Provides method used to check whether data have outlier in efficiency measurement of big samples with data envelopment analysis (DEA). In this jackstrap method, the package provides two criteria to define outliers: heaviside and k-s test. The technique was developed by Sousa and Stosic (2005) "Technical Efficiency of the Brazilian Municipalities: Correcting Nonparametric Frontier Measurements for Outliers." <doi:10.1007/s11123-005-4702-4>.
Version: | 0.1.0 |
Depends: | R (≥ 2.15.1) |
Imports: | fBasics, Benchmarking, dplyr, ggplot2, foreach, doParallel, reshape, tidyr, scales, parallel, graphics, plyr, rlang, utils |
Suggests: | knitr, rmarkdown |
Published: | 2020-06-09 |
Author: | Kleber Morais de Sousa [aut, cre], Maria da Conceicao Sampaio de Sousa [aut], Paulo Aguiar do Monte [aut] |
Maintainer: | Kleber Morais de Sousa <kleberfinancas at gmail.com> |
License: | GPL-3 |
NeedsCompilation: | no |
Language: | en-US |
Materials: | README NEWS |
CRAN checks: | jackstrap results |
Reference manual: | jackstrap.pdf |
Vignettes: |
Put the title of your vignette here |
Package source: | jackstrap_0.1.0.tar.gz |
Windows binaries: | r-devel: jackstrap_0.1.0.zip, r-release: jackstrap_0.1.0.zip, r-oldrel: jackstrap_0.1.0.zip |
macOS binaries: | r-release: jackstrap_0.1.0.tgz, r-oldrel: jackstrap_0.1.0.tgz |
Please use the canonical form https://CRAN.R-project.org/package=jackstrap to link to this page.