#Load dataset
library(survival)
data(colon)
fit <- survfit(Surv(time,status)~rx, data=colon)
#Plot the data
jskm(fit)
jskm(fit, table = T, pval = T, label.nrisk = "No. at risk", size.label.nrisk = 8,
xlabs = "Time(Day)", ylabs = "Survival", ystratalabs = c("Obs", "Lev", "Lev + 5FU"), ystrataname = "rx",
marks = F, timeby = 365, xlims = c(0, 3000), ylims = c(0.25, 1))
#> Warning: Removed 16 row(s) containing missing values (geom_path).
#> Warning: Removed 3 rows containing missing values (geom_text).
svykm.object
in survey packagelibrary(survey)
#> Loading required package: grid
#> Loading required package: Matrix
#>
#> Attaching package: 'survey'
#> The following object is masked from 'package:graphics':
#>
#> dotchart
data(pbc, package="survival")
pbc$randomized <- with(pbc, !is.na(trt) & trt>0)
biasmodel <- glm(randomized~age*edema,data=pbc)
pbc$randprob <- fitted(biasmodel)
dpbc<-svydesign(id=~1, prob=~randprob, strata=~edema, data=subset(pbc,randomized))
s1 <-svykm(Surv(time,status>0) ~ 1, design = dpbc)
s2 <-svykm(Surv(time,status>0) ~ sex, design = dpbc)
svyjskm(s1)
If you want to get confidence interval, you should apply se = T
option to svykm
object.