
Package ‘jointDiag’
September 9, 2017

Version 0.3

Date 2017-09-09

Title Joint Approximate Diagonalization of a Set of Square Matrices

Author Cedric Gouy-Pailler <cedric.gouypailler@gmail.com>

Maintainer Cedric Gouy-Pailler <cedric.gouypailler@gmail.com>

Depends

Suggests

Description Different algorithms to perform approximate joint diagonalization
of a finite set of square matrices. Depending on the algorithm,
orthogonal or non-orthogonal diagonalizer is found. These algorithms
are particularly useful in the context of blind source separation.

License GPL (>= 2)

URL https://github.com/gouypailler/jointDiag

RoxygenNote 6.0.1

NeedsCompilation yes

Repository CRAN

Date/Publication 2017-09-09 21:51:24 UTC

R topics documented:
ajd . 2
ffdiag . 3
jadiag . 4
jedi . 6
qdiag . 7
uwedge . 9

Index 11

1

https://github.com/gouypailler/jointDiag

2 ajd

ajd Wrapper: Joint approximate diagonalization of a set of matrices

Description

This function is mainly a wrapper to the different algorithms provided in the package. So see the
help of the different algorithms for the details.

Usage

ajd(M, A0 = NULL, B0 = NULL, eps = .Machine$double.eps,
itermax = 200, keepTrace = FALSE, methods = c("jedi"))

Arguments

M DOUBLE ARRAY (KxKxN). Three-dimensional array with dimensions KxKxN
representing the set of square and real-valued matrices to be jointly diagonal-
ized. N is the number of matrices. Matrices are KxK square matrices.

A0 DOUBLE MATRIX (KxK). The initial guess of the inverse of a joint diagonal-
izer. If NULL, an initial guess is automatically generated by the algorithm.

B0 DOUBLE MATRIX (KxK). The initial guess of a joint diagonalizer. If NULL,
an initial guess is automatically generated by the algorithm.

eps DOUBLE. The algorithm stops when the criterion difference between two iter-
ations is less than eps.

itermax INTEGER. Alternatively, the algorithm stops when itermax sweeps have been
performed without reaching convergence. If the maximum number of iteration
is performed, a warning appears.

keepTrace BOOLEAN. Do we want to keep the successive estimations of the joint diago-
nalizer.

methods STRING. One or more methods, choosen among the set of available algorithms.
Possible values are: jedi, ffdiag, jadiag, uwedge, qdiag

Details

This function is mainly a wrapper to use the different algorithms provided in the package (see help
of the different functions).

Value

If the number of methods is one, the result is the structure provided by the algorithm used.

If the number of methods is more than one, a list of results provided by each algorithm is given.
Names of the list correspond to methods.

Author(s)

Cedric Gouy-Pailler (cedric.gouypailler@gmail.com)

ffdiag 3

Examples

generating diagonal matrices
D <- replicate(30, diag(rchisq(df=1,n=10)), simplify=FALSE)
Mixing and demixing matrices
B <- matrix(rnorm(100),10,10)
A <- solve(B)
C <- array(NA,dim=c(10,10,30))
for (i in 1:30) C[,,i] <- A %*% D[[i]] %*% t(A)
ajd(C,method=c("jedi","ffdiag"))

ffdiag Joint Approximate Diagonalization of a set of square, symmetric and
real-valued matrices

Description

This function performs a Joint Approximate Diagonalization of a set of square and real-valued
matrices.

Usage

ffdiag(C0, V0 = NULL, eps = .Machine$double.eps, itermax = 200,
keepTrace = FALSE)

Arguments

C0 DOUBLE ARRAY (KxKxN). Three-dimensional array with dimensions KxKxN
representing the set of square and real-valued matrices to be jointly diagonal-
ized. N is the number of matrices. Matrices are KxK square matrices.

V0 DOUBLE MATRIX (KxK). The initial guess of a joint diagonalizer. If NULL,
an initial guess is automatically generated by the algorithm.

eps DOUBLE. The algorithm stops when the criterium difference between two iter-
ations is less than eps.

itermax INTEGER. Alternatively, the algorithm stops when itermax sweeps have been
performed without reaching convergence. If the maximum number of iteration
is performed, a warning appears.

keepTrace BOOLEAN. Do we want to keep the successive estimations of the joint diago-
nalizer.

Details

Given a set Ci of N KxK real-valued matrices, the algorithm is looking for a matrix B such that
∀i ∈ [1, N], BCiB

T is as close as possible of a diagonal matrix.

4 jadiag

Value

B Estimation of the Joint Diagonalizer.

criter Successive estimates of the cost function across sweeps.

B_trace Array of the successive estimates of B across iterations.

Author(s)

Cedric Gouy-Pailler (cedric.gouypailler@gmail.com), from the initial matlab code by A. Ziehe.

References

A. Ziehe, P. Laskov, G. Nolte and K.-R. Mueller; A Fast Algorithm for Joint Diagonalization with
Non-orthogonal Transformations and its Application to Blind Source Separation; Journal of Ma-
chine Learning Research vol 5, pages 777-800, 2004

Examples

generating diagonal matrices
D <- replicate(30, diag(rchisq(df=1,n=10)), simplify=FALSE)
Mixing and demixing matrices
B <- matrix(rnorm(100),10,10)
A <- solve(B)
C <- array(NA,dim=c(10,10,30))
for (i in 1:30) C[,,i] <- A %*% D[[i]] %*% t(A)
B_est <- ffdiag(C)$B
B_est should be an approximate of B=solve(A)
B_est %*% A
close to a permutation matrix (with random scales)

jadiag Joint Approximate Diagonalization of a set of square, symmetric and
real-valued matrices

Description

This function performs a Joint Approximate Diagonalization of a set of square, symmetric and
real-valued matrices.

Usage

jadiag(M, W_est0 = NULL, eps = .Machine$double.eps, itermax = 200,
keepTrace = FALSE)

jadiag 5

Arguments

M DOUBLE ARRAY (KxKxN). Three-dimensional array with dimensions KxKxN
representing the set of square, symmetric and real-valued matrices to be jointly
diagonalized. N is the number of matrices. Matrices are KxK square matrices.

W_est0 DOUBLE MATRIX (KxK). The initial guess of a joint diagonalizer. If NULL,
an initial guess is automatically generated by the algorithm.

eps DOUBLE. The algorithm stops when the criterium difference between two iter-
ations is less than eps.

itermax INTEGER. Alternatively, the algorithm stops when itermax sweeps have been
performed without reaching convergence. If the maximumu number of iteration
is performed, a warning appears.

keepTrace BOOLEAN. Do we want to keep the successive estimations of the joint diago-
nalizer.

Details

Given a set Ci of N KxK symmetric and real-valued matrices, the algorithm is looking for a matrix
B such that ∀i ∈ [1, N], BCiB

T is as close as possible of a diagonal matrix.

Value

B Estimation of the Joint Diagonalizer.

criter Successive estimates of the cost function across sweeps.

B_trace Array of the successive estimates of B across iterations.

Author(s)

Cedric Gouy-Pailler (cedric.gouypailler@gmail.com), from the initial C code by Dinh-Tuan Pham.

References

Pham, D. & Cardoso, J.; Blind separation of instantaneous mixtures of nonstationary sources; IEEE
Trans. Signal Process., 2001, 49, 1837-1848

Examples

generating diagonal matrices
D <- replicate(30, diag(rchisq(df=1,n=10)), simplify=FALSE)
Mixing and demixing matrices
B <- matrix(rnorm(100),10,10)
A <- solve(B)
C <- array(NA,dim=c(10,10,30))
for (i in 1:30) C[,,i] <- A %*% D[[i]] %*% t(A)
B_est <- jadiag(C)$B
B_est should be an approximate of B=solve(A)
B_est %*% A
close to a permutation matrix (with random scales)

6 jedi

jedi Approximate non-orthogonal joint diagonalization of a set of square
real-valued matrices

Description

This function performs a Joint Approximate Diagonalization of a set of square and real-valued
matrices (not necessarily symmetric). The algorithm seeks the inverse of the joint diagonalizer (the
mixing matrix in terms of source separation).

The algorithm uses Givens and hyperbolic rotations to find the inverse of a non-orthogonal joint
diagonalizer. It is an extension of the JADE method (orthogonal joint diagonalization).

Usage

jedi(M, A0 = NULL, eps = .Machine$double.eps, itermax = 200,
keepTrace = FALSE)

Arguments

M DOUBLE ARRAY (KxKxN). Three-dimensional array with dimensions KxKxN
representing the set of square and real-valued matrices to be jointly diagonal-
ized. N is the number of matrices. Matrices are KxK square matrices.

A0 DOUBLE MATRIX (KxK). The initial guess of the inverse of a joint diagonal-
izer. If NULL, an initial guess is automatically generated by the algorithm.

eps DOUBLE. The algorithm stops when the criterium difference between two iter-
ations is less than eps.

itermax INTEGER. Alternatively, the algorithm stops when itermax sweeps have been
performed without reaching convergence. If the maximum number of iteration
is performed, a warning appears.

keepTrace BOOLEAN. Do we want to keep the successive estimations of the joint diago-
nalizer.

Details

Given a set Mi of N K × K square and real-valued matrices, the algorithm is looking for a matrix A
such that ∀i ∈ [1, N], A−1CiA

−T is as close as possible of a diagonal matrix.

Value

A Estimation of the Joint Diagonalizer.

criter Successive estimates of the cost function across sweeps.

A_trace Array of the successive estimates of A across iterations.

qdiag 7

Warning

This algorithm based on a combination of givens and hyperbolic rotations is covered by a patent
(see A. Souloumiac, CEA Saclay).

Author(s)

Cedric Gouy-Pailler (cedric.gouypailler@gmail.com), with help from Antoine Souloumiac.

References

Souloumiac, A.; Non-Orthogonal Joint Diagonalization by Combining Givens and Hyperbolic Ro-
tations; IEEE Trans. Signal Process., 2009

Examples

generating diagonal matrices
D <- replicate(30, diag(rchisq(df=1,n=10)), simplify=FALSE)
Mixing and demixing matrices
B <- matrix(rnorm(100),10,10)
A <- solve(B)
C <- array(NA,dim=c(10,10,30))
for (i in 1:30) C[,,i] <- A %*% D[[i]] %*% t(A)
A_est <- jedi(C)$A
A_est should be an approximate of A
B %*% A_est
close to a permutation matrix (with random scales)

qdiag Joint Approximate Diagonalization of a set of square, symmetric and
real-valued matrices

Description

This function performs a Joint Approximate Diagonalization of a set of square, symmetric and
real-valued matrices.

Usage

qdiag(C, W0 = NULL, eps = .Machine$double.eps, itermax = 200,
keepTrace = FALSE)

Arguments

C DOUBLE ARRAY (KxKxN). Three-dimensional array with dimensions KxKxN
representing the set of square, symmetric and real-valued matrices to be jointly
diagonalized. N is the number of matrices. Matrices are KxK square matrices.

W0 DOUBLE MATRIX (KxK). The initial guess of a joint diagonalizer. If NULL,
an initial guess is automatically generated by the algorithm.

8 qdiag

eps DOUBLE. The algorithm stops when the criterium difference between two iter-
ations is less than eps.

itermax INTEGER. Alternatively, the algorithm stops when itermax sweeps have been
performed without reaching convergence. If the maximum number of iteration
is performed, a warning appears.

keepTrace BOOLEAN. Do we want to keep the successive estimations of the joint diago-
nalizer.

Details

Given a set Ci of N KxK symmetric and real-valued matrices, the algorithm is looking for a matrix
B such that ∀i ∈ [1, N], BCiB

T is as close as possible of a diagonal matrix.

Value

B Estimation of the Joint Diagonalizer.

criter Successive estimates of the cost function across sweeps.

B_trace Array of the successive estimates of B across iterations.

Note

Two versions of the quadratic optimization are present in the paper referenced below. These two ver-
sions have different complexities, O(N K^3) and O(K^5). Currently only the version with O(N K^3)
is implemented.

Author(s)

Cedric Gouy-Pailler (cedric.gouypailler@gmail.com), from the initial matlab code by R. Vollgraf.

References

R. Vollgraf and K. Obermayer; Quadratic Optimization for Approximate Matrix Diagonalization;
IEEE Transaction on Signal Processing, 2006

Examples

generating diagonal matrices
D <- replicate(30, diag(rchisq(df=1,n=10)), simplify=FALSE)
Mixing and demixing matrices
B <- matrix(rnorm(100),10,10)
A <- solve(B)
C <- array(NA,dim=c(10,10,30))
for (i in 1:30) C[,,i] <- A %*% D[[i]] %*% t(A)
B_est <- qdiag(C)$B
B_est should be an approximate of B=solve(A)
B_est %*% A
close to a permutation matrix (with random scales)

uwedge 9

uwedge Joint Approximate Diagonalization of a set of square, symmetric and
real-valued matrices

Description

This function performs a Joint Approximate Diagonalization of a set of square, symmetric and
real-valued matrices.

Usage

uwedge(M, W_est0 = NULL, eps = .Machine$double.eps, itermax = 200,
keepTrace = FALSE)

Arguments

M DOUBLE ARRAY (KxKxN). Three-dimensional array with dimensions KxKxN
representing the set of square, symmetric and real-valued matrices to be jointly
diagonalized. N is the number of matrices. Matrices are KxK square matrices.

W_est0 DOUBLE MATRIX (KxK). The initial guess of a joint diagonalizer. If NULL,
an initial guess is automatically generated by the algorithm.

eps DOUBLE. The algorithm stops when the criterium difference between two iter-
ations is less than eps.

itermax INTEGER. Alternatively, the algorithm stops when itermax sweeps have been
performed without reaching convergence. If the maximum number of iteration
is performed, a warning appears.

keepTrace BOOLEAN. Do we want to keep the successive estimations of the joint diago-
nalizer.

Details

Given a set Ci of N KxK symmetric and real-valued matrices, the algorithm is looking for a matrix
B such that ∀i ∈ [1, N], BCiB

T is as close as possible of a diagonal matrix.

Value

B Estimation of the Joint Diagonalizer.

criter Successive estimates of the cost function across sweeps.

B_trace Array of the successive estimates of B across iterations.

Author(s)

Cedric Gouy-Pailler (cedric.gouypailler@gmail.com), from the initial matlab code by P. Tichavsky.

10 uwedge

References

Tichavsky, P. & Yeredor, A.; Fast Approximate Joint Diagonalization Incorporating Weight Matri-
ces; IEEE Trans. Signal Process., 2009, 57, 878-891

Examples

generating diagonal matrices
D <- replicate(30, diag(rchisq(df=1,n=10)), simplify=FALSE)
Mixing and demixing matrices
B <- matrix(rnorm(100),10,10)
A <- solve(B)
C <- array(NA,dim=c(10,10,30))
for (i in 1:30) C[,,i] <- A %*% D[[i]] %*% t(A)
B_est <- uwedge(C)$B
B_est should be an approximate of B=solve(A)
B_est %*% A
close to a permutation matrix (with random scales)

Index

∗Topic algebra
ajd, 2
ffdiag, 3
jadiag, 4
jedi, 6
qdiag, 7
uwedge, 9

ajd, 2

ffdiag, 3

jadiag, 4
jedi, 6

qdiag, 7

uwedge, 9

11

	ajd
	ffdiag
	jadiag
	jedi
	qdiag
	uwedge
	Index

