizer
Regularizer function applied to the bias vector.
activity_regularizer
Regularizer function applied to the output of the layer (its "activation")..
depthwise_constraint
Constraint function applied to the depthwise kernel matrix.
pointwise_constraint
Constraint function applied to the pointwise kernel matrix.
bias_constraint
Constraint function applied to the bias vector.
input_shape Dimensionality of the input (integer) not including the samples axis. This argu-
ment is required when using this layer as the first layer in a model.
batch_input_shape
Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL,32) indicates batches of an arbitrary number
of 32-dimensional vectors.

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

3D tensor with shape: (batch, channels, steps) if data_format="channels_first’ or 3D tensor with
shape: (batch, steps, channels) if data_format="channels_last’.

Output shape

3D tensor with shape: (batch, filters, new_steps) if data_format="channels_first’ or 3D tensor with
shape: (batch, new_steps, filters) if data_format="channels_last’. new_steps values might have
changed due to padding or strides.

See Also

Other convolutional layers: layer_conv_1d(), layer_conv_2d_transpose(), layer_conv_2d(),
layer_conv_3d_transpose(), layer_conv_3d(), layer_conv_1lstm_2d(), layer_cropping_1d(),
layer_cropping_2d(), layer_cropping_3d(), layer_depthwise_conv_2d(), layer_separable_conv_2d(),
layer_upsampling_1d(), layer_upsampling_2d(), layer_upsampling_3d(), layer_zero_padding_1d(),
layer_zero_padding_2d(), layer_zero_padding_3d()

282 layer_separable_conv_2d

layer_separable_conv_2d
Separable 2D convolution.

Description

Separable convolutions consist in first performing a depthwise spatial convolution (which acts on
each input channel separately) followed by a pointwise convolution which mixes together the re-
sulting output channels. The depth_multiplier argument controls how many output channels are
generated per input channel in the depthwise step. Intuitively, separable convolutions can be under-
stood as a way to factorize a convolution kernel into two smaller kernels, or as an extreme version
of an Inception block.

Usage

layer_separable_conv_2d(
object,
filters,
kernel_size,
strides = c(1, 1),
padding = "valid”,
data_format = NULL,
dilation_rate = 1,
depth_multiplier = 1,
activation = NULL,
use_bias = TRUE,

depthwise_initializer = "glorot_uniform”,
pointwise_initializer = "glorot_uniform”,
bias_initializer = "zeros",

depthwise_regularizer = NULL,
pointwise_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
depthwise_constraint = NULL,
pointwise_constraint = NULL,
bias_constraint = NULL,
input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,

dtype = NULL,

name = NULL,

trainable = NULL,

weights = NULL

layer_separable_conv_2d 283

Arguments

object
filters

kernel_size

strides

padding

data_format

dilation_rate

Model or layer object

Integer, the dimensionality of the output space (i.e. the number of output filters
in the convolution).

An integer or list of 2 integers, specifying the width and height of the 2D convo-
lution window. Can be a single integer to specify the same value for all spatial
dimensions.

An integer or list of 2 integers, specifying the strides of the convolution along
the width and height. Can be a single integer to specify the same value for
all spatial dimensions. Specifying any stride value != 1 is incompatible with
specifying any dilation_rate value != 1.

one of "valid” or "same" (case-insensitive).

A string, one of channels_last (default) or channels_first. The ordering of
the dimensions in the inputs. channels_last corresponds to inputs with shape
(batch, height, width, channels) while channels_first corresponds to inputs
with shape (batch, channels, height, width). It defaults to the image_data_format
value found in your Keras config file at ~/.keras/keras.json. If you never set it,
then it will be "channels_last".

an integer or list of 2 integers, specifying the dilation rate to use for dilated
convolution. Can be a single integer to specify the same value for all spatial di-
mensions. Currently, specifying any dilation_rate value !=1 is incompatible
with specifying any stride value != 1.

depth_multiplier

activation

use_bias

The number of depthwise convolution output channels for each input channel.
The total number of depthwise convolution output channels will be equal to
filters_in * depth_multiplier.

Activation function to use. If you don’t specify anything, no activation is applied
(ie. "linear" activation: a(x) = x).

Boolean, whether the layer uses a bias vector.

depthwise_initializer

Initializer for the depthwise kernel matrix.

pointwise_initializer

Initializer for the pointwise kernel matrix.

bias_initializer

Initializer for the bias vector.

depthwise_regularizer

Regularizer function applied to the depthwise kernel matrix.

pointwise_regularizer

Regularizer function applied to the pointwise kernel matrix.

bias_regularizer

Regularizer function applied to the bias vector.

activity_regularizer

Regularizer function applied to the output of the layer (its "activation")..

284 layer_separable_conv_2d

depthwise_constraint
Constraint function applied to the depthwise kernel matrix.

pointwise_constraint
Constraint function applied to the pointwise kernel matrix.

bias_constraint
Constraint function applied to the bias vector.

input_shape Dimensionality of the input (integer) not including the samples axis. This argu-
ment is required when using this layer as the first layer in a model.

batch_input_shape
Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number
of 32-dimensional vectors.

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse

the same name twice). It will be autogenerated if it isn’t provided.

trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

4D tensor with shape: (batch, channels, rows, cols) if data_format="channels_first’ or 4D tensor
with shape: (batch, rows, cols, channels) if data_format="channels_last’.

Output shape

4D tensor with shape: (batch, filters, new_rows, new_cols) if data_format="channels_first’ or 4D
tensor with shape: (batch, new_rows, new_cols, filters) if data_format="channels_last’. rows and
cols values might have changed due to padding.

See Also

Other convolutional layers: layer_conv_1d(), layer_conv_2d_transpose(), layer_conv_2d(),
layer_conv_3d_transpose(), layer_conv_3d(), layer_conv_lstm_2d(), layer_cropping_1d(),
layer_cropping_2d(), layer_cropping_3d(), layer_depthwise_conv_2d(), layer_separable_conv_1d(),
layer_upsampling_1d(), layer_upsampling_2d(), layer_upsampling_3d(), layer_zero_padding_1d(),
layer_zero_padding_2d(), layer_zero_padding_3d()

layer_simple_rnn 285

layer_simple_rnn Fully-connected RNN where the output is to be fed back to input.

Description

Fully-connected RNN where the output is to be fed back to input.

Usage
layer_simple_rnn(
object,
units,
activation = "tanh",

use_bias = TRUE,
return_sequences = FALSE,
return_state = FALSE,
go_backwards = FALSE,
stateful = FALSE,

unroll = FALSE,

kernel_initializer = "glorot_uniform”,
recurrent_initializer = "orthogonal”,
bias_initializer = "zeros",

kernel_regularizer = NULL,
recurrent_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
recurrent_constraint = NULL,
bias_constraint = NULL,
dropout = 0,
recurrent_dropout = 0,
input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,

dtype = NULL,

name = NULL,

trainable = NULL,

weights = NULL

)
Arguments
object Model or layer object
units Positive integer, dimensionality of the output space.
activation Activation function to use. Default: hyperbolic tangent (tanh). If you pass

NULL, no activation is applied (ie. "linear" activation: a(x) = x).

286 layer_simple_rnn

use_bias Boolean, whether the layer uses a bias vector.

return_sequences
Boolean. Whether to return the last output in the output sequence, or the full
sequence.

return_state Boolean (default FALSE). Whether to return the last state in addition to the
output.

go_backwards Boolean (default FALSE). If TRUE, process the input sequence backwards and
return the reversed sequence.

stateful Boolean (default FALSE). If TRUE, the last state for each sample at index i in a
batch will be used as initial state for the sample of index i in the following batch.
unroll Boolean (default FALSE). If TRUE, the network will be unrolled, else a sym-

bolic loop will be used. Unrolling can speed-up a RNN, although it tends to be

more memory-intensive. Unrolling is only suitable for short sequences.
kernel_initializer

Initializer for the kernel weights matrix, used for the linear transformation of

the inputs.
recurrent_initializer

Initializer for the recurrent_kernel weights matrix, used for the linear trans-

formation of the recurrent state.
bias_initializer

Initializer for the bias vector.
kernel_regularizer

Regularizer function applied to the kernel weights matrix.
recurrent_regularizer

Regularizer function applied to the recurrent_kernel weights matrix.
bias_regularizer

Regularizer function applied to the bias vector.
activity_regularizer

Regularizer function applied to the output of the layer (its "activation")..
kernel_constraint

Constraint function applied to the kernel weights matrix.
recurrent_constraint

Constraint function applied to the recurrent_kernel weights matrix.
bias_constraint

Constraint function applied to the bias vector.

dropout Float between 0 and 1. Fraction of the units to drop for the linear transformation
of the inputs.

recurrent_dropout
Float between 0 and 1. Fraction of the units to drop for the linear transformation
of the recurrent state.

input_shape Dimensionality of the input (integer) not including the samples axis. This argu-
ment is required when using this layer as the first layer in a model.
batch_input_shape
Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.

layer_simple_rnn 287

batch_input_shape=1ist(NULL,32) indicates batches of an arbitrary number
of 32-dimensional vectors.

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse

the same name twice). It will be autogenerated if it isn’t provided.

trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shapes

3D tensor with shape (batch_size, timesteps, input_dim), (Optional) 2D tensors with shape (batch_size, out-
put_dim).

Output shape

* if return_state: a list of tensors. The first tensor is the output. The remaining tensors are
the last states, each with shape (batch_size, units).

* if return_sequences: 3D tensor with shape (batch_size, timesteps, units).

* else, 2D tensor with shape (batch_size, units).

Masking

This layer supports masking for input data with a variable number of timesteps. To introduce masks
to your data, use an embedding layer with the mask_zero parameter set to TRUE.

Statefulness in RNNs

You can set RNN layers to be ’stateful’, which means that the states computed for the samples in
one batch will be reused as initial states for the samples in the next batch. This assumes a one-to-one
mapping between samples in different successive batches.

To enable statefulness:

» Specify stateful=TRUE in the layer constructor.

 Specify a fixed batch size for your model. For sequential models, pass batch_input_shape
=c(...) to the first layer in your model. For functional models with 1 or more Input layers,
pass batch_shape = c(...) to all the first layers in your model. This is the expected shape
of your inputs including the batch size. It should be a vector of integers, e.g. ¢(32,10,100).

» Specify shuffle = FALSE when calling fit().

To reset the states of your model, call reset_states() on either a specific layer, or on your entire
model.

288 layer_spatial_dropout_1d

Initial State of RNNs

You can specify the initial state of RNN layers symbolically by calling them with the keyword
argument initial_state. The value of initial_state should be a tensor or list of tensors repre-
senting the initial state of the RNN layer.

You can specify the initial state of RNN layers numerically by calling reset_states with the
keyword argument states. The value of states should be a numpy array or list of numpy arrays
representing the initial state of the RNN layer.

References

* A Theoretically Grounded Application of Dropout in Recurrent Neural Networks

See Also

Other recurrent layers: layer_cudnn_gru(), layer_cudnn_lstm(), layer_gru(), layer_lstm()

layer_spatial_dropout_1d
Spatial 1D version of Dropout.

Description

This version performs the same function as Dropout, however it drops entire 1D feature maps in-

stead of individual elements. If adjacent frames within feature maps are strongly correlated (as is
normally the case in early convolution layers) then regular dropout will not regularize the activations

and will otherwise just result in an effective learning rate decrease. In this case, layer_spatial_dropout_1d
will help promote independence between feature maps and should be used instead.

Usage
layer_spatial_dropout_1d(
object,
rate,
batch_size = NULL,
name = NULL,

trainable = NULL,
weights = NULL

)
Arguments
object Model or layer object
rate float between 0 and 1. Fraction of the input units to drop.
batch_size Fixed batch size for layer
name An optional name string for the layer. Should be unique in a model (do not reuse

the same name twice). It will be autogenerated if it isn’t provided.

http://arxiv.org/abs/1512.05287

layer_spatial_dropout_2d 289

trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

3D tensor with shape: (samples, timesteps, channels)

Output shape

Same as input

References

- Efficient Object Localization Using Convolutional Networks

See Also

Other dropout layers: layer_dropout(), layer_spatial_dropout_2d(), layer_spatial_dropout_3d()

layer_spatial_dropout_2d
Spatial 2D version of Dropout.

Description

This version performs the same function as Dropout, however it drops entire 2D feature maps in-

stead of individual elements. If adjacent pixels within feature maps are strongly correlated (as is
normally the case in early convolution layers) then regular dropout will not regularize the activations

and will otherwise just result in an effective learning rate decrease. In this case, layer_spatial_dropout_2d
will help promote independence between feature maps and should be used instead.

Usage

layer_spatial_dropout_2d(
object,
rate,
data_format = NULL,
batch_size = NULL,
name = NULL,
trainable = NULL,
weights = NULL

https://arxiv.org/abs/1411.4280

290 layer_spatial_dropout_3d

Arguments
object Model or layer object
rate float between 0 and 1. Fraction of the input units to drop.
data_format ’channels_first’ or ’channels_last’. In ’channels_first’ mode, the channels di-
mension (the depth) is at index 1, in ’channels_last’ mode is it at index 3. It
defaults to the image_data_format value found in your Keras config file at
~/ .keras/keras.json. If you never set it, then it will be "channels_last".
batch_size Fixed batch size for layer
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

4D tensor with shape: (samples, channels, rows, cols) if data_format="channels_first’ or 4D tensor
with shape: (samples, rows, cols, channels) if data_format="channels_last’.

Output shape

Same as input

References

- Efficient Object Localization Using Convolutional Networks

See Also

Other dropout layers: layer_dropout(), layer_spatial_dropout_1d(), layer_spatial_dropout_3d()

layer_spatial_dropout_3d
Spatial 3D version of Dropout.

Description

This version performs the same function as Dropout, however it drops entire 3D feature maps in-

stead of individual elements. If adjacent voxels within feature maps are strongly correlated (as is
normally the case in early convolution layers) then regular dropout will not regularize the activations

and will otherwise just result in an effective learning rate decrease. In this case, layer_spatial_dropout_3d
will help promote independence between feature maps and should be used instead.

https://arxiv.org/abs/1411.4280

layer_spatial_dropout_3d 291

Usage

layer_spatial_dropout_3d(
object,
rate,
data_format = NULL,
batch_size = NULL,
name = NULL,
trainable = NULL,
weights = NULL

)
Arguments
object Model or layer object
rate float between 0 and 1. Fraction of the input units to drop.
data_format ’channels_first’ or ’channels_last’. In ’channels_first” mode, the channels di-
mension (the depth) is at index 1, in ’channels_last’ mode is it at index 4. It
defaults to the image_data_format value found in your Keras config file at
~/ .keras/keras.json. If you never set it, then it will be "channels_last".
batch_size Fixed batch size for layer
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

5D tensor with shape: (samples, channels, dim1, dim2, dim3) if data_format="channels_first’ or SD
tensor with shape: (samples, dim1, dim2, dim3, channels) if data_format="channels_last’.

Output shape

Same as input

References

- Efficient Object Localization Using Convolutional Networks

See Also

Other dropout layers: layer_dropout(), layer_spatial_dropout_1d(), layer_spatial_dropout_2d()

https://arxiv.org/abs/1411.4280

292 layer_subtract

layer_subtract Layer that subtracts two inputs.

Description

It takes as input a list of tensors of size 2, both of the same shape, and returns a single tensor,
(inputs[[1]] -inputs[[2]]), also of the same shape.

Usage

layer_subtract(
inputs,
batch_size = NULL,
dtype = NULL,
name = NULL,
trainable = NULL,
weights = NULL

)
Arguments
inputs A list of input tensors (exactly 2).
batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Value

A tensor, the difference of the inputs.

See Also

Other merge layers: layer_add(), layer_average(), layer_concatenate(), layer_dot(), layer_maximum(),
layer_minimum(), layer_multiply()

layer_text_vectorization 293

layer_text_vectorization

Text vectorization layer

Description

This layer has basic options for managing text in a Keras model. It transforms a batch of strings
(one sample = one string) into either a list of token indices (one sample = 1D tensor of integer token
indices) or a dense representation (one sample = 1D tensor of float values representing data about
the sample’s tokens).

Usage

layer_text_vectorization(

object,

max_tokens = NULL,

standardize = "lower_and_strip_punctuation”,

split = "whitespace”,

ngrams = NULL,

output_mode = c("int", "binary"”, "count"”, "tfidf"),
output_sequence_length = NULL,

pad_to_max_tokens = TRUE,

Arguments

object

max_tokens

standardize

split

ngrams

output_mode

Model or layer object

The maximum size of the vocabulary for this layer. If NULL, there is no cap on
the size of the vocabulary.

Optional specification for standardization to apply to the input text. Values can
be NULL (no standardization), "lower_and_strip_punctuation” (lowercase
and remove punctuation) or a Callable. Defaultis "lower_and_strip_punctuation”.

Optional specification for splitting the input text. Values can be NULL (no split-
ting), "split_on_whitespace” (split on ASCII whitespace), or a Callable. De-
fault is "split_on_whitespace".

Optional specification for ngrams to create from the possibly-split input text.
Values can be NULL, an integer or a list of integers; passing an integer will create
ngrams up to that integer, and passing a list of integers will create ngrams for the
specified values in the list. Passing NULL means that no ngrams will be created.
Optional specification for the output of the layer. Values canbe "int", "binary"”,
"count” or "tfidf", which control the outputs as follows:

* "int": Outputs integer indices, one integer index per split string token.

* "binary": Outputs a single int array per batch, of either vocab_size or

max_tokens size, containing 1s in all elements where the token mapped
to that index exists at least once in the batch item.

294 layer_upsampling_1d

e "count": As "binary", but the int array contains a count of the number of
times the token at that index appeared in the batch item.
e "tfidf": As "binary", but the TF-IDF algorithm is applied to find the value
in each token slot.
output_sequence_length
Only valid in "int" mode. If set, the output will have its time dimension padded
or truncated to exactly output_sequence_length values, resulting in a tensor
of shape (batch_size, output_sequence_length) regardless of how many tokens
resulted from the splitting step. Defaults to NULL.
pad_to_max_tokens
Only valid in "binary", "count", and "tfidf" modes. If TRUE, the output will have
its feature axis padded to max_tokens even if the number of unique tokens in the
vocabulary is less than max_tokens, resulting in a tensor of shape (batch_size,
max_tokens) regardless of vocabulary size. Defaults to TRUE.

Not used.

Details

The processing of each sample contains the following steps:

. standardize each sample (usually lowercasing + punctuation stripping)

. split each sample into substrings (usually words)

1

2

3. recombine substrings into tokens (usually ngrams)

4. index tokens (associate a unique int value with each token)
5

. transform each sample using this index, either into a vector of ints or a dense float vector.

layer_upsampling_1d Upsampling layer for 1D inputs.

Description

Repeats each temporal step size times along the time axis.

Usage
layer_upsampling_1d(
object,
size = 2L,
batch_size = NULL,
name = NULL,

trainable = NULL,
weights = NULL

layer_upsampling 2d 295

Arguments
object Model or layer object
size integer. Upsampling factor.
batch_size Fixed batch size for layer
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

3D tensor with shape: (batch, steps, features).

Output shape

3D tensor with shape: (batch, upsampled_steps, features).

See Also

Other convolutional layers: layer_conv_1d(), layer_conv_2d_transpose(), layer_conv_2d(),
layer_conv_3d_transpose(), layer_conv_3d(), layer_conv_1lstm_2d(), layer_cropping_1d(),
layer_cropping_2d(), layer_cropping_3d(), layer_depthwise_conv_2d(), layer_separable_conv_1d(),
layer_separable_conv_2d(), layer_upsampling_2d(), layer_upsampling_3d(), layer_zero_padding_1d(),
layer_zero_padding_2d(), layer_zero_padding_3d()

layer_upsampling_2d Upsampling layer for 2D inputs.

Description

Repeats the rows and columns of the data by size[[@]] and size[[1]] respectively.

Usage

layer_upsampling_2d(
object,
size = c(2L, 2L),
data_format = NULL,
interpolation = "nearest”,
batch_size = NULL,
name = NULL,
trainable = NULL,
weights = NULL

296 layer_upsampling_2d

Arguments
object Model or layer object
size int, or list of 2 integers. The upsampling factors for rows and columns.
data_format A string, one of channels_last (default) or channels_first. The ordering of

the dimensions in the inputs. channels_last corresponds to inputs with shape
(batch, height, width, channels) while channels_first corresponds to inputs
with shape (batch, channels, height, width). It defaults to the image_data_format
value found in your Keras config file at ~/.keras/keras.json. If you never set it,
then it will be "channels_last".

interpolation A string, one of nearest or bilinear. Note that CNTK does not support yet
the bilinear upscaling and that with Theano, only size=(2, 2) is possible.

batch_size Fixed batch size for layer

name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.

trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

4D tensor with shape:

e If data_format is "channels_last": (batch, rows, cols, channels)

e If data_format is "channels_first": (batch, channels, rows, cols)

Output shape

4D tensor with shape:

» If data_format is "channels_last": (batch, upsampled_rows, upsampled_cols, channels)

e If data_format is "channels_first": (batch, channels, upsampled_rows, upsampled_cols)

See Also

Other convolutional layers: layer_conv_1d(), layer_conv_2d_transpose(), layer_conv_2d(),
layer_conv_3d_transpose(), layer_conv_3d(), layer_conv_lstm_2d(), layer_cropping_1d(),
layer_cropping_2d(), layer_cropping_3d(), layer_depthwise_conv_2d(), layer_separable_conv_1d(),
layer_separable_conv_2d(), layer_upsampling_1d(), layer_upsampling_3d(), layer_zero_padding_1d(),
layer_zero_padding_2d(), layer_zero_padding_3d()

layer_upsampling 3d 297

layer_upsampling_3d Upsampling layer for 3D inputs.

Description

Repeats the 1st, 2nd and 3rd dimensions of the data by size[[@]], size[[1]] and size[[2]]
respectively.

Usage

layer_upsampling_3d(
object,
size = c(2L, 2L, 2L),
data_format = NULL,
batch_size = NULL,
name = NULL,
trainable = NULL,
weights = NULL

)
Arguments
object Model or layer object
size int, or list of 3 integers. The upsampling factors for dim1, dim2 and dim3.
data_format A string, one of channels_last (default) or channels_first. The order-
ing of the dimensions in the inputs. channels_last corresponds to inputs
with shape (batch, spatial_diml, spatial_dim?2, spatial_dim3, channels) while
channels_first corresponds to inputs with shape (batch, channels, spatial_dim1, spa-
tial_dim2, spatial_dim3). It defaults to the image_data_format value found in
your Keras config file at ~/ keras/keras.json. If you never set it, then it will be
"channels_last".
batch_size Fixed batch size for layer
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Input shape

5D tensor with shape:

e If data_format is "channels_last”: (batch, dim1l, dim2, dim3, channels)

e If data_format is "channels_first": (batch, channels, diml, dim2, dim3)

298 layer_zero_padding_1d

Output shape
5D tensor with shape:

e If data_format is "channels_last”: (batch, upsampled_diml, upsampled_dim?2, upsam-
pled_dim3, channels)

e Ifdata_formatis "channels_first": (batch, channels, upsampled_diml, upsampled_dim2, up-
sampled_dim3)

See Also

Other convolutional layers: layer_conv_1d(), layer_conv_2d_transpose(), layer_conv_2d(),
layer_conv_3d_transpose(), layer_conv_3d(), layer_conv_1stm_2d(), layer_cropping_1d(),
layer_cropping_2d(), layer_cropping_3d(), layer_depthwise_conv_2d(), layer_separable_conv_1d(),
layer_separable_conv_2d(), layer_upsampling_1d(), layer_upsampling_2d(), layer_zero_padding_1d(),
layer_zero_padding_2d(), layer_zero_padding_3d()

layer_zero_padding_1d Zero-padding layer for 1D input (e.g. temporal sequence).

Description

Zero-padding layer for 1D input (e.g. temporal sequence).

Usage

layer_zero_padding_1d(
object,
padding = 1L,
batch_size = NULL,
name = NULL,
trainable = NULL,
weights = NULL

)
Arguments
object Model or layer object
padding int, or list of int (length 2)
 If int: How many zeros to add at the beginning and end of the padding
dimension (axis 1).
* If list of int (length 2): How many zeros to add at the beginning and at the
end of the padding dimension ((left_pad, right_pad)).
batch_size Fixed batch size for layer
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.

weights Initial weights for layer.

layer_zero_padding 2d 299

Input shape

3D tensor with shape (batch, axis_to_pad, features)

Output shape

3D tensor with shape (batch, padded_axis, features)

See Also

Other convolutional layers: layer_conv_1d(), layer_conv_2d_transpose(), layer_conv_2d(),
layer_conv_3d_transpose(), layer_conv_3d(), layer_conv_lstm_2d(), layer_cropping_1d(),
layer_cropping_2d(), layer_cropping_3d(), layer_depthwise_conv_2d(), layer_separable_conv_1d(),
layer_separable_conv_2d(), layer_upsampling_1d(), layer_upsampling_2d(), layer_upsampling_3d(),
layer_zero_padding_2d(), layer_zero_padding_3d()

layer_zero_padding_2d Zero-padding layer for 2D input (e.g. picture).

Description

This layer can add rows and columns of zeros at the top, bottom, left and right side of an image
tensor.

Usage

layer_zero_padding_2d(
object,
padding = c(1L, 1L),
data_format = NULL,
batch_size = NULL,
name = NULL,
trainable = NULL,
weights = NULL

)
Arguments
object Model or layer object
padding int, or list of 2 ints, or list of 2 lists of 2 ints.

e If int: the same symmetric padding is applied to width and height.

* If list of 2 ints: interpreted as two different symmetric padding values for
height and width: (symmetric_height_pad, symmetric_width_pad).

o Iflist of 2 lists of 2 ints: interpreted as ((top_pad, bottom_pad), (left_pad, right_pad))

300

data_format

batch_size

name

trainable

weights

Input shape

layer_zero_padding_3d

A string, one of channels_last (default) or channels_first. The ordering of
the dimensions in the inputs. channels_last corresponds to inputs with shape
(batch, height, width, channels) while channels_first corresponds to inputs
with shape (batch, channels, height, width). It defaults to the image_data_format
value found in your Keras config file at ~/.keras/keras.json. If you never set it,
then it will be "channels_last".

Fixed batch size for layer

An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.

Whether the layer weights will be updated during training.

Initial weights for layer.

4D tensor with shape:

e If data_format is "channels_last": (batch, rows, cols, channels)

e If data_format is "channels_first": (batch, channels, rows, cols)

Output shape

4D tensor with shape:

* If data_format is "channels_last": (batch, padded_rows, padded_cols, channels)

e If data_format is "channels_first": (batch, channels, padded_rows, padded_cols)

See Also

Other convolutional layers: layer_conv_1d(), layer_conv_2d_transpose(), layer_conv_2d(),
layer_conv_3d_transpose(), layer_conv_3d(), layer_conv_1stm_2d(), layer_cropping_1d(),
layer_cropping_2d(), layer_cropping_3d(), layer_depthwise_conv_2d(), layer_separable_conv_1d(),
layer_separable_conv_2d(), layer_upsampling_1d(), layer_upsampling_2d(), layer_upsampling_3d(),
layer_zero_padding_1d(), layer_zero_padding_3d()

layer_zero_padding_3d Zero-padding layer for 3D data (spatial or spatio-temporal).

Description

Zero-padding layer for 3D data (spatial or spatio-temporal).

layer_zero_padding_3d

Usage

301

layer_zero_padding_3d(

object,

padding = c(1L, 1L, 1L),
data_format = NULL,
batch_size = NULL,

name = NULL,

trainable
weights =

Arguments

object
padding

data_format

batch_size

name

trainable

weights

Input shape

NULL,
NULL

Model or layer object
int, or list of 3 ints, or list of 3 lists of 2 ints.

* If int: the same symmetric padding is applied to width and height.
o If list of 3 ints: interpreted as three different symmetric padding values:
(symmetric_dim1_pad, symmetric_dim2_pad, symmetric_dim3_pad).
o Iflist of 3 lists of 2 ints: interpreted as ((left_dim1_pad, right_dim1_pad), (left_dim2_pad, right_dim-

A string, one of channels_last (default) or channels_first. The order-

ing of the dimensions in the inputs. channels_last corresponds to inputs

with shape (batch, spatial_diml, spatial_dim2, spatial_dim3, channels) while
channels_first corresponds to inputs with shape (batch, channels, spatial_dim1, spa-
tial_dim2, spatial_dim3). It defaults to the image_data_format value found in

your Keras config file at ~/.keras/keras.json. If you never set it, then it will be
"channels_last".

Fixed batch size for layer

An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.

Whether the layer weights will be updated during training.

Initial weights for layer.

5D tensor with shape:

e Ifdata_formatis "channels_last": (batch, first_axis_to_pad, second_axis_to_pad, third_axis_to_pad, depth)

e Ifdata_formatis "channels_first": (batch, depth, first_axis_to_pad, second_axis_to_pad, third_axis_to_pad)

Output shape

5D tensor with shape:

e Ifdata_formatis "channels_last": (batch, first_padded_axis, second_padded_axis, third_axis_to_pad, depth)

e Ifdata_formatis "channels_first": (batch, depth, first_padded_axis, second_padded_axis, third_axis_to_pad)

302 loss_mean_squared_error

See Also

Other convolutional layers: layer_conv_1d(), layer_conv_2d_transpose(), layer_conv_2d(),
layer_conv_3d_transpose(), layer_conv_3d(), layer_conv_1lstm_2d(), layer_cropping_1d(),
layer_cropping_2d(), layer_cropping_3d(), layer_depthwise_conv_2d(), layer_separable_conv_1d(),
layer_separable_conv_2d(), layer_upsampling_1d(), layer_upsampling_2d(), layer_upsampling_3d(),
layer_zero_padding_1d(), layer_zero_padding_2d()

loss_mean_squared_error
Model loss functions

Description

Model loss functions

Usage
loss_mean_squared_error(y_true, y_pred)
loss_mean_absolute_error(y_true, y_pred)
loss_mean_absolute_percentage_error(y_true, y_pred)
loss_mean_squared_logarithmic_error(y_true, y_pred)
loss_squared_hinge(y_true, y_pred)
loss_hinge(y_true, y_pred)
loss_categorical_hinge(y_true, y_pred)
loss_logcosh(y_true, y_pred)
loss_categorical_crossentropy(y_true, y_pred)
loss_sparse_categorical_crossentropy(y_true, y_pred)
loss_binary_crossentropy(y_true, y_pred)
loss_kullback_leibler_divergence(y_true, y_pred)
loss_poisson(y_true, y_pred)
loss_cosine_proximity(y_true, y_pred)

loss_cosine_similarity(y_true, y_pred)

make_sampling_table 303

Arguments

y_true True labels (Tensor)

y_pred Predictions (Tensor of the same shape as y_true)
Details

Loss functions are to be supplied in the 1oss parameter of the compile.keras.engine.training.Model()
function.

Loss functions can be specified either using the name of a built in loss function (e.g. ’loss = bi-
nary_crossentropy’), a reference to a built in loss function (e.g. "loss = loss_binary_crossentropy()’)
or by passing an artitrary function that returns a scalar for each data-point and takes the following
two arguments:

e y_true True labels (Tensor)

* y_pred Predictions (Tensor of the same shape as y_true)

The actual optimized objective is the mean of the output array across all datapoints.

Categorical Crossentropy

When using the categorical_crossentropy loss, your targets should be in categorical format (e.g. if
you have 10 classes, the target for each sample should be a 10-dimensional vector that is all-zeros
except for a 1 at the index corresponding to the class of the sample). In order to convert integer
targets into categorical targets, you can use the Keras utility function to_categorical():

categorical_labels <-to_categorical(int_labels,num_classes = NULL)

loss_logcosh

log(cosh(x)) is approximately equal to (x ** 2) / 2 for small x and to abs(x) -log(2) for large
x. This means that ’logcosh’ works mostly like the mean squared error, but will not be so strongly
affected by the occasional wildly incorrect prediction. However, it may return NaNss if the interme-
diate value cosh(y_pred -y_true) is too large to be represented in the chosen precision.

See Also

compile.keras.engine.training.Model ()

make_sampling_table Generates a word rank-based probabilistic sampling table.

Description

Generates a word rank-based probabilistic sampling table.

Usage

make_sampling_table(size, sampling_factor = 1e-05)

304 metric_binary_accuracy

Arguments

size Int, number of possible words to sample.

sampling_factor
The sampling factor in the word2vec formula.

Details

Used for generating the sampling_table argument for skipgrams(). sampling_table[[i]] is
the probability of sampling the word i-th most common word in a dataset (more common words
should be sampled less frequently, for balance).

The sampling probabilities are generated according to the sampling distribution used in word2vec:
p(word) =min(1,sqrt(word_frequency / sampling_factor) / (word_frequency / sampling_factor))

We assume that the word frequencies follow Zipf’s law (s=1) to derive a numerical approximation
of frequency(rank):

frequency(rank) ~ 1/(rank x (log(rank) + gamma) + 1/2 -1/(12*xrank))

where gamma is the Euler-Mascheroni constant.

Value
An array of length size where the ith entry is the probability that a word of rank i should be
sampled.

Note

The word2vec formula is: p(word) = min(1, sqrt(word.frequency/sampling_factor) / (word.frequency/sampling_factor))

See Also

Other text preprocessing: pad_sequences(), skipgrams(), text_hashing_trick(), text_one_hot(),
text_to_word_sequence()

metric_binary_accuracy
Model performance metrics

Description

Model performance metrics

metric_binary_accuracy 305

Usage
metric_binary_accuracy(y_true, y_pred)
metric_binary_crossentropy(y_true, y_pred)
metric_categorical_accuracy(y_true, y_pred)
metric_categorical_crossentropy(y_true, y_pred)
metric_cosine_proximity(y_true, y_pred)
metric_hinge(y_true, y_pred)
metric_kullback_leibler_divergence(y_true, y_pred)
metric_mean_absolute_error(y_true, y_pred)
metric_mean_absolute_percentage_error(y_true, y_pred)
metric_mean_squared_error(y_true, y_pred)
metric_mean_squared_logarithmic_error(y_true, y_pred)
metric_poisson(y_true, y_pred)
metric_sparse_categorical_crossentropy(y_true, y_pred)
metric_squared_hinge(y_true, y_pred)
metric_top_k_categorical_accuracy(y_true, y_pred, k = 5)
metric_sparse_top_k_categorical_accuracy(y_true, y_pred, k = 5)

custom_metric(name, metric_fn)

Arguments
y_true True labels (tensor)
y_pred Predictions (tensor of the same shape as y_true).
k An integer, number of top elements to consider.
name Name of custom metric
metric_fn Custom metric function

Custom Metrics

You can provide an arbitrary R function as a custom metric. Note that the y_true and y_pred
parameters are tensors, so computations on them should use backend tensor functions.

306 metric_binary_accuracy

Use the custom_metric() function to define a custom metric. Note that a name ("mean_pred’) is
provided for the custom metric function: this name is used within training progress output. See
below for an example.

If you want to save and load a model with custom metrics, you should also specify the metric in the
call the load_model_hdf5(). For example: load_model_hdf5("my_model.h5", c('mean_pred'
=metric_mean_pred)).

Alternatively, you can wrap all of your code in a call to with_custom_object_scope() which will
allow you to refer to the metric by name just like you do with built in keras metrics.

Documentation on the available backend tensor functions can be found at https://keras.rstudio.
com/articles/backend.html#backend-functions.

Metrics with Parameters

To use metrics with parameters (e.g. metric_top_k_categorical_accurary()) you should create
a custom metric that wraps the call with the parameter. See below for an example.

Note

Metric functions are to be supplied in the metrics parameter of the compile.keras.engine.training.Model()
function.

Examples

Not run:

create metric using backend tensor functions

metric_mean_pred <- custom_metric("mean_pred”, function(y_true, y_pred) {
k_mean(y_pred)

»

model %>% compile(
optimizer = optimizer_rmsprop(),
loss = loss_binary_crossentropy,
metrics = c('accuracy', metric_mean_pred)

)

create custom metric to wrap metric with parameter
metric_top_3_categorical_accuracy <-
custom_metric("top_3_categorical_accuracy”, function(y_true, y_pred) {
metric_top_k_categorical_accuracy(y_true, y_pred, k = 3)

D

model %>% compile(
loss = 'categorical_crossentropy',
optimizer = optimizer_rmsprop(),
metrics = metric_top_3_categorical_accuracy

)

End(Not run)

https://keras.rstudio.com/articles/backend.html#backend-functions
https://keras.rstudio.com/articles/backend.html#backend-functions

model_from_saved_model 307

model_from_saved_model
Load a Keras model from the Saved Model format

Description

Load a Keras model from the Saved Model format

Usage

model_from_saved_model (saved_model_path, custom_objects = NULL)

Arguments

saved_model_path
a string specifying the path to the SavedModel directory.

custom_objects Optional dictionary mapping string names to custom classes or functions (e.g.
custom loss functions).

Value

a Keras model.

Note

This functionality is experimental and only works with TensorFlow version >="2.0".

See Also

Other saved_model: model_to_saved_model ()

model_to_json Model configuration as JSSON

Description

Save and re-load models configurations as JSON. Note that the representation does not include the
weights, only the architecture.

Usage

model_to_json(object)

model_from_json(json, custom_objects = NULL)

308 model _to_saved_model

Arguments
object Model object to save
json JSON with model configuration

custom_objects Optional named list mapping names to custom classes or functions to be consid-
ered during deserialization.

See Also

Other model persistence: get_weights(), model_to_yaml(), save_model_hdf5(), save_model_tf (),
save_model_weights_hdf5(), serialize_model()

model_to_saved_model Export to Saved Model format

Description

Export to Saved Model format

Usage

model_to_saved_model (
model,
saved_model_path,
custom_objects = NULL,
as_text = FALSE,
input_signature = NULL,
serving_only = FALSE

Arguments

model A Keras model to be saved. If the model is subclassed, the flag serving_only
must be set to TRUE.
saved_model_path

a string specifying the path to the SavedModel directory.

custom_objects Optional dictionary mapping string names to custom classes or functions (e.g.
custom loss functions).

as_text bool, FALSE by default. Whether to write the SavedModel proto in text format.
Currently unavailable in serving-only mode.

input_signature
A possibly nested sequence of tf.TensorSpec objects, used to specify the ex-
pected model inputs. See tf.function for more details.

serving_only bool, FALSE by default. When this is true, only the prediction graph is saved.

model_to_yaml 309
Value

Invisibly returns the saved_model_path.

Note

This functionality is experimental and only works with TensorFlow version >="2.0".

See Also

Other saved_model: model_from_saved_model ()

model_to_yaml Model configuration as YAML

Description
Save and re-load models configurations as YAML Note that the representation does not include the
weights, only the architecture.

Usage

model_to_yaml (object)

model_from_yaml(yaml, custom_objects = NULL)

Arguments
object Model object to save
yaml YAML with model configuration

custom_objects Optional named list mapping names to custom classes or functions to be consid-
ered during deserialization.
See Also

Other model persistence: get_weights(), model_to_json(), save_model_hdf5(), save_model_tf (),
save_model_weights_hdf5(), serialize_model ()

310 multi_gpu_model

multi_gpu_model Replicates a model on different GPUS.

Description

Replicates a model on different GPUs.

Usage

multi_gpu_model(model, gpus = NULL, cpu_merge = TRUE, cpu_relocation = FALSE)

Arguments
model A Keras model instance. To avoid OOM errors, this model could have been built
on CPU, for instance (see usage example below).
gpus NULL to use all available GPUs (default). Integer >= 2 or list of integers, number
of GPUs or list of GPU IDs on which to create model replicas.
cpu_merge A boolean value to identify whether to force merging model weights under the

scope of the CPU or not.

cpu_relocation A boolean value to identify whether to create the model’s weights under the
scope of the CPU. If the model is not defined under any preceding device scope,
you can still rescue it by activating this option.

Details

Specifically, this function implements single-machine multi-GPU data parallelism. It works in the
following way:

 Divide the model’s input(s) into multiple sub-batches.

* Apply a model copy on each sub-batch. Every model copy is executed on a dedicated GPU.

* Concatenate the results (on CPU) into one big batch.
E.g. if your batch_size is 64 and you use gpus=2, then we will divide the input into 2 sub-batches

of 32 samples, process each sub-batch on one GPU, then return the full batch of 64 processed
samples.

This induces quasi-linear speedup on up to 8 GPUs.

This function is only available with the TensorFlow backend for the time being.

Value

A Keras model object which can be used just like the initial model argument, but which distributes
its workload on multiple GPUs.

multi_gpu_model 311

Model Saving

To save the multi-gpu model, use save_model_hdf5() or save_model_weights_hdf5() with the
template model (the argument you passed to multi_gpu_model), rather than the model returned by
multi_gpu_model.

See Also

Other model functions: compile.keras.engine.training.Model(), evaluate.keras.engine.training.Model(),
evaluate_generator(), fit.keras.engine.training.Model (), fit_generator(), get_config(),

get_layer(), keras_model_sequential (), keras_model(), pop_layer(), predict.keras.engine.training.Model (
predict_generator(), predict_on_batch(), predict_proba(), summary.keras.engine.training.Model(),
train_on_batch()

Examples

Not run:

library(keras)
library(tensorflow)

num_samples <- 1000
height <- 224
width <- 224
num_classes <- 1000

Instantiate the base model (or "template” model).
We recommend doing this with under a CPU device scope,
so that the model's weights are hosted on CPU memory.
Otherwise they may end up hosted on a GPU, which would
complicate weight sharing.
with(tf$device("/cpu:0"), {
model <- application_xception(
weights = NULL,
input_shape = c(height, width, 3),
classes = num_classes
)
»

Replicates the model on 8 GPUs.
This assumes that your machine has 8 available GPUs.
parallel_model <- multi_gpu_model(model, gpus = 8)
parallel_model %>% compile(

loss = "categorical_crossentropy”,

optimizer = "rmsprop"

)

Generate dummy data.
x <- array(runif(num_samples * height * widthx3),
dim = c(num_samples, height, width, 3))
y <- array(runif(num_samples * num_classes),
dim = c(num_samples, num_classes))

312

This ‘fit" call will be distributed on 8 GPUs.
Since the batch size is 256, each GPU will process 32 samples.
parallel_model %>% fit(x, y, epochs = 20, batch_size = 256)

Save model via the template model (which shares the same weights):
model %>% save_model_hdf5("my_model.h5")

End(Not run)

optimizer_adadelta

normalize Normalize a matrix or nd-array

Description

Normalize a matrix or nd-array

Usage
normalize(x, axis = -1, order = 2)
Arguments
X Matrix or array to normalize
axis Axis along which to normalize. Axis indexes are 1-based (pass -1 to select the
last axis).
order Normalization order (e.g. 2 for L2 norm)
Value

A normalized copy of the array.

optimizer_adadelta Adadelta optimizer.

Description

Adadelta optimizer as described in ADADELTA: An Adaptive Learning Rate Method.

https://arxiv.org/abs/1212.5701

optimizer_adagrad 313

Usage

optimizer_adadelta(
1r =1,
rho = 0.95,
epsilon = NULL,
decay = 0,
clipnorm = NULL,
clipvalue = NULL

)
Arguments

1r float >= 0. Learning rate.

rho float >= 0. Decay factor.

epsilon float >= 0. Fuzz factor. If NULL, defaults to k_epsilon().

decay float >= 0. Learning rate decay over each update.

clipnorm Gradients will be clipped when their L2 norm exceeds this value.

clipvalue Gradients will be clipped when their absolute value exceeds this value.
Note

It is recommended to leave the parameters of this optimizer at their default values.

See Also

Other optimizers: optimizer_adagrad(), optimizer_adamax(), optimizer_adam(), optimizer_nadam(),
optimizer_rmsprop(), optimizer_sgd()

optimizer_adagrad Adagrad optimizer.

Description

Adagrad optimizer as described in Adaptive Subgradient Methods for Online Learning and Stochas-
tic Optimization.

Usage

optimizer_adagrad(
lr = 0.01,
epsilon = NULL,
decay = 0,
clipnorm = NULL,
clipvalue = NULL

http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf

314 optimizer_adam

Arguments
1r float >= 0. Learning rate.
epsilon float >= 0. Fuzz factor. If NULL, defaults to k_epsilon().
decay float >= 0. Learning rate decay over each update.
clipnorm Gradients will be clipped when their L2 norm exceeds this value.
clipvalue Gradients will be clipped when their absolute value exceeds this value.
Note

It is recommended to leave the parameters of this optimizer at their default values.

See Also

Other optimizers: optimizer_adadelta(), optimizer_adamax(), optimizer_adam(), optimizer_nadam(),
optimizer_rmsprop(), optimizer_sgd()

optimizer_adam Adam optimizer

Description

Adam optimizer as described in Adam - A Method for Stochastic Optimization.

Usage

optimizer_adam(
lr = 0.001,
beta_1 = 0.9,
beta_2 = 0.999,
epsilon = NULL,
decay = 0,
amsgrad = FALSE,

clipnorm = NULL,
clipvalue = NULL

)
Arguments

1r float >= 0. Learning rate.

beta_1 The exponential decay rate for the 1st moment estimates. float, 0 < beta < 1.
Generally close to 1.

beta_2 The exponential decay rate for the 2nd moment estimates. float, 0 < beta < 1.
Generally close to 1.

epsilon float >= 0. Fuzz factor. If NULL, defaults to k_epsilon().

decay float >= 0. Learning rate decay over each update.

https://arxiv.org/abs/1412.6980v8

optimizer_adamax 315

amsgrad Whether to apply the AMSGrad variant of this algorithm from the paper "On the
Convergence of Adam and Beyond".
clipnorm Gradients will be clipped when their L2 norm exceeds this value.
clipvalue Gradients will be clipped when their absolute value exceeds this value.
References

* Adam - A Method for Stochastic Optimization
* On the Convergence of Adam and Beyond

Note

Default parameters follow those provided in the original paper.

See Also

Other optimizers: optimizer_adadelta(), optimizer_adagrad(), optimizer_adamax(), optimizer_nadam(),
optimizer_rmsprop(), optimizer_sgd()

optimizer_adamax Adamax optimizer

Description

Adamax optimizer from Section 7 of the Adam paper. It is a variant of Adam based on the infinity

norm.
Usage
optimizer_adamax(
1r = 0.002,
beta_1 = 0.9,

beta_2 = 0.999,
epsilon = NULL,
decay = 0,
clipnorm = NULL,
clipvalue = NULL

)
Arguments
1r float >= 0. Learning rate.
beta_1 The exponential decay rate for the 1st moment estimates. float, 0 < beta < 1.
Generally close to 1.
beta_2 The exponential decay rate for the 2nd moment estimates. float, 0 < beta < 1.

Generally close to 1.

http://arxiv.org/abs/1412.6980v8
https://openreview.net/forum?id=ryQu7f-RZ
https://arxiv.org/abs/1412.6980v8

316 optimizer_nadam

epsilon float >= 0. Fuzz factor. If NULL, defaults to k_epsilon().

decay float >= 0. Learning rate decay over each update.

clipnorm Gradients will be clipped when their L2 norm exceeds this value.

clipvalue Gradients will be clipped when their absolute value exceeds this value.
See Also

Other optimizers: optimizer_adadelta(), optimizer_adagrad(), optimizer_adam(), optimizer_nadam(),
optimizer_rmsprop(), optimizer_sgd()

optimizer_nadam Nesterov Adam optimizer

Description

Much like Adam is essentially RMSprop with momentum, Nadam is Adam RMSprop with Nesterov
momentum.

Usage

optimizer_nadam(
1r = 0.002,
beta_1 = 0.9,
beta_2 = 0.999,
epsilon = NULL,
schedule_decay = 0.004,
clipnorm = NULL,
clipvalue = NULL

)
Arguments
1r float >= 0. Learning rate.
beta_1 The exponential decay rate for the 1st moment estimates. float, 0 < beta < 1.
Generally close to 1.
beta_2 The exponential decay rate for the 2nd moment estimates. float, O < beta < 1.
Generally close to 1.
epsilon float >= 0. Fuzz factor. If NULL, defaults to k_epsilon().
schedule_decay Schedule deacy.
clipnorm Gradients will be clipped when their L2 norm exceeds this value.
clipvalue Gradients will be clipped when their absolute value exceeds this value.
Details

Default parameters follow those provided in the paper. It is recommended to leave the parameters
of this optimizer at their default values.

optimizer_rmsprop 317

See Also

On the importance of initialization and momentum in deep learning.

Other optimizers: optimizer_adadelta(), optimizer_adagrad(), optimizer_adamax(), optimizer_adam(),
optimizer_rmsprop(), optimizer_sgd()

optimizer_rmsprop RMSProp optimizer

Description

RMSProp optimizer

Usage

optimizer_rmsprop(
1r = 0.001,
rho = 0.9,
epsilon = NULL,
decay = 0,
clipnorm = NULL,
clipvalue = NULL

)
Arguments

1r float >= 0. Learning rate.

rho float >= 0. Decay factor.

epsilon float >= 0. Fuzz factor. If NULL, defaults to k_epsilon().

decay float >= 0. Learning rate decay over each update.

clipnorm Gradients will be clipped when their L2 norm exceeds this value.

clipvalue Gradients will be clipped when their absolute value exceeds this value.
Note

It is recommended to leave the parameters of this optimizer at their default values (except the
learning rate, which can be freely tuned).

This optimizer is usually a good choice for recurrent neural networks.

See Also

Other optimizers: optimizer_adadelta(), optimizer_adagrad(), optimizer_adamax(), optimizer_adam(),
optimizer_nadam(), optimizer_sgd()

http://www.cs.toronto.edu/~fritz/absps/momentum.pdf

318 optimizer_sgd

optimizer_sgd Stochastic gradient descent optimizer

Description

Stochastic gradient descent optimizer with support for momentum, learning rate decay, and Nes-
terov momentum.

Usage
optimizer_sgd(
1r = 0.01,
momentum = @,
decay = 0,

nesterov = FALSE,
clipnorm = NULL,
clipvalue = NULL

)
Arguments
1r float >= 0. Learning rate.
momentum float >= 0. Parameter that accelerates SGD in the relevant direction and dampens
oscillations.
decay float >= 0. Learning rate decay over each update.
nesterov boolean. Whether to apply Nesterov momentum.
clipnorm Gradients will be clipped when their L2 norm exceeds this value.
clipvalue Gradients will be clipped when their absolute value exceeds this value.
Value

Optimizer for use with compile.keras.engine.training.Model.

See Also

Other optimizers: optimizer_adadelta(), optimizer_adagrad(), optimizer_adamax(), optimizer_adam(),
optimizer_nadam(), optimizer_rmsprop()

pad_sequences

319

pad_sequences Pads sequences to the same length

Description

Pads sequences to the same length

Usage

pad_sequences(

sequences,
maxlen = NULL,

dtype = "int32",
padding = "pre”,

truncating = "pre”,
value = @
)
Arguments
sequences List of lists where each element is a sequence
maxlen int, maximum length of all sequences
dtype type of the output sequences
padding pre’ or 'post’, pad either before or after each sequence.
truncating ‘pre’ or ‘post’, remove values from sequences larger than maxlen either in the
beginning or in the end of the sequence
value float, padding value
Details

This function transforms a list of num_samples sequences (lists of integers) into a matrix of shape
(num_samples, num_timesteps). num_timesteps is either the maxlen argument if provided, or the
length of the longest sequence otherwise.

Sequences that are shorter than num_timesteps are padded with value at the end.

Sequences longer than num_timesteps are truncated so that they fit the desired length. The position
where padding or truncation happens is determined by the arguments padding and truncating,

respectively.

Pre-padding is the default.

Value

Matrix with dimensions (number_of_sequences, maxlen)

320 plot.keras_training_history

See Also

Other text preprocessing: make_sampling_table(), skipgrams(), text_hashing_trick(), text_one_hot(),
text_to_word_sequence()

plot.keras_training_history
Plot training history

Description

Plots metrics recorded during training.

Usage
S3 method for class 'keras_training_history'
plot(
X,
Y,
metrics = NULL,
method = c("auto”, "ggplot2"”, "base"),

smooth = getOption("keras.plot.history.smooth”, TRUE),
theme_bw = getOption("keras.plot.history.theme_bw", FALSE),

Arguments

X Training history object returned from fit.keras.engine.training.Model().

y Unused.

metrics One or more metrics to plot (e.g. c('loss', 'accuracy')). Defaults to plotting
all captured metrics.

method Method to use for plotting. The default "auto" will use ggplot2 if available, and
otherwise will use base graphics.

smooth Whether a loess smooth should be added to the plot, only available for the
ggplot2 method. If the number of epochs is smaller than ten, it is forced to
false.

theme_bw Use ggplot2: : theme_bw() to plot the history in black and white.

Additional parameters to pass to the plot() method.

pop_layer 321

pop_layer Remove the last layer in a model

Description

Remove the last layer in a model

Usage

pop_layer(object)

Arguments

object Keras model object

See Also

Other model functions: compile.keras.engine.training.Model(), evaluate.keras.engine.training.Model(),
evaluate_generator(), fit.keras.engine.training.Model (), fit_generator(), get_config(),

get_layer(), keras_model_sequential (), keras_model (), multi_gpu_model(), predict.keras.engine.training.!
predict_generator(), predict_on_batch(), predict_proba(), summary.keras.engine.training.Model(),
train_on_batch()

predict.keras.engine.training.Model
Generate predictions from a Keras model

Description

Generates output predictions for the input samples, processing the samples in a batched way.

Usage

S3 method for class 'keras.engine.training.Model'
predict(

object,

X,

batch_size = NULL,

verbose = 0,

steps = NULL,

callbacks = NULL,

322 predict_generator

Arguments
object Keras model
X Input data (vector, matrix, or array)
batch_size Integer. If unspecified, it will default to 32.
verbose Verbosity mode, O or 1.
steps Total number of steps (batches of samples) before declaring the evaluation round
finished. Ignored with the default value of NULL.
callbacks List of callbacks to apply during prediction.
Unused
Value

vector, matrix, or array of predictions

See Also

Other model functions: compile.keras.engine.training.Model (), evaluate.keras.engine.training.Model(),
evaluate_generator(), fit.keras.engine.training.Model (), fit_generator(), get_config(),
get_layer(), keras_model_sequential (), keras_model (), multi_gpu_model(), pop_layer(),
predict_generator(), predict_on_batch(), predict_proba(), summary.keras.engine.training.Model(),
train_on_batch()

predict_generator Generates predictions for the input samples from a data generator.

Description

The generator should return the same kind of data as accepted by predict_on_batch().

Usage

predict_generator(
object,
generator,
steps,
max_queue_size = 10,
workers = 1,
verbose = 0,

callbacks NULL

predict_on_batch 323

Arguments
object Keras model object
generator Generator yielding batches of input samples.
steps Total number of steps (batches of samples) to yield from generator before

stopping.
max_gueue_size Maximum size for the generator queue. If unspecified, max_queue_size will
default to 10.

workers Maximum number of threads to use for parallel processing. Note that parallel
processing will only be performed for native Keras generators (e.g. flow_images_from_directory())
as R based generators must run on the main thread.

verbose verbosity mode, O or 1.
callbacks List of callbacks to apply during prediction.
Value

Numpy array(s) of predictions.

Raises

ValueError: In case the generator yields data in an invalid format.

See Also

Other model functions: compile.keras.engine.training.Model (), evaluate.keras.engine.training.Model(),
evaluate_generator(), fit.keras.engine.training.Model (), fit_generator(), get_config(),

get_layer(), keras_model_sequential (), keras_model (), multi_gpu_model(), pop_layer(),
predict.keras.engine.training.Model(), predict_on_batch(), predict_proba(), summary.keras.engine.train:
train_on_batch()

predict_on_batch Returns predictions for a single batch of samples.

Description

Returns predictions for a single batch of samples.

Usage

predict_on_batch(object, x)

Arguments

object Keras model object

X Input data (vector, matrix, or array)

324 predict_proba

Value

array of predictions.

See Also

Other model functions: compile.keras.engine.training.Model (), evaluate.keras.engine.training.Model(),
evaluate_generator(), fit.keras.engine.training.Model(), fit_generator(), get_config(),
get_layer(), keras_model_sequential(), keras_model(),multi_gpu_model(), pop_layer(),

predict.keras.engine.training.Model (), predict_generator(), predict_proba(), summary.keras.engine. traii
train_on_batch()

predict_proba Generates probability or class probability predictions for the input
samples.

Description

Generates probability or class probability predictions for the input samples.

Usage

predict_proba(object, x, batch_size = NULL, verbose = 0, steps = NULL)

predict_classes(object, x, batch_size = NULL, verbose = @, steps = NULL)

Arguments
object Keras model object
X Input data (vector, matrix, or array)
batch_size Integer. If unspecified, it will default to 32.
verbose Verbosity mode, O or 1.
steps Total number of steps (batches of samples) before declaring the evaluation round
finished. The default NULL is equal to the number of samples in your dataset
divided by the batch size.
Details

The input samples are processed batch by batch.

See Also

Other model functions: compile.keras.engine.training.Model (), evaluate.keras.engine.training.Model(),
evaluate_generator(), fit.keras.engine.training.Model (), fit_generator(), get_config(),

get_layer(), keras_model_sequential (), keras_model (), multi_gpu_model(), pop_layer(),
predict.keras.engine.training.Model (), predict_generator(), predict_on_batch(), summary.keras.engine.t|
train_on_batch()

regularizer_I11 325

regularizer_11 L1 and L2 regularization

Description

L1 and L2 regularization

Usage
regularizer_11(1 = 0.01)
regularizer_12(1 = 0.01)

regularizer_11_12(11 = 0.01, 12 = 0.01)

Arguments
1 Regularization factor.
11 L1 regularization factor.
12 L2 regularization factor.
reset_states Reset the states for a layer
Description

Reset the states for a layer

Usage

reset_states(object)

Arguments

object Model or layer object

See Also

Other layer methods: count_params(), get_config(), get_input_at(), get_weights()

326 save_model_hdf5

save_model_hdf5 Save/Load models using HDF'S files

Description

Save/Load models using HDFS5 files

Usage

save_model_hdf5(object, filepath, overwrite = TRUE, include_optimizer = TRUE)

load_model_hdf5(filepath, custom_objects = NULL, compile = TRUE)

Arguments
object Model object to save
filepath File path
overwrite Overwrite existing file if necessary

include_optimizer
If TRUE, save optimizer’s state.

custom_objects Mapping class names (or function names) of custom (non-Keras) objects to
class/functions (for example, custom metrics or custom loss functions).

compile Whether to compile the model after loading.

Details
The following components of the model are saved:

* The model architecture, allowing to re-instantiate the model.
* The model weights.

* The state of the optimizer, allowing to resume training exactly where you left off. This allows
you to save the entirety of the state of a model in a single file.

Saved models can be reinstantiated via load_model_hdf5(). The model returned by 1load_model_hdf5()
is a compiled model ready to be used (unless the saved model was never compiled in the first place
or compile = FALSE is specified).

As an alternative to providing the custom_objects argument, you can execute the definition and
persistence of your model using the with_custom_object_scope() function.

Note

The serialize_model() function enables saving Keras models to R objects that can be persisted
across R sessions.

See Also

Other model persistence: get_weights(), model_to_json(), model_to_yaml(), save_model_tf(),
save_model_weights_hdf5(), serialize_model ()

save_model_tf 327

save_model_tf Save/Load models using SavedModel format

Description

Save/Load models using SavedModel format

Usage

save_model_tf(
object,
filepath,
overwrite = TRUE,
include_optimizer = TRUE,
signatures = NULL,
options = NULL

)

load_model_tf(filepath, custom_objects = NULL, compile = TRUE)

Arguments
object Model object to save
filepath File path
overwrite Overwrite existing file if necessary

include_optimizer
If TRUE, save optimizer’s state.

signatures Signatures to save with the SavedModel. Please see the signatures argument in
tf$saved_model$save for details.

options Optional tf$saved_model$SaveOptions object that specifies options for sav-
ing to SavedModel

custom_objects Mapping class names (or function names) of custom (non-Keras) objects to
class/functions (for example, custom metrics or custom loss functions).

compile Whether to compile the model after loading.

See Also

Other model persistence: get_weights(), model_to_json(), model_to_yaml(), save_model_hdf5(),
save_model_weights_hdf5(), serialize_model()

328 save_model_weights_hdf5

save_model_weights_hdf5
Save/Load model weights using HDFS files

Description

Save/Load model weights using HDFS5 files

Usage

save_model_weights_hdf5(object, filepath, overwrite = TRUE)

load_model_weights_hdf5¢(
object,
filepath,
by_name = FALSE,
skip_mismatch = FALSE,
reshape = FALSE

)
Arguments
object Model object to save/load
filepath Path to the file
overwrite Whether to silently overwrite any existing file at the target location
by_name Whether to load weights by name or by topological order.

skip_mismatch Logical, whether to skip loading of layers where there is a mismatch in the
number of weights, or a mismatch in the shape of the weight (only valid when
by_name = FALSE).

reshape Reshape weights to fit the layer when the correct number of values are present
but the shape does not match.

Details
The weight file has:

* layer_names (attribute), a list of strings (ordered names of model layers).
* For every layer, a group named layer.name

* For every such layer group, a group attribute weight_names, a list of strings (ordered names
of weights tensor of the layer).

* For every weight in the layer, a dataset storing the weight value, named after the weight tensor.

For load_model_weights(), if by_name is FALSE (default) weights are loaded based on the net-
work’s topology, meaning the architecture should be the same as when the weights were saved.
Note that layers that don’t have weights are not taken into account in the topological ordering, so
adding or removing layers is fine as long as they don’t have weights.

save_model_weights_tf 329

If by_name is TRUE, weights are loaded into layers only if they share the same name. This is useful
for fine-tuning or transfer-learning models where some of the layers have changed.

See Also

Other model persistence: get_weights(), model_to_json(), model_to_yaml(), save_model_hdf5(),
save_model_tf (), serialize_model()

save_model_weights_tf Save model weights in the SavedModel format

Description

Save model weights in the SavedModel format

Usage

save_model_weights_tf(object, filepath, overwrite = TRUE)

load_model_weights_tf(
object,
filepath,
by_name = FALSE,
skip_mismatch = FALSE,
reshape = FALSE

)
Arguments
object Model object to save/load
filepath Path to the file
overwrite Whether to silently overwrite any existing file at the target location
by_name Whether to load weights by name or by topological order.

skip_mismatch Logical, whether to skip loading of layers where there is a mismatch in the
number of weights, or a mismatch in the shape of the weight (only valid when
by_name = FALSE).

reshape Reshape weights to fit the layer when the correct number of values are present
but the shape does not match.

Details

When saving in TensorFlow format, all objects referenced by the network are saved in the same
format as tf. train.Checkpoint, including any Layer instances or Optimizer instances assigned to
object attributes. For networks constructed from inputs and outputs using tf.keras.Model (inputs,outputs),
Layer instances used by the network are tracked/saved automatically. For user-defined classes which

330 save_text_tokenizer

inherit from tf.keras.Model, Layer instances must be assigned to object attributes, typically in
the constructor.

See the documentation of tf.train.Checkpoint and tf.keras.Model for details.

save_text_tokenizer Save a text tokenizer to an external file

Description

Enables persistence of text tokenizers alongside saved models.

Usage

save_text_tokenizer(object, filename)

load_text_tokenizer(filename)

Arguments
object Text tokenizer fit with fit_text_tokenizer()
filename File to save/load

Details

You should always use the same text tokenizer for training and prediction. In many cases however
prediction will occur in another session with a version of the model loaded via load_model_hdf5().

In this case you need to save the text tokenizer object after training and then reload it prior to
prediction.

See Also

Other text tokenization: fit_text_tokenizer(), sequences_to_matrix(), text_tokenizer(),
texts_to_matrix(), texts_to_sequences_generator(), texts_to_sequences()

Examples

Not run:
vectorize texts then save for use in prediction
tokenizer <- text_tokenizer(num_words = 10000) %>%

fit_text_tokenizer(tokenizer, texts)
save_text_tokenizer(tokenizer, "tokenizer")

(train model, etc.)

...later in another session
tokenizer <- load_text_tokenizer("tokenizer")

sequences_to_matrix 331

(use tokenizer to preprocess data for prediction)

End(Not run)

sequences_to_matrix Convert a list of sequences into a matrix.

Description

Convert a list of sequences into a matrix.

Usage
sequences_to_matrix(
tokenizer,
sequences,
mode = c("binary”, "count”, "tfidf", "freq")
)
Arguments
tokenizer Tokenizer
sequences List of sequences (a sequence is a list of integer word indices).
mode one of "binary", "count", "tfidf", "freq".
Value
A matrix
See Also

Other text tokenization: fit_text_tokenizer(), save_text_tokenizer(), text_tokenizer(),
texts_to_matrix(), texts_to_sequences_generator(), texts_to_sequences()

332 serialize_model

serialize_model Serialize a model to an R object

Description

Model objects are external references to Keras objects which cannot be saved and restored across
R sessions. The serialize_model() and unserialize_model() functions provide facilities to
convert Keras models to R objects for persistence within R data files.

Usage

serialize_model(model, include_optimizer = TRUE)

unserialize_model(model, custom_objects = NULL, compile = TRUE)

Arguments

model Keras model or R "raw" object containing serialized Keras model.

include_optimizer
If TRUE, save optimizer’s state.

custom_objects Mapping class names (or function names) of custom (non-Keras) objects to
class/functions (for example, custom metrics or custom loss functions).

compile Whether to compile the model after loading.

Value

serialize_model() returns an R "raw" object containing an hdf5 version of the Keras model.
unserialize_model () returns a Keras model.

Note

The save_model_hdf5() function enables saving Keras models to external hdf5 files.

See Also

Other model persistence: get_weights(), model_to_json(), model_to_yaml(), save_model_hdf5(),
save_model_tf (), save_model_weights_hdf5()

set_vocabulary 333

set_vocabulary Sets vocabulary (and optionally document frequency) data for the
layer

Description

This method sets the vocabulary and DF data for this layer directly, instead of analyzing a dataset
through adapt(). It should be used whenever the vocab (and optionally document frequency)
information is already known. If vocabulary data is already present in the layer, this method will
either replace it, if append is set to FALSE, or append to it (if *append’ is set to TRUE)

Usage

set_vocabulary(
object,
vocab,
df_data = NULL,
oov_df_value = FALSE,
append = FALSE

)
Arguments
object a text vectorization layer
vocab An array of string tokens.
df_data An array of document frequency data. Only necessary if the layer output_mode

is "tfidf".
oov_df_value The document frequency of the OOV token. Only necessary if output_mode is

"tfidf". OOV data is optional when appending additional data in "tfidf" mode; if
an OOV value is supplied it will overwrite the existing OOV value.

append Whether to overwrite or append any existing vocabulary data.

See Also

get_vocabulary()

skipgrams Generates skipgram word pairs.

Description

Generates skipgram word pairs.

334 skipgrams
Usage
skipgrams(
sequence,
vocabulary_size,
window_size = 4,
negative_samples = 1,
shuffle = TRUE,
categorical = FALSE,
sampling_table = NULL,
seed = NULL
)
Arguments
sequence A word sequence (sentence), encoded as a list of word indices (integers). If

using a sampling_table, word indices are expected to match the rank of the
words in a reference dataset (e.g. 10 would encode the 10-th most frequently
occuring token). Note that index O is expected to be a non-word and will be
skipped.

vocabulary_size
Int, maximum possible word index + 1

window_size Int, size of sampling windows (technically half-window). The window of a word
w_i will be [i-window_size, i+window_size+1]

negative_samples
float >= 0. O for no negative (i.e. random) samples. 1 for same number as
positive samples.

shuffle whether to shuffle the word couples before returning them.

categorical bool. if FALSE, labels will be integers (eg. [0, 1, 1 ..]), if TRUE labels will be
categorical eg. [[1,0],[0,1],[0,1] ..]

sampling_table 1D array of size vocabulary_size where the entry i encodes the probabibily to
sample a word of rank i.

seed Random seed

Details

This function transforms a list of word indexes (lists of integers) into lists of words of the form:

* (word, word in the same window), with label 1 (positive samples).

* (word, random word from the vocabulary), with label O (negative samples).

Read more about Skipgram in this gnomic paper by Mikolov et al.: Efficient Estimation of Word

Representations in Vector Space

Value
List of couples, labels where:

* couples is a list of 2-element integer vectors: [word_index, other_word_index].

http://arxiv.org/pdf/1301.3781v3.pdf
http://arxiv.org/pdf/1301.3781v3.pdf

summary.keras.engine.training. Model 335
* labels is an integer vector of O and 1, where 1 indicates that other_word_index was found

in the same window as word_index, and O indicates that other_word_index was random.

* if categorical is set to TRUE, the labels are categorical, ie. 1 becomes [0,1], and 0 becomes
[1,0].
See Also

Other text preprocessing: make_sampling_table(), pad_sequences(), text_hashing_trick(),
text_one_hot(), text_to_word_sequence()

summary.keras.engine.training.Model
Print a summary of a Keras model

Description

Print a summary of a Keras model

Usage

S3 method for class 'keras.engine.training.Model'

summary(object, line_length = getOption("width"), positions = NULL, ...)
Arguments

object Keras model instance

line_length Total length of printed lines

positions Relative or absolute positions of log elements in each line. If not provided,
defaults to c(0.33,0.55,0.67,1.0).

Unused

See Also

Other model functions: compile.keras.engine.training.Model(), evaluate.keras.engine.training.Model(),
evaluate_generator(), fit.keras.engine.training.Model (), fit_generator(), get_config(),

get_layer(), keras_model_sequential (), keras_model(),multi_gpu_model(), pop_layer(),

predict.keras.engine.training.Model (), predict_generator(), predict_on_batch(), predict_proba(),

train_on_batch()

336 texts_to_sequences

texts_to_matrix Convert a list of texts to a matrix.

Description

Convert a list of texts to a matrix.

Usage

texts_to_matrix(tokenizer, texts, mode = c("binary"”, "count”, "tfidf", "freq"))

Arguments

tokenizer Tokenizer

texts Vector/list of texts (strings).

non

mode one of "binary", "count", "tfidf", "freq".

Value

A matrix

See Also

Other text tokenization: fit_text_tokenizer(), save_text_tokenizer(), sequences_to_matrix(),
text_tokenizer(), texts_to_sequences_generator(), texts_to_sequences()

texts_to_sequences Transform each text in texts in a sequence of integers.

Description
Only top "num_words" most frequent words will be taken into account. Only words known by the
tokenizer will be taken into account.

Usage

texts_to_sequences(tokenizer, texts)

Arguments

tokenizer Tokenizer

texts Vector/list of texts (strings).
See Also

Other text tokenization: fit_text_tokenizer(), save_text_tokenizer(), sequences_to_matrix(),
text_tokenizer(), texts_to_matrix(), texts_to_sequences_generator()

texts_to_sequences_generator 337

texts_to_sequences_generator
Transforms each text in texts in a sequence of integers.

Description
Only top "num_words" most frequent words will be taken into account. Only words known by the
tokenizer will be taken into account.

Usage

texts_to_sequences_generator(tokenizer, texts)

Arguments

tokenizer Tokenizer

texts Vector/list of texts (strings).
Value

Generator which yields individual sequences

See Also

Other text tokenization: fit_text_tokenizer(), save_text_tokenizer(), sequences_to_matrix(),
text_tokenizer(), texts_to_matrix(), texts_to_sequences()

text_hashing_trick Converts a text to a sequence of indexes in a fixed-size hashing space.

Description

Converts a text to a sequence of indexes in a fixed-size hashing space.

Usage

text_hashing_trick(
text,
n,
hash_function = NULL,
filters = "IN"#$%&(O)*+,-./:;<=>?@[\\1*_*{|}~\t\n",
lower = TRUE,
split = " "

338 text_one_hot

Arguments
text Input text (string).
n Dimension of the hashing space.

hash_function if NULL uses python hash function, can be 'md5’ or any function that takes in
input a string and returns a int. Note that hash is not a stable hashing function, so
it is not consistent across different runs, while *'md5’ is a stable hashing function.

filters Sequence of characters to filter out such as punctuation. Default includes basic
punctuation, tabs, and newlines.
lower Whether to convert the input to lowercase.
split Sentence split marker (string).
Details
Two or more words may be assigned to the same index, due to possible collisions by the hashing
function.
Value

A list of integer word indices (unicity non-guaranteed).

See Also

Other text preprocessing: make_sampling_table(), pad_sequences(), skipgrams(), text_one_hot(),
text_to_word_sequence()

text_one_hot One-hot encode a text into a list of word indexes in a vocabulary of
size n.

Description

One-hot encode a text into a list of word indexes in a vocabulary of size n.

Usage

text_one_hot(
text,
n)
filters = "IN"#$%&(O)*+,-./:;<=>?@[\\1*_*{|}~\t\n",
lower = TRUE,
split = " "

text_tokenizer 339

Arguments
text Input text (string).
n Size of vocabulary (integer)
filters Sequence of characters to filter out such as punctuation. Default includes basic
punctuation, tabs, and newlines.
lower Whether to convert the input to lowercase.
split Sentence split marker (string).
Value

List of integers in [1, n]. Each integer encodes a word (unicity non-guaranteed).

See Also

Other text preprocessing: make_sampling_table(), pad_sequences(), skipgrams(), text_hashing_trick(),
text_to_word_sequence()

text_tokenizer Text tokenization utility

Description

Vectorize a text corpus, by turning each text into either a sequence of integers (each integer being
the index of a token in a dictionary) or into a vector where the coefficient for each token could be
binary, based on word count, based on tf-idf...

Usage

text_tokenizer(
num_words = NULL,
filters = "IN"#$%&(O)*+,-./:;<=>?@[\\]1*_*{|}~\t\n",
lower = TRUE,
split =" ",
char_level = FALSE,
oov_token = NULL

)
Arguments
num_words the maximum number of words to keep, based on word frequency. Only the
most common num_words words will be kept.
filters a string where each element is a character that will be filtered from the texts.
The default is all punctuation, plus tabs and line breaks, minus the ’ character.
lower boolean. Whether to convert the texts to lowercase.

split character or string to use for token splitting.

340 text_to_word_sequence

char_level if TRUE, every character will be treated as a token

oov_token NULL or string If given, it will be added to ‘word_index* and used to replace
out-of-vocabulary words during text_to_sequence calls.

Details

By default, all punctuation is removed, turning the texts into space-separated sequences of words
(words maybe include the * character). These sequences are then split into lists of tokens. They will
then be indexed or vectorized. @ is a reserved index that won’t be assigned to any word.

Attributes

The tokenizer object has the following attributes:
* word_counts — named list mapping words to the number of times they appeared on during
fit. Only set after fit_text_tokenizer() is called on the tokenizer.

* word_docs — named list mapping words to the number of documents/texts they appeared on
during fit. Only set after fit_text_tokenizer () is called on the tokenizer.

* word_index — named list mapping words to their rank/index (int). Only set after fit_text_tokenizer()

is called on the tokenizer.

* document_count — int. Number of documents (texts/sequences) the tokenizer was trained
on. Only set after fit_text_tokenizer() is called on the tokenizer.

See Also

Other text tokenization: fit_text_tokenizer(), save_text_tokenizer(), sequences_to_matrix(),

texts_to_matrix(), texts_to_sequences_generator(), texts_to_sequences()

text_to_word_sequence Convert text to a sequence of words (or tokens).

Description

Convert text to a sequence of words (or tokens).

Usage

text_to_word_sequence(
text,
filters = "IN"#$%&(O)*+,-./:;<=>?@[\\1*_*{|}~\t\n",
lower = TRUE,
split = " "

timeseries_generator 341

Arguments
text Input text (string).
filters Sequence of characters to filter out such as punctuation. Default includes basic
punctuation, tabs, and newlines.
lower Whether to convert the input to lowercase.
split Sentence split marker (string).
Value

Words (or tokens)

See Also

Other text preprocessing: make_sampling_table(), pad_sequences(), skipgrams(), text_hashing_trick(),
text_one_hot()

timeseries_generator Utility function for generating batches of temporal data.

Description

Utility function for generating batches of temporal data.

Usage

timeseries_generator(
data,
targets,
length,
sampling_rate = 1,
stride = 1,
start_index = 0,
end_index = NULL,
shuffle = FALSE,
reverse = FALSE,
batch_size = 128

)
Arguments
data Object containing consecutive data points (timesteps). The data should be 2D,
and axis 1 is expected to be the time dimension.
targets Targets corresponding to timesteps in data. It should have same length as data.

length Length of the output sequences (in number of timesteps).

342

sampling_rate

stride

time_distributed

Period between successive individual timesteps within sequences. For rate r,
timesteps datali], datali-r], ... datali -length] are used for create a sam-
ple sequence.

Period between successive output sequences. For stride s, consecutive output
samples would be centered around datal[i], data[i+s], datal[i+2#s], etc.

start_index, end_index

shuffle

reverse

batch_size

Value

Data points earlier than start_index or later than end_index will not be used
in the output sequences. This is useful to reserve part of the data for test or
validation.

Whether to shuffle output samples, or instead draw them in chronological order.

Boolean: if true, timesteps in each output sample will be in reverse chronolog-
ical order.

Number of timeseries samples in each batch (except maybe the last one).

An object that can be passed to generator based training functions (e.g. fit_generator()).ma

time_distributed

Apply a layer to every temporal slice of an input.

Description

The input should be at least 3D, and the dimension of index one will be considered to be the temporal

dimension.

Usage

time_distributed(

object,
layer,

input_shape

NULL,

batch_input_shape = NULL,

NULL,

NULL,

Model or layer object

batch_size
dtype = NULL,
name = NULL,
trainable =
weights = NULL

)

Arguments
object
layer

input_shape

A layer instance.

Dimensionality of the input (integer) not including the samples axis. This argu-
ment is required when using this layer as the first layer in a model.

to_categorical 343

batch_input_shape
Shapes, including the batch size. For instance, batch_input_shape=c(10,32)
indicates that the expected input will be batches of 10 32-dimensional vectors.
batch_input_shape=1ist(NULL, 32) indicates batches of an arbitrary number
of 32-dimensional vectors.

batch_size Fixed batch size for layer
dtype The data type expected by the input, as a string (float32, float64, int32...)
name An optional name string for the layer. Should be unique in a model (do not reuse
the same name twice). It will be autogenerated if it isn’t provided.
trainable Whether the layer weights will be updated during training.
weights Initial weights for layer.
Details

Consider a batch of 32 samples, where each sample is a sequence of 10 vectors of 16 dimensions.
The batch input shape of the layer is then (32, 10, 16), and the input_shape, not including the
samples dimension, is (10, 16). You can then use time_distributed to apply a layer_dense to
each of the 10 timesteps, independently.

See Also

Other layer wrappers: bidirectional()

to_categorical Converts a class vector (integers) to binary class matrix.

Description

Converts a class vector (integers) to binary class matrix.

Usage
to_categorical(y, num_classes = NULL, dtype = "float32")

Arguments
y Class vector to be converted into a matrix (integers from 0 to num_classes).
num_classes Total number of classes.
dtype The data type expected by the input, as a string

Details

E.g. for use with loss_categorical_crossentropy().

Value

A binary matrix representation of the input.

344 train_on_batch

train_on_batch Single gradient update or model evaluation over one batch of samples.

Description

Single gradient update or model evaluation over one batch of samples.

Usage
train_on_batch(object, x, y, class_weight = NULL, sample_weight = NULL)

test_on_batch(object, x, y, sample_weight = NULL)

Arguments
object Keras model object
X input data, as an array or list of arrays (if the model has multiple inputs).
y labels, as an array.

class_weight named list mapping classes to a weight value, used for scaling the loss function
(during training only).

sample_weight sample weights, as an array.

Value

Scalar training or test loss (if the model has no metrics) or list of scalars (if the model computes
other metrics). The property model$metrics_names will give you the display labels for the scalar
outputs.

See Also

Other model functions: compile.keras.engine.training.Model (), evaluate.keras.engine.training.Model(),
evaluate_generator(), fit.keras.engine.training.Model (), fit_generator(), get_config(),

get_layer(), keras_model_sequential (), keras_model(),multi_gpu_model(), pop_layer(),
predict.keras.engine.training.Model (), predict_generator(), predict_on_batch(), predict_proba(),
summary.keras.engine.training.Model ()

use_implementation 345

use_implementation Select a Keras implementation and backend

Description

Select a Keras implementation and backend

Usage
use_implementation(implementation = c("keras”, "tensorflow"))
use_backend(backend = c("tensorflow”, "cntk", "theano”, "plaidml”))
Arguments

implementation One of "keras" or "tensorflow" (defaults to "keras").

backend One of "tensorflow", "cntk", or "theano" (defaults to "tensorflow")

Details

Keras has multiple implementations (the original keras implementation and the implementation na-
tive to TensorFlow) and supports multiple backends ("tensorflow", "cntk", "theano", and "plaidml").
These functions allow switching between the various implementations and backends.

The functions should be called after 1ibrary(keras) and before calling other functions within the
package (see below for an example).

The default implementation and backend should be suitable for most use cases. The "tensorflow"
implementation is useful when using Keras in conjunction with TensorFlow Estimators (the tfesti-
mators R package).

Examples

Not run:

use the tensorflow implementation
library(keras)
use_implementation("tensorflow")

use the cntk backend
library(keras)

use_backend("theano")

End(Not run)

346 with_custom_object_scope

with_custom_object_scope
Provide a scope with mappings of names to custom objects

Description

Provide a scope with mappings of names to custom objects

Usage

with_custom_object_scope(objects, expr)

Arguments
objects Named list of objects
expr Expression to evaluate
Details

There are many elements of Keras models that can be customized with user objects (e.g. losses,
metrics, regularizers, etc.). When loading saved models that use these functions you typically need
to explicitily map names to user objects via the custom_objects parmaeter.

The with_custom_object_scope() function provides an alternative that lets you create a named
alias for a user object that applies to an entire block of code, and is automatically recognized when
loading saved models.

Examples

Not run:
define custom metric
metric_top_3_categorical_accuracy <-
custom_metric("top_3_categorical_accuracy”, function(y_true, y_pred) {
metric_top_k_categorical_accuracy(y_true, y_pred, k = 3)

D)
with_custom_object_scope(c(top_k_acc = sparse_top_k_cat_acc), {
...define model...

compile model (refer to "top_k_acc” by name)
model %>% compile(

loss = "binary_crossentropy”,

optimizer = optimizer_nadam(),

metrics = c("top_k_acc")

)

save the model
save_model_hdf5("my_model.h5")

with_custom_object_scope 347

loading the model within the custom object scope doesn't
require explicitly providing the custom_object
load_model_hdf5("my_model.h5")

»

End(Not run)

Index

activation_elu (activation_relu), 10
activation_exponential
(activation_relu), 10
activation_hard_sigmoid
(activation_relu), 10
activation_linear (activation_relu), 10
activation_relu, 10
activation_selu (activation_relu), 10
activation_sigmoid (activation_relu), 10
activation_softmax (activation_relu), 10
activation_softplus (activation_relu),
10
activation_softsign (activation_relu),
10
activation_tanh (activation_relu), 10
adapt, 11
adapt(), 333
application_densenet, 12
application_densenet121
(application_densenet), 12
application_densenet169
(application_densenet), 12
application_densenet201
(application_densenet), 12
application_inception_resnet_v2, 13
application_inception_v3, 15
application_mobilenet, 16
application_mobilenet_v2, 18
application_nasnet, 19
application_nasnetlarge
(application_nasnet), 19
application_nasnetmobile
(application_nasnet), 19
application_resnet50, 21
application_vgg, 23
application_vggl6 (application_vgg), 23
application_vggl19 (application_vgg), 23
application_xception, 24

backend, 26

348

backend(), 39
bidirectional, 26, 343

callback_csv_logger, 27, 29-34, 36
callback_early_stopping, 28, 28, 30-34,
36
callback_lambda, 28, 29, 29, 31-34, 36
callback_learning_rate_scheduler,
28-30, 30, 32-34, 36
callback_model_checkpoint, 28-31, 31,
32-34, 36
callback_progbar_logger, 28-32, 32, 33,
34, 36
callback_reduce_lr_on_plateau, 28-32,
33,34, 36
callback_remote_monitor, 28-33, 34, 36
callback_tensorboard, 28-34, 35, 36
callback_terminate_on_naan, 28-34, 36,
36
clone_model, 37
compile(), 48, 52, 54
compile.keras.engine.training.Model,
37,49, 50, 53, 55, 64, 67, 90, 92,
311,318, 321-324, 335, 344
compile.keras.engine.training.Model(),
303, 306
constraint_maxnorm (constraints), 38
constraint_minmaxnorm (constraints), 38
constraint_nonneg (constraints), 38
constraint_unitnorm (constraints), 38
constraints, 38, 88
count_params, 40, 64, 66, 68, 325
create_layer, 40
create_wrapper, 41
custom_metric (metric_binary_accuracy),
304

dataset_boston_housing, 42, 43, 44, 46, 48
dataset_cifar10, 42, 42, 43, 44, 46, 48
dataset_cifar100, 42, 43, 43, 44, 46, 48

INDEX

dataset_fashion_mnist, 42, 43, 44, 46, 48
dataset_imdb, 42—44, 45, 46, 48
dataset_imdb(), 47
dataset_imdb_word_index (dataset_imdb),
45
dataset_mnist, 42—44, 46, 46, 48
dataset_reuters, 4244, 46, 47
dataset_reuters_word_index
(dataset_reuters), 47
densenet_preprocess_input
(application_densenet), 12

evaluate.keras.engine.training.Model
38,48, 50, 53, 55, 64, 67, 90, 92,
311,321-324, 335, 344

evaluate_generator, 38, 49, 49, 53, 55, 64,
67,90, 92, 311, 321-324, 335, 344

evaluate_generator(), 6/

349

get_layer, 38, 49, 50, 53, 55, 64, 67, 90, 92,
311,321-324, 335, 344
get_output_at (get_input_at), 66
get_output_mask_at (get_input_at), 66
get_output_shape_at (get_input_at), 66
get_vocabulary, 67
get_vocabulary(), 333
get_weights, 40, 64, 66, 68, 308, 309,
325-327, 329, 332

hdf5_matrix, 68

image_array_resize (image_to_array), 73
image_array_save (image_to_array), 73
image_data_generator, 70
image_data_generator(), 55, 57,59, 61, 63
image_load, 55, 57, 60, 62,72, 73
image_to_array, 55, 57, 60, 62, 72,73

export_savedmodel.keras.engine.training.Modelimagenet_decode_predictions, 69

50

fit.keras.engine.training.Model, 38, 49,
50, 51, 55, 64, 67, 90, 92, 311
321-324, 335, 344

fit_generator, 38, 49, 50, 53, 53, 64, 67, 90,
92,311,321-324, 335, 344

fit_generator(), 342

fit_image_data_generator, 55, 57, 60, 62,
72,73

fit_text_tokenizer, 56, 330, 331, 336, 337,
340

fit_text_tokenizer(), 330

flow_images_from_data, 55, 56, 60, 62, 72,
73

flow_images_from_dataframe, 55, 57, 58,
62,72, 73

flow_images_from_directory, 55, 57, 60,
60, 72, 73

flow_images_from_directory(), 53

freeze_weights, 62

from_config (get_config), 64

generator_next, 63
get_config, 38, 40, 49, 50, 53, 55, 64, 6668,
90, 92, 311, 321-325, 335, 344
get_file, 65
get_input_at, 40, 64, 66, 68, 325
get_input_mask_at (get_input_at), 66
get_input_shape_at (get_input_at), 66

imagenet_preprocess_input, 69
implementation, 74
inception_resnet_v2_preprocess_input
(application_inception_resnet_v2),
13
inception_v3_preprocess_input
(application_inception_v3), 15
initializer_constant, 74, 75-83
initializer_glorot_normal, 74,75, 76-83
initializer_glorot_uniform, 74, 75,75,
76-83
initializer_he_normal, 74-76, 76, 77-83
initializer_he_uniform, 74-76, 77, 78-83
initializer_identity, 74-77,77, 78-83
initializer_lecun_normal, 74-78, 78,
79-83, 197
initializer_lecun_uniform, 74-79, 79,
80-83
initializer_ones, 74-79, 79, 80-83
initializer_orthogonal, 74-79, 80, 81-83
initializer_random_normal, 74-80, 80,
81-83
initializer_random_normal(), 81/
initializer_random_uniform, 74-81, 81,
82, 83
initializer_truncated_normal, 74-81, 81,
83
initializer_variance_scaling, 74-82, 82,
83
initializer_zeros, 74-83, 83

350

install_keras, 83
is_keras_available, 85

k_abs, 92

k_all, 93

k_any, 94

k_arange, 94

k_argmax, 95

k_argmin, 96
k_backend, 96
k_batch_dot, 97
k_batch_flatten, 98
k_batch_get_value, 98
k_batch_get_value(), 100
k_batch_normalization, 99
k_batch_set_value, 100
k_batch_set_value(), 99
k_bias_add, 100
k_binary_crossentropy, 101
k_cast, 102
k_cast_to_floatx, 102
k_categorical_crossentropy, 103
k_clear_session, 104
k_clip, 104
k_concatenate, 105
k_constant, 105
k_conv1d, 106
k_conv2d, 107
k_conv2d_transpose, 108
k_conv3d, 109
k_conv3d_transpose, 110
k_cos, 111
k_count_params, 111
k_ctc_batch_cost, 112
k_ctc_decode, 113
k_ctc_label_dense_to_sparse, 114
k_cumprod, 114
k_cumsum, 115
k_depthwise_conv2d, 116
k_dot, 117

k_dropout, 117
k_dtype, 118

k_elu, 119

k_epsilon, 119
k_equal, 120

k_eval, 120

k_exp, 121
k_expand_dims, 122
k_eye, 122

INDEX

k_flatten, 123
k_floatx, 124

k_foldl, 124

k_foldr, 125
k_function, 126
k_gather, 126
k_get_session, 127
k_get_uid, 128
k_get_value, 128
k_get_variable_shape, 129
k_gradients, 129
k_greater, 130
k_greater_equal, 131
k_greater_equal(), 39
k_hard_sigmoid, 131
k_identity, 132
k_image_data_format, 132
k_in_test_phase, 134
k_in_top_k, 134
k_in_train_phase, 135
k_int_shape, 133
k_is_keras_tensor, 136
k_is_placeholder, 136
k_is_sparse, 137
k_is_tensor, 137
k_12_normalize, 138
k_learning_phase, 139
k_less, 139
k_less_equal, 140
k_local_convid, 140
k_local_conv2d, 141
k_log, 142
k_logsumexp, 143
k_manual_variable_initialization, 143
k_map_fn, 144

k_max, 145

k_maximum, 145

k_mean, 146

k_min, 147

k_minimum, 147
k_moving_average_update, 148
k_ndim, 149
k_normalize_batch_in_training, 149
k_not_equal, 150
k_one_hot, 152

k_ones, 151
k_ones_like, 151
k_permute_dimensions, 153

INDEX

k_placeholder, 153

k_pool2d, 154

k_pool3d, 155

k_pow, 156

k_print_tensor, 156

k_prod, 157

k_random_binomial, 158

k_random_normal, 158

k_random_normal_variable, 159

k_random_uniform, 160

k_random_uniform_variable, 161

k_relu, 162

k_repeat, 162

k_repeat_elements, 163

k_reset_uids, 164

k_reshape, 164

k_resize_images, 165

k_resize_volumes, 165

k_reverse, 166

k_rnn, 167

k_round, 168

k_separable_conv2d, 168

k_set_epsilon (k_epsilon), 119

k_set_floatx (k_floatx), 124

k_set_image_data_format
(k_image_data_format), 132

k_set_learning_phase, 169

k_set_session (k_get_session), 127

k_set_value, 170

k_shape, 170

k_sigmoid, 171

k_sign, 172

k_sin, 172

k_softmax, 173

k_softplus, 174

k_softsign, 174

k_sparse_categorical_crossentropy, 175

k_spatial_2d_padding, 176

k_spatial_3d_padding, 176

k_sqrt, 177

k_square, 178

k_squeeze, 178

k_stack, 179

k_std, 180

k_stop_gradient, 180

k_sum, 181

k_switch, 182

k_tanh, 182

351

k_temporal_padding, 183

k_tile, 184

k_to_dense, 184

k_transpose, 185

k_truncated_normal, 185

k_update, 186

k_update_add, 187

k_update_sub, 187

k_var, 188

k_variable, 189

k_zeros, 189

k_zeros_like, 190

keras (keras-package), 9

keras-package, 9

keras_array, 89

keras_model, 38, 49, 50, 53, 55, 64, 67, 90,
92,311, 321-324, 335, 344

keras_model_custom, 91

keras_model_sequential, 38, 49, 50, 53, 55,
64,67,90,91, 311, 321-324, 335,
344

keras_model_sequential (), 41

KerasCallback, 86, 86

KerasConstraint, 40, 87

KerasLayer, 88, 88

KerasWrapper, 89, 89

layer_activation, 191, 193-200, 204, 238,
239, 243, 245, 259, 261, 269,
277-279

layer_activation(), 10

layer_activation_elu, 192, 192, 194—-199

layer_activation_leaky_relu, 192, 193,
193, 195-199

layer_activation_parametric_relu,
192-194, 194, 196199

layer_activation_relu, 192-195, 195,
197199

layer_activation_selu, 192-196, 196, 198,
199

layer_activation_softmax, 192-197, 197,
199

layer_activation_thresholded_relu,
192-198, 198

layer_activity_regularization, 191, 199,
204, 238, 239, 243, 245, 259, 261,
269, 277-279

layer_add, 201, 205, 212, 242, 270, 275, 292

layer_alpha_dropout, 197, 202, 247, 248

352

layer_attention, 191, 200, 203, 238, 239,
243,245,259, 261, 269, 277-279
layer_average, 201, 204, 212, 242, 270, 275,
292
layer_average_pooling_1d, 205, 207, 209,
249-253, 255,271, 272, 274
layer_average_pooling_2d, 206, 206, 209,
249-253, 255,271, 272, 274
layer_average_pooling_3d, 206, 207, 208
249-253, 255,271, 272, 274
layer_batch_normalization, 209
layer_concatenate, 201, 205, 212, 242, 270,
275,292
layer_conv_1d, 213, 217, 220, 223, 225,
228-230, 232, 241, 281, 284, 295
296, 298-300, 302
layer_conv_1d(), 261
layer_conv_2d, 215, 215, 220, 223, 225,
228-230, 232, 241, 281, 284, 295
296, 298-300, 302
layer_conv_2d(), 263
layer_conv_2d_transpose, 215,217, 218,
223,225,228-230, 232, 241, 281,
284, 295, 296, 298-300, 302
layer_conv_3d, 215, 217, 220, 220, 225,
228-230, 232, 241, 281, 284, 295
296, 298-300, 302
layer_conv_3d_transpose, 215, 217, 220,
223,223, 228-230, 232, 241, 281,
284, 295, 296, 298-300, 302
layer_conv_1stm_2d, 215, 217, 220, 223,
225,225, 229, 230, 232, 241, 281,
284, 295, 296, 298-300, 302
layer_cropping_1d, 215, 217, 220, 223, 225,
228,228, 230, 232, 241, 281, 284,
295, 296, 298-300, 302
layer_cropping_2d, 215,217, 220, 223, 225,
228, 229,229, 232, 241, 281, 284,
295, 296, 298-300, 302
layer_cropping_3d, 215, 217, 220, 223, 225,
228-230, 231, 241, 281, 284, 295
296, 298-300, 302
layer_cudnn_gru, 232, 236, 258, 268, 288
layer_cudnn_1lstm, 234, 234, 258, 268, 288
layer_dense, 191, 200, 204, 236, 239, 243,
245,259, 261, 269, 277-279
layer_dense_features, 191, 200, 204, 238,
238, 243, 245, 259, 261, 269,

INDEX

277-279
layer_depthwise_conv_2d, 215, 217, 220,
223,225, 228-230, 232, 239, 281,
284, 295, 296, 298-300, 302
layer_dot, 201, 205, 212, 241, 270, 275, 292
layer_dropout, 191, 200, 204, 238, 239, 242,
245,259, 261, 269, 277-279,
289-291
layer_embedding, 243
layer_flatten, 191, 200, 204, 238, 239, 243,
245, 259, 261, 269, 277-279
layer_gaussian_dropout, 203, 246, 248
layer_gaussian_noise, 203, 247, 247
layer_global_average_pooling_1d, 206,
207, 209, 248, 250-253, 255, 271,
272,274
layer_global_average_pooling_2d, 206,
207, 209, 249, 249, 251-253, 255,
271,272,274
layer_global_average_pooling_3d, 206,
207, 209, 249, 250, 250, 252, 253,
255,271, 272,274
layer_global_max_pooling_1d, 206, 207,
209, 249-251, 251, 253, 255, 271,
272,274
layer_global_max_pooling_2d, 206, 207,
209, 249-252, 252, 255, 271, 272,
274
layer_global_max_pooling_3d, 206, 207,
209, 249-253, 254, 271, 272, 274
layer_gru, 234, 236, 255, 268, 288
layer_input, 191, 200, 204, 238, 239, 243,
245,258, 261, 269, 277-279
layer_lambda, 191, 200, 204, 238, 239, 243,
245, 259,259, 269, 277-279
layer_locally_connected_1d, 261, 264
layer_locally_connected_2d, 262, 263
layer_lstm, 234, 236, 258, 265, 288
layer_masking, 191, 200, 204, 238, 239, 243,
245,259, 261,268, 277-279
layer_max_pooling_1d, 206, 207, 209,
249-253, 255,270, 272, 274
layer_max_pooling_2d, 206, 207, 209,
249-253,255,271,271, 274
layer_max_pooling_3d, 206, 207, 209,
249-253, 255,271, 272,273
layer_maximum, 201, 205, 212, 242, 269, 275,
292

INDEX

layer_minimum, 201, 205, 212, 242, 270, 274,
275,292
layer_multiply, 201, 205, 212, 242, 270,
275,275, 292
layer_permute, 191, 200, 204, 238, 239, 243,
245, 259, 261, 269, 276, 278, 279
layer_repeat_vector, 191, 200, 204, 238,
239,243, 245, 259, 261, 269, 277,
2717, 279
layer_reshape, 191, 200, 204, 238, 239, 243,
245,259, 261, 269, 277, 278, 278
layer_separable_conv_1d, 215, 217, 220,
223,225,228-230, 232, 241, 279,
284, 295, 296, 298-300, 302
layer_separable_conv_2d, 215, 217, 220,
223,225, 228-230, 232, 241, 281,
282, 295, 296, 298-300, 302
layer_simple_rnn, 234, 236, 258, 268, 285
layer_spatial_dropout_1d, 243, 288, 290,
291
layer_spatial_dropout_2d, 243, 289, 289,
291
layer_spatial_dropout_3d, 243, 289, 290,
290
layer_subtract, 201, 205, 212, 242, 270,
275,292
layer_text_vectorization, 293
layer_upsampling_1id, 215, 217, 220, 223,
225,228-230, 232, 241, 281, 284,
294, 296, 298-300, 302
layer_upsampling_2d, 215, 217, 220, 223,
225,228-230, 232, 241, 281, 284,
295, 295, 298-300, 302
layer_upsampling_3d, 215, 217, 220, 223,
225,228-230, 232, 241, 281, 284,
295, 296, 297, 299, 300, 302
layer_zero_padding_1d, 215, 217, 220, 223,
225,228-230, 232, 241, 281, 284,
295, 296, 298, 298, 300, 302
layer_zero_padding_2d, 215, 217, 220, 223,
225,228-230, 232, 241, 281, 284,
295, 296, 298, 299, 299, 302
layer_zero_padding_3d, 215, 217, 220, 223,
225, 228-230, 232, 241, 281, 284,
295, 296, 298-300, 300
load_model_hdf5 (save_model_hdf5), 326
load_model_hdf5(), 306, 330
load_model_tf (save_model_tf), 327

353

load_model_weights_hdf5
(save_model_weights_hdf5), 328
load_model_weights_tf
(save_model_weights_tf), 329
load_text_tokenizer
(save_text_tokenizer), 330
loss_binary_crossentropy
(loss_mean_squared_error), 302
loss_categorical_crossentropy
(loss_mean_squared_error), 302
loss_categorical_crossentropy(), 343
loss_categorical_hinge
(loss_mean_squared_error), 302
loss_cosine_proximity
(loss_mean_squared_error), 302
loss_cosine_similarity
(loss_mean_squared_error), 302
loss_hinge (loss_mean_squared_error),
302
loss_kullback_leibler_divergence
(loss_mean_squared_error), 302
loss_logcosh (loss_mean_squared_error),
302
loss_mean_absolute_error
(loss_mean_squared_error), 302
loss_mean_absolute_percentage_error
(loss_mean_squared_error), 302
loss_mean_squared_error, 302
loss_mean_squared_logarithmic_error
(loss_mean_squared_error), 302
loss_poisson (loss_mean_squared_error),
302
loss_sparse_categorical_crossentropy
(loss_mean_squared_error), 302
loss_squared_hinge
(loss_mean_squared_error), 302

make_sampling_table, 303, 320, 335, 338,
339, 341
metric_binary_accuracy, 304
metric_binary_crossentropy
(metric_binary_accuracy), 304
metric_categorical_accuracy
(metric_binary_accuracy), 304
metric_categorical_crossentropy
(metric_binary_accuracy), 304
metric_cosine_proximity
(metric_binary_accuracy), 304

354

metric_hinge (metric_binary_accuracy),
304
metric_kullback_leibler_divergence
(metric_binary_accuracy), 304
metric_mean_absolute_error
(metric_binary_accuracy), 304
metric_mean_absolute_percentage_error
(metric_binary_accuracy), 304
metric_mean_squared_error
(metric_binary_accuracy), 304
metric_mean_squared_logarithmic_error
(metric_binary_accuracy), 304
metric_poisson
(metric_binary_accuracy), 304
metric_sparse_categorical_crossentropy
(metric_binary_accuracy), 304
metric_sparse_top_k_categorical_accuracy
(metric_binary_accuracy), 304
metric_squared_hinge
(metric_binary_accuracy), 304
metric_top_k_categorical_accuracy
(metric_binary_accuracy), 304
mobilenet_decode_predictions
(application_mobilenet), 16
mobilenet_load_model_hdf5
(application_mobilenet), 16
mobilenet_preprocess_input
(application_mobilenet), 16
mobilenet_v2_decode_predictions
(application_mobilenet_v2), 18
mobilenet_v2_load_model_hdf5
(application_mobilenet_v2), 18
mobilenet_v2_preprocess_input
(application_mobilenet_v2), 18
model_from_json (model_to_json), 307
model_from_saved_model, 307, 309
model_from_yaml (model_to_yaml), 309
model_to_json, 68, 307, 309, 326, 327, 329,
332
model_to_saved_model, 307, 308
model_to_yaml, 68, 308, 309, 326, 327, 329,
332
multi_gpu_model, 38, 49, 50, 53, 55, 64, 67.
90, 92, 310, 321-324, 335, 344

nasnet_preprocess_input
(application_nasnet), 19
normalize, 312

INDEX

optimizer_adadelta, 312, 3/4-318
optimizer_adagrad, 313, 313, 315-318
optimizer_adam, 313, 314,314, 316-318
optimizer_adamax, 3/3-315, 315,317, 318
optimizer_nadam, 313-316, 316, 317, 318
optimizer_rmsprop, 3/13-317,317, 318
optimizer_sgd, 313-317, 318

pad_sequences, 304, 319, 335, 338, 339, 341
plot(), 320
plot.keras_training_history, 320
pop_layer, 38, 49, 50, 53, 55, 64, 67, 90, 92,
311,321, 322-324, 335, 344
predict.keras.engine.training.Model,
38,49, 50, 53, 55, 64, 67, 90, 92,
311,321,321, 323, 324, 335, 344
predict_classes (predict_proba), 324
predict_generator, 38, 49, 50, 53, 55, 64,
67,90, 92,311, 321, 322,322, 324,
335, 344
predict_generator(), 61
predict_on_batch, 38, 49, 50, 53, 55, 64, 67,
90, 92, 311, 321-323, 323, 324, 335,
344
predict_proba, 38, 49, 50, 53, 55, 64, 67, 90,
92,311, 321-324, 324, 335, 344
py_to_r(Q), 26

R6Class, 86—-89

regularizer_11, 325

regularizer_11_12 (regularizer_11), 325
regularizer_12 (regularizer_11), 325
reset_states, 40, 64, 66, 68, 325
reticulate: :py_install(), 85

save_model_hdf5, 68, 308, 309, 326, 327,
329, 332
save_model_hdf5(), 40, 88, 311, 332
save_model_tf, 68, 308, 309, 326, 327, 329,
332
save_model_weights_hdf5, 68, 308, 309,
326, 327, 328, 332
save_model_weights_hdf5(), 40, 88, 311
save_model_weights_tf, 329
save_text_tokenizer, 56, 330, 331, 336,
337, 340
sequences_to_matrix, 56, 330, 331, 336,
337, 340
sequences_to_matrix(), 56

INDEX

serialize_model, 68, 308, 309, 326, 327,
329,332
serialize_model(), 326
set_vocabulary, 333
set_vocabulary(), 67
set_weights (get_weights), 68
skipgrams, 304, 320, 333, 338, 339, 341
skipgrams(), 304
summary.keras.engine.training.Model,
38, 49, 50, 53, 55, 64, 67, 90, 92,
311, 321-324, 335, 344

tensorflow: :install_tensorflow(), 84
test_on_batch (train_on_batch), 344
text_hashing_trick, 304, 320, 335, 337,
339, 341
text_one_hot, 304, 320, 335, 338, 338, 341
text_to_word_sequence, 304, 320, 335, 338,
339, 340
text_tokenizer, 56, 330, 331, 336, 337, 339
text_tokenizer(), 56
texts_to_matrix, 56, 330, 331, 336, 336,
337, 340
texts_to_matrix(), 56
texts_to_sequences, 56, 330, 331, 336, 336,
337, 340
texts_to_sequences(), 56
texts_to_sequences_generator, 56, 330,
331, 336, 337, 340
time_distributed, 27, 342
timeseries_generator, 341
to_categorical, 343
to_categorical(), 303
train_on_batch, 38, 49, 50, 53, 55, 64, 67,
90, 92, 311, 321-324, 335, 344

unfreeze_weights (freeze_weights), 62
unserialize_model (serialize_model), 332
use_backend (use_implementation), 345
use_implementation, 345

with_custom_object_scope, 346
with_custom_object_scope(), 306, 326

xception_preprocess_input
(application_xception), 24

355

	keras-package
	activation_relu
	adapt
	application_densenet
	application_inception_resnet_v2
	application_inception_v3
	application_mobilenet
	application_mobilenet_v2
	application_nasnet
	application_resnet50
	application_vgg
	application_xception
	backend
	bidirectional
	callback_csv_logger
	callback_early_stopping
	callback_lambda
	callback_learning_rate_scheduler
	callback_model_checkpoint
	callback_progbar_logger
	callback_reduce_lr_on_plateau
	callback_remote_monitor
	callback_tensorboard
	callback_terminate_on_naan
	clone_model
	compile.keras.engine.training.Model
	constraints
	count_params
	create_layer
	create_wrapper
	dataset_boston_housing
	dataset_cifar10
	dataset_cifar100
	dataset_fashion_mnist
	dataset_imdb
	dataset_mnist
	dataset_reuters
	evaluate.keras.engine.training.Model
	evaluate_generator
	export_savedmodel.keras.engine.training.Model
	fit.keras.engine.training.Model
	fit_generator
	fit_image_data_generator
	fit_text_tokenizer
	flow_images_from_data
	flow_images_from_dataframe
	flow_images_from_directory
	freeze_weights
	generator_next
	get_config
	get_file
	get_input_at
	get_layer
	get_vocabulary
	get_weights
	hdf5_matrix
	imagenet_decode_predictions
	imagenet_preprocess_input
	image_data_generator
	image_load
	image_to_array
	implementation
	initializer_constant
	initializer_glorot_normal
	initializer_glorot_uniform
	initializer_he_normal
	initializer_he_uniform
	initializer_identity
	initializer_lecun_normal
	initializer_lecun_uniform
	initializer_ones
	initializer_orthogonal
	initializer_random_normal
	initializer_random_uniform
	initializer_truncated_normal
	initializer_variance_scaling
	initializer_zeros
	install_keras
	is_keras_available
	KerasCallback
	KerasConstraint
	KerasLayer
	KerasWrapper
	keras_array
	keras_model
	keras_model_custom
	keras_model_sequential
	k_abs
	k_all
	k_any
	k_arange
	k_argmax
	k_argmin
	k_backend
	k_batch_dot
	k_batch_flatten
	k_batch_get_value
	k_batch_normalization
	k_batch_set_value
	k_bias_add
	k_binary_crossentropy
	k_cast
	k_cast_to_floatx
	k_categorical_crossentropy
	k_clear_session
	k_clip
	k_concatenate
	k_constant
	k_conv1d
	k_conv2d
	k_conv2d_transpose
	k_conv3d
	k_conv3d_transpose
	k_cos
	k_count_params
	k_ctc_batch_cost
	k_ctc_decode
	k_ctc_label_dense_to_sparse
	k_cumprod
	k_cumsum
	k_depthwise_conv2d
	k_dot
	k_dropout
	k_dtype
	k_elu
	k_epsilon
	k_equal
	k_eval
	k_exp
	k_expand_dims
	k_eye
	k_flatten
	k_floatx
	k_foldl
	k_foldr
	k_function
	k_gather
	k_get_session
	k_get_uid
	k_get_value
	k_get_variable_shape
	k_gradients
	k_greater
	k_greater_equal
	k_hard_sigmoid
	k_identity
	k_image_data_format
	k_int_shape
	k_in_test_phase
	k_in_top_k
	k_in_train_phase
	k_is_keras_tensor
	k_is_placeholder
	k_is_sparse
	k_is_tensor
	k_l2_normalize
	k_learning_phase
	k_less
	k_less_equal
	k_local_conv1d
	k_local_conv2d
	k_log
	k_logsumexp
	k_manual_variable_initialization
	k_map_fn
	k_max
	k_maximum
	k_mean
	k_min
	k_minimum
	k_moving_average_update
	k_ndim
	k_normalize_batch_in_training
	k_not_equal
	k_ones
	k_ones_like
	k_one_hot
	k_permute_dimensions
	k_placeholder
	k_pool2d
	k_pool3d
	k_pow
	k_print_tensor
	k_prod
	k_random_binomial
	k_random_normal
	k_random_normal_variable
	k_random_uniform
	k_random_uniform_variable
	k_relu
	k_repeat
	k_repeat_elements
	k_reset_uids
	k_reshape
	k_resize_images
	k_resize_volumes
	k_reverse
	k_rnn
	k_round
	k_separable_conv2d
	k_set_learning_phase
	k_set_value
	k_shape
	k_sigmoid
	k_sign
	k_sin
	k_softmax
	k_softplus
	k_softsign
	k_sparse_categorical_crossentropy
	k_spatial_2d_padding
	k_spatial_3d_padding
	k_sqrt
	k_square
	k_squeeze
	k_stack
	k_std
	k_stop_gradient
	k_sum
	k_switch
	k_tanh
	k_temporal_padding
	k_tile
	k_to_dense
	k_transpose
	k_truncated_normal
	k_update
	k_update_add
	k_update_sub
	k_var
	k_variable
	k_zeros
	k_zeros_like
	layer_activation
	layer_activation_elu
	layer_activation_leaky_relu
	layer_activation_parametric_relu
	layer_activation_relu
	layer_activation_selu
	layer_activation_softmax
	layer_activation_thresholded_relu
	layer_activity_regularization
	layer_add
	layer_alpha_dropout
	layer_attention
	layer_average
	layer_average_pooling_1d
	layer_average_pooling_2d
	layer_average_pooling_3d
	layer_batch_normalization
	layer_concatenate
	layer_conv_1d
	layer_conv_2d
	layer_conv_2d_transpose
	layer_conv_3d
	layer_conv_3d_transpose
	layer_conv_lstm_2d
	layer_cropping_1d
	layer_cropping_2d
	layer_cropping_3d
	layer_cudnn_gru
	layer_cudnn_lstm
	layer_dense
	layer_dense_features
	layer_depthwise_conv_2d
	layer_dot
	layer_dropout
	layer_embedding
	layer_flatten
	layer_gaussian_dropout
	layer_gaussian_noise
	layer_global_average_pooling_1d
	layer_global_average_pooling_2d
	layer_global_average_pooling_3d
	layer_global_max_pooling_1d
	layer_global_max_pooling_2d
	layer_global_max_pooling_3d
	layer_gru
	layer_input
	layer_lambda
	layer_locally_connected_1d
	layer_locally_connected_2d
	layer_lstm
	layer_masking
	layer_maximum
	layer_max_pooling_1d
	layer_max_pooling_2d
	layer_max_pooling_3d
	layer_minimum
	layer_multiply
	layer_permute
	layer_repeat_vector
	layer_reshape
	layer_separable_conv_1d
	layer_separable_conv_2d
	layer_simple_rnn
	layer_spatial_dropout_1d
	layer_spatial_dropout_2d
	layer_spatial_dropout_3d
	layer_subtract
	layer_text_vectorization
	layer_upsampling_1d
	layer_upsampling_2d
	layer_upsampling_3d
	layer_zero_padding_1d
	layer_zero_padding_2d
	layer_zero_padding_3d
	loss_mean_squared_error
	make_sampling_table
	metric_binary_accuracy
	model_from_saved_model
	model_to_json
	model_to_saved_model
	model_to_yaml
	multi_gpu_model
	normalize
	optimizer_adadelta
	optimizer_adagrad
	optimizer_adam
	optimizer_adamax
	optimizer_nadam
	optimizer_rmsprop
	optimizer_sgd
	pad_sequences
	plot.keras_training_history
	pop_layer
	predict.keras.engine.training.Model
	predict_generator
	predict_on_batch
	predict_proba
	regularizer_l1
	reset_states
	save_model_hdf5
	save_model_tf
	save_model_weights_hdf5
	save_model_weights_tf
	save_text_tokenizer
	sequences_to_matrix
	serialize_model
	set_vocabulary
	skipgrams
	summary.keras.engine.training.Model
	texts_to_matrix
	texts_to_sequences
	texts_to_sequences_generator
	text_hashing_trick
	text_one_hot
	text_tokenizer
	text_to_word_sequence
	timeseries_generator
	time_distributed
	to_categorical
	train_on_batch
	use_implementation
	with_custom_object_scope
	Index

