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jsr223-package A Java Platform Integration for R with Programming Languages
Groovy, JavaScript, JRuby (Ruby), Jython (Python), and Kotlin
Description

The jsr223 package provides a high-level integration for Java that makes Java objects easy to use
from within R and simplifies bi-directional data exchange for a wide variety of objects. Further-
more, jsr223 employs the Java Scripting API to bring several scripting languages to the R software
environment: JavaScript, Ruby, Python, Groovy, and Kotlin.

Details

The complete documentation is in the jsr223 User Manual. It includes in-depth code examples and
it covers details, such as data exchange, that cannot be addressed easily in the R documentation.

Author(s)

Floid R. Gilbert <floid.r.gilbert@gmail.com>, David B. Dahl <dahl@stat.byu.edu>

See Also

ScriptEngine

Examples

# Simple example embedding JavaScript.
library("jsr223")

engine <- ScriptEngine$new("javascript”)
engine$radius <- 4

engine %~% "var area = Math.PI x Math.pow(radius, 2)"

cat ("The area of the circle is

”

, engine$area, ".\n", sep = "")

# Use callbacks to set values, get values, and execute R code

# in

the current R session via the global R object.

# Access R from JavaScript.

engine %@% "R.set('a', 12);"

engine %@% "print(\"The value of 'a' is \" + R.get('a') + \".\");"
engine %@% "var randomNormal = R.eval('rnorm(5)');"


https://CRAN.R-project.org/package=jsr223
http://docs.oracle.com/javase/8/docs/technotes/guides/scripting/
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engine$randomNormal

# Use a Java object.

engine$randomNormal <- rnorm(5)
engine$randomNormal

engine %@% "java.util.Arrays.sort(randomNormal)"
engine$randomNormal

# Close the engine and release resources.
engine$terminate()

CompiledScript CompiledScript Class

Description

The CompiledScript class represents script compiled by a script engine.

Usage

CompiledScript

Details

CompiledScript does not have a public constructor. Create an instance of this class with the
ScriptEngine methods compile and compileSource.

The complete jsr223 documentation can be found in the User Manual.

Value

Object of R6Class that represents a compiled script.

Methods

eval(discard.return.value = FALSE, bindings = NULL) Executes the compiled code referenced
by the object. If discard.return.value = FALSE, the method returns the result of the last ex-
pression in the script, if any, or NULL otherwise. The bindings argument accepts an R named
list. The name/value pairs in the list replace the script engine’s global bindings during script
execution.

See Also

ScriptEngine
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Examples

library("jsr223")
engine <- ScriptEngine$new("javascript”)

# Compile a code snippet.

cs <- engine$compile(”c + d")

# This line would throw an error because 'c' and 'd' have not yet been declared.
## cs$eval ()

engine$c <- 2

engine$d <- 3

cs$eval ()

## 5

# Supply new bindings...
Ist <- list(c =6, d =7)
cs$eval (bindings = 1lst)
## 13

# When 'bindings' is not specified, the script engine reverts to the original
# environment.

cs$eval ()

## 5

# The following line executes the code but discards the return value.
cs$eval (discard.return.value = TRUE)

# Terminate the engine.
engine$terminate()

getKotlinScriptEngineJars
Search for Required Kotlin JAR Files

Description

The getKotlinScriptEngineJars function searches a directory recursively for ‘kotlin*. jar’
files required to create an instance of the Kotlin script engine. Because Kotlin does not provide a
standalone script engine JAR file, we include this convenience function to simplify adding JAR files
to the class path.

Usage

getKotlinScriptEngineJars(
directory,
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minimum = TRUE

)
Arguments
directory A character vector of length one specifying a path that contains Kotlin script
engine JAR files.
minimum A logical vector of length one. When TRUE (the default), the function returns
only the minimum required JAR files to instantiate a script engine. If FALSE, all
JAR files of the pattern ‘kotlinx. jar’ will be returned.
Details

The function searches the given directory recursively. If one or more of the required JAR files are
not found, the function throws an error with a message listing the required files.

As of this writing, a standalone Kotlin compiler installation does not contain all of the required files
to create a script engine instance. See section “Script engine installation and instantiation” in the
User Manual for more information.

Value

A character vector containing paths to the JAR files.

See Also

ScriptEngine

Examples

## Not run:

library("jsr223")

jars <- getKotlinScriptEngineJars("~/my-path/kotlin")
engine <- ScriptEngine$new("kotlin”, jars)

engine %~% "1 + 1"

engine$terminate()

## End(Not run)

names Retrieve the Names for a ScriptEngine or CompiledScript class

Description

These methods retrieve the names associated with objects of class ScriptEngine or CompiledScript.
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Usage
## S3 method for class 'ScriptEngine'’
names(x, ...)
## S3 method for class 'CompiledScript'
names(x, ...)
Arguments
X An object of class ScriptEngine or CompiledScript.
Ignored.
print Print or Return a Character Representation of a Script Engine or
Compiled Script Class Object
Description

These methods print or return a character representation of a script engine.

Usage
## S3 method for class 'ScriptEngine’
print(x, ...)
## S3 method for class 'ScriptEngine’
toString(x, ...)
## S3 method for class 'CompiledScript'
print(x, ...)
## S3 method for class 'CompiledScript'
toString(x, ...)
Arguments
X An object of class ScriptEngine or CompiledScript.

Currently ignored.
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ScriptEngine ScriptEngine Class

Description

The ScriptEngine class represents a Java-based script engine. A ScriptEngine instance is used
to execute arbitrary code and pass data back and forth between the script engine environment and
R. The script engine environment contains a global object named R that facilitates callbacks into the
R environment. Complete documentation is located in the jsr223 User Manual.

Usage

ScriptEngine

Details

The complete jsr223 documentation can be found in the User Manual. It includes more in-depth
code examples and it covers details, such as data exchange, that cannot be addressed as easily in the
R documentation.

In this document, the section Constructor Method details the options required to create a ScriptEngine
instance. The section Script Engine Settings describes class methods pertaining to configurable
options. The section Methods lists the rest of the class methods. The section Callbacks provides an
overview of the functionality allowing code in the script engine to access data and execute code in
the R environment. Finally, Script Engines includes links to the supported script engine providers.

The bridge between R and the script engine is not thread-safe; multiple R threads should not simul-
taneously access the same engine.

Value

Object of R6Class that represents an instance of a Java-based script engine.

Constructor Method

nn

new(engine.name, class.path="") Creates a script engine object.

engine.name is a character vector of length one that specifies the type of script engine to cre-
ate. Valid engine names are ‘js’ or ‘javascript’ for JavaScript, ‘ruby’, ‘python’, ‘groovy’,
and ‘kotlin’. The engine name is case sensitive.

class.path is a character vector of paths to any JAR files that are required for the scripting
engine and any script dependencies. A class.path value is required for all engines except
JavaScript. Scripting engine JAR files can be obtained from the language-specific web sites
referenced in the section Script Engines. Note that class paths accumulate between script
engine instances started in the same R session because they all use the same Java Virtual
Machine. This is a limitation of rJava, the package that jsr223 builds on.


https://CRAN.R-project.org/package=rJava
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Script Engine Settings

Several script engine settings are exposed using Java-style getter/setter methods. Other methods are
addressed in the Methods section.

getArrayOrder () Returns alength-one character vector containing the current array order scheme.
See setArrayOrder for more information.

setArrayOrder(value) Sets the current array ordering scheme used for all n-dimensional arrays
(such as matrices) converted to and from the script engine. Valid values are 'row-major' (the
default), 'column-major', and 'column-minor'. These indexing schemes are described in
the User Manual. This method returns the previous setting invisibly.

getCoerceFactors() Returns a length-one logical vector indicating whether the coerce factors
setting is enabled. See setCoerceFactors for more information.

setCoerceFactors(value) Enables or disables the coerce factors setting. Valid values are TRUE
(the default) and FALSE. When enabled, an attempt is made to coerce R factors to integer,
numeric, or logical vectors before converting them to a Java array. If the attempt fails, or if
the setting is disabled, the factor is converted to a Java string array. This setting applies to
standalone factors as well as factors in data frames. This method returns the previous setting
invisibly.

getDataFrameRowMajor() Returns a length-one logical vector indicating whether the data frame
row major setting is enabled. See setDataFrameRowMajor for more information.

setDataFrameRowMajor(value) Enables or disables the data frame row major setting. Valid val-
ues are TRUE (the default) and FALSE. When enabled, data frames are converted to Java objects
in row-major fashion. When disabled, column-major ordering is used. See the User Manual
for details. This method returns the previous setting invisibly.

getInterpolate() Returns alength-one logical vector indicating whether the string interpolation
setting is enabled. See setInterpolate for more information.

setInterpolate(value) Enables or disables the string interpolation setting. Valid values are
TRUE (the default) and FALSE. When enabled, R code placed between @{ and } in a script is
evaluated and replaced by the a string representation of the return value. A script may contain
multiple @{. . . } expressions. This method returns the previous setting invisibly.

getLengthOneVectorAsArray() Returns alength-one logical vector indicating whether the length
one vector as array setting is enabled. See setLengthOneVectorAsArray for more informa-
tion.

setLengthOneVectorAsArray(value) Enables or disables the length one vector as array setting.
Valid values are TRUE and FALSE (the default). When disabled, length-one R vectors and
factors are converted to Java scalars. When enabled, length-one R vectors and factors are
converted to Java arrays. This latter effect can also be produced by wrapping the vector in the
“as-is” function before passing it to the script engine (e.g. engine$myValue <-I(variable)).
This method returns the previous setting invisibly.

getStandardOutputMode() Returns a length-one character vector containing the current standard
output mode. See setStandardOutputMode for more information.

setStandardOutputMode(value) Controls how text written to standard output is handled. The
default value, 'console’, indicates that standard output will be printed in the R console. This
output cannot be captured using standard R methods. The 'buffer' setting indicates that
standard output will be saved in an internal buffer. This buffered output can be retrieved and



ScriptEngine 9

cleared using the getStandardOutput method, or cleared using the clearStandardOutput
method. Finally, the 'quiet' setting indicates that standard output will be discarded. This
method returns the previous setting invisibly.

getStringsAsFactors() Returns a length-one logical vector, or NULL, indicating whether the
strings as factors setting is enabled. See setStringsAsFactors for more information.

setStringsAsFactors(value) When converting a Java object to a data frame, the strings as fac-
tors setting controls whether character vectors are converted to factors. The default value of
NULL indicates that the R system setting stringsAsFactors should be used (see getOption(”stringsAsFactors™)).
A value of TRUE ensures that character vectors are converted to factors. A setting of FALSE
disables conversion to factors. This method returns the previous setting invisibly.

Methods

This section includes ScriptEngine class methods that do not get/set script engine options. See
Script Engine Settings for information on script engine options.

$identifier Retrieves the global variable named identifier from the script engine environ-
ment. For example, if engine is a script engine instance, retrieve the value of a variabled
named myValue using engine$myValue. Quote names that are not valid variable names in R
(e.g. engine$‘a-3°). This method is equivalent to get (identifier).

$identifier <- value Assigns value to the global variable named identifier in the script en-
gine environment. The R object contained in value is converted to a Java object. For exam-
ple, if engine is a script engine instance, set the value of a variabled named myValue using
engine$myValue <-1. Quote names that are not valid variable names in R (e.g. engine$‘a-3*
<- 1). This method is equivalent to set(identifier,value).

%@% script Evaluates code contained in the script character vector and returns NULL invisibly.
This method is equivalent to using eval (script,discard.return.value = TRUE).

%~% script Evaluates code contained in the script character vector and returns the result of the
last expression in the script, if any, or NULL otherwise. This method is equivalent to using
eval(script,discard.return.value = FALSE).

clearStandardOutput() Empties the script engine’s standard output buffer. This method is only
useful when the standard output mode has been setto 'buffer'. See the methods getStandardOutputMode
and setStandardOutputMode in Script Engine Settings for more information.

compile(script) Compiles code contained in the script character vector. Returns a CompiledScript
object.

compileSource(file.name) Compiles code contained in the file specified by the length-one char-
acter vector file.name. Local file paths or URLs are accepted. Returns a CompiledScript
object.

console() Starts a simple REPL in the current script language. The REPL is useful for quickly
setting and inspecting variables in the script engine. Returned values are printed to the con-
sole using base: :dput. Only single-line commands are supported: no line continuations or
carriage returns are allowed. Enter ‘exit’ to return to the R prompt.

eval(script, discard.return.value = FALSE, bindings = NULL) Evaluates code contained in
the script character vector. If discard.return.value = FALSE, the method returns the re-
sult of the last expression in the script, if any, or NULL otherwise. The bindings argument
accepts an R named list. The name/value pairs in the list replace the script engine’s global
bindings during script execution.
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finalize() This method is called before the object is garbage-collected to release resources. Do
not call this method directly. Use the terminate method instead.

get(identifier) Retrieves the value of a global variable in the script engine environment. The
name of the variable is specified in the length-one character vector identifier. For example,
if engine is a script engine instance, retrieve the value of a variabled named myValue using
engine$get("myValue”). This method is equivalent to $identifier.

getBindings() Lists all of the global variables in the script engine environment. This method
returns a named list where the names are the variable names and the values are the respective
Java class names.

getClassPath() Returns the class path as a character vector. The class path is set in the ScriptEngine
constructor method. Note that class paths accumulate between script engine instances started
in the same R session because they all use the same Java Virtual Machine. This is a limitation
of rJava, the package that jsr223 builds on.

getJavaClassName(identifier) Retrieves the Java class name of the global variable named
identifier from the script engine environment. This method is equivalent to using $identifier.

getScriptEngineInformation() Returns a named list containing information about the script
engine including the name, language, and version.

getStandardOutput () Returns a character vector of length one containing the contents of the
script engine’s standard output buffer. The standard output buffer is emptied. This method is
only useful when the standard output mode has been set to 'buffer'. See setStandardOutputMode
in Script Engine Settings for more information.

initialize() The constructor for this class. Do not call this method directly. Use ScriptEngine$new()
instead.

invokeFunction(function.name, ...) Invoke a function in the script engine environment. The
argument function.name is a character vector containing the name of the function to be
called. The ... indicates any number of arguments to be passed to the script function. The
return value is the result of the function converted to an R object.

invokeMethod(object.name, method.name, ...) Invoke a method of an object in the script en-
gine environment. The arguments object.name and method. name are character vectors con-
taining the names of the object and method, respectively. The ... indicates any number of
arguments to be passed to the method. The return value is the result of the method converted
to an R object. The Groovy, Python, and Kotlin engines can use invokeMethod to call meth-
ods of Java objects. The JavaScript and Ruby engines only support calling methods of native
scripting objects.

isInitialized() Returns TRUE or FALSE indicating whether the script engine instance is active
(i.e., it has not been explicitly terminated).

remove(identifier) Removes a variable from the script engine environment. The name of the
variable is specified in the length-one character vector identifier. For example, if engine is
a script engine instance, remove the variabled named myValue using engine$remove ("myValue").
Returns TRUE if the variable exists and FALSE otherwise.

set(identifier, value) Assigns value to a global variable in the script engine environment.
The name of the variable is specified in the length-one character vector identifier. The R
object value is converted to a Java object. For example, if engine is a script engine instance,
set the value of a variabled named myValue using engine$set(”"myValue”,1). This method
is equivalent to $identifier <-value).
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source(file.name, discard.return.value = FALSE, bindings = NULL) Evaluates code contained
in the file specified by the length-one character vector file.name. Local file paths or URLs
are accepted. If discard.return.value = FALSE, the method returns the result of the last ex-
pression in the script, if any, or NULL otherwise. The bindings argument accepts an R named
list. The name/value pairs in the list replace the script engine’s global bindings during script
execution.

terminate() Terminates the script engine instance and releases associated resources. Call this
method when the script engine is no longer needed.

Callbacks

Embedded scripts can access the R environment using the jsr223 callback interface. When a script
engine is started, jsr223 creates a global object named R in the script engine’s environment. This
object is used to execute R code and set/get variables in the R session’s global environment. Infinite
recursive calls between R and the script engine are supported. The only limitation is available stack
space.

To set a variable in the R global environment, use
engine %@% "R.set('a',[1,2,31)"

To retrieve a variable from the R global environment, use
engine %~% "R.get('a')"

Finally, to evaluate R code, use

engine %~% "R.eval('rnorm(1)')"

Note: Changing any of the data exchange settings will affect the behavior of the callback inter-
face. For example, using engine$setLengthOneVectorAsArray(TRUE) will cause R.get("pi")
to return an array with a single element instead of a scalar value.

Script Engines

The jsr223 package supports the following Java-based languages. Follow a link below to visit the
language’s supporting web site and to download script engine JAR files. Detailed instructions are
found in the User Manual.

Groovy — A Java-like language enhanced with modern dynamic programming features.

JavaScript (Nashorn) — Nashorn is the JavaScript dialect included in Java 8 and above. No download
or class.path parameter is required to use JavaScript with jsr223.

JRuby — A Java-based implementation of the Ruby programming language.
Jython — A Java-based implementation of the Python programming language.

Kotlin — A statically typed programming language that supports both functional and object-oriented
programming paradigms.

See Also

CompiledScript


http://groovy-lang.org
https://docs.oracle.com/javase/8/docs/technotes/guides/scripting/nashorn/
http://jruby.org
http://jython.org
http://kotlinlang.org
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Examples

library("jsr223")

# Create an instance of a JavaScript engine. Note that the

# script engine's JAR file is not required for the class.path
# parameter because JavaScript is included with JRE 8.

engine <- ScriptEngine$new("javascript”)

# Evaluate arbitrary code. Multiline code is allowed.
engine %~% "var a = Math.PI;"

# Retrieve the value of a global JavaScript variable.
cat("The value of 'a' is ", engine$a, , sep = ")

n n on

# Set the value of a global variable. If the variable does
# not exist in the engine environment, it will be created.
engine$a <- 10

cat("The value of 'a

1 " non

is now ", engine$a, , sep = "")

# Use callbacks to set values, get values, and execute R code

# in the current R session via the global R object.

# Access R from JavaScript.

engine %@% "R.set('a', 12);"

engine %@% "print(\"The value of 'a' is now \" + R.get('a') + \".\");"
engine %@% "var randomNormal = R.eval('rnorm(5)');"
engine$randomNormal

# Use a Java object.

engine$randomNormal <- rnorm(5)
engine$randomNormal

engine %@% "java.util.Arrays.sort(randomNormal)"
engine$randomNormal

# Enable property to convert length one vectors to arrays
# instead of scalar values.
engine$setlLengthOneVectorAsArray (TRUE)

engine$c <- 1

engine %~% "c[@]" # Returns 1
engine$setlLengthOneVectorAsArray (FALSE)

# Suppress console output.
engine$setStandardOutputMode("quiet”)
engine %~% "print('Hello (1)");"

# Re-enable console output
engine$setStandardOutputMode(”console”)
engine %~% "print('Hello (2)');"

# Close the engine and release resources.
engine$terminate()

## Not run:
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# Create a JRuby engine by specifying the engine name and
# the class path for the engine JAR. The JAR file path
# will be different on your system.
engine <- ScriptEngine$new(
engine.name = "jruby"
, class.path = "../engines/jruby-complete. jar"

# Assign a value to a variable. This will create a global
# variable in the Ruby environment.
engine$c <- pi

# Reference the previous value in a code snippet. Note that
# Ruby requires a "$" designator for global variables.

engine %~% "3 * $c”

# Evaluate a script file.
engine$source(”./my_script.rb")

# Terminate the engine.
engine$terminate()

## End(Not run)
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