Package ‘isotree’

July 29, 2020

Type Package

Title Isolation-Based Outlier Detection
Version 0.1.18

Date 2020-07-29

Author David Cortes

Maintainer David Cortes <david.cortes.rivera@gmail.com>
URL https://github.com/david-cortes/isotree

BugReports https://github.com/david-cortes/isotree/issues

Description Fast and multi-threaded implementation of
isolation forest (Liu, Ting, Zhou (2008) <doi:10.1109/ICDM.2008.17>),
extended isolation forest (Hariri, Kind, Brunner (2018) <arXiv:1811.02141>),
SCiForest (Liu, Ting, Zhou (2010) <doi:10.1007/978-3-642-15883-4_18>),
and fair-cut forest (Cortes (2019) <arXiv:1911.06646>),
for isolation-based outlier detection, clustered outlier detection, distance or similarity
approximation (Cortes (2019) <arXiv:1910.12362>),
and imputation of missing values (Cortes (2019) <arXiv:1911.06646>),
based on random or guided decision tree splitting. Provides simple heuristics for fit-
ting the model to
categorical columns and handling missing data, and offers options for varying between ran-
dom and guided
splits, and for using different splitting criteria.

License BSD_2_clause + file LICENSE
Imports Rcpp (>=1.0.1)

Suggests MASS, outliertree, jsonlite, readr
Enhances Matrix, SparseM

LinkingTo Rcpp, Rcereal

RoxygenNote 7.1.0

NeedsCompilation yes

Repository CRAN

Date/Publication 2020-07-29 18:30:02 UTC

https://github.com/david-cortes/isotree
https://github.com/david-cortes/isotree/issues

2 add.isolation.tree

R topics documented:

add.isolation.tree L. e 2
append.trees e e e 3
export.isotree.model L. 4
getNUM.NOAES e e 6
isolation.forest e 6
load.isotree.model 18
predict.isolation_forest 19
printisolation_forest Lo 20
summary.isolation_forest 21
unpack.isolation.foresto 22

Index 24

add.isolation.tree Add additional (single) tree to isolation forest model
Description

Adds a single tree fit to the full (non-subsampled) data passed here. Must have the same columns
as previously-fitted data.

Usage

add.isolation.tree(model, df, sample_weights = NULL, column_weights = NULL)

Arguments
model An Isolation Forest object as returned by ‘isolation.forest®, to which an addi-
tional tree will be added.
df A data.frame, matrix, or sparse matrix (from package ‘Matrix‘ or ‘SparseM°,

CSC format) to which to fit the new tree.

sample_weights Sample observation weights for each row of *X’, with higher weights indicating
distribution density (i.e. if the weight is two, it has the same effect of including
the same data point twice). If not ‘NULL‘, model must have been built with
‘weights_as_sample_prob* = ‘FALSE".

column_weights Sampling weights for each column in ‘df‘. Ignored when picking columns by
deterministic criterion. If passing ‘NULL*, each column will have a uniform
weight. Cannot be used when weighting by kurtosis.

Details

Important: this function will modify the model object in-place, but this modification will only affect
the R object in the environment in which it was called. If trying to use the same model object in
e.g. its parent environment, it will lead to issues due to the C++ object being modified but the
R oject remaining the asme, so if this method is used inside a function, make sure to output the
newly-modified R object and have it replace the old R object outside the calling function too.

append.trees 3

Value

No return value. The model is modified in-place.

See Also

isolation.forest unpack.isolation.forest

append. trees Append isolation trees from one model into another

Description

This function is intended for merging models that use the same hyperparameters but were fitted
to different subsets of data.

In order for this to work, both models must have been fit to data in the same format - that is, same
number of columns, same order of the columns, and same column types, although not necessarily
same object classes (e.g. can mix ‘base::matrix‘ and ‘Matrix::dgCMatrix).

If the data has categorical variables, the models should have been built with parameter ‘recode_categ=FALSE*
in the call to isolation.forest (which is not the default), and the categorical columns passed as type

‘factor‘ with the same ‘levels‘ - otherwise different models might be using different encodings for

each categorical column, which will not be preserved as only the trees will be appended without

any associated metadata.

Note that this function will not perform any checks on the inputs, and passing two incompatible
models (e.g. fit to different numbers of columns) will result in wrong results and potentially crashing
the R process when using it.

Important: the result of this function must be reassigned to ‘model‘ in order for it to work properly
- e.g. ‘model <- append.trees(model, other)‘.

Usage

append. trees(model, other)

Arguments
model An Isolation Forest model (as returned by function isolation.forest) to which
trees from ‘other (another Isolation Forest model) will be appended into.
other Another Isolation Forest model, from which trees will be appended into ‘model‘.
It will not be modified during the call to this function.
Value

The updated ‘model® object, to which ‘model‘ needs to be reassigned (i.e. you need to use it as
follows: ‘model <- append.trees(model, other)*).

4 export.isotree.model

Examples

library(isotree)

Generate two random sets of data
m <- 100

n<-2

set.seed(1)

X1 <= matrix(rnorm(m*n), nrow=m)

X2 <- matrix(rnorm(m*n), nrow=m)

Fit a model to each dataset
isol <- isolation.forest(X1, ntrees=3, nthreads=1)
iso2 <- isolation.forest(X2, ntrees=2, nthreads=1)

Check the terminal nodes for some observations
nodes1 <- predict(isol, head(X1, 3), type="tree_num")
nodes2 <- predict(iso2, head(X1, 3), type="tree_num")

Append the trees from 'isol' into 'isol'
isol <- append.trees(isol, iso2)

Check that it predicts the same as the two models
nodes.comb <- predict(isol, head(X1, 3), type="tree_num")
nodes.comb$tree_num == cbind(nodes1$tree_num, nodes2$tree_num)

The new predicted scores will be a weighted average

(Be aware that, due to round-off, it will not match with '==")
nodes.comb$score

(3*nodes1$score + 2xnodes2$score) / 5

export.isotree.model Export Isolation Forest model

Description

Save Isolation Forest model to a serialized file along with its metadata, in order to be used in the
Python or the C++ versions of this package.

This function is not meant to be used for passing models to and from R - in such case, you can use
‘saveRDS* and ‘readRDS* instead.

Note that, if the model was fitted to a ‘data.frame‘, the column names must be something ex-
portable as JSON, and must be something that Python’s Pandas could use as column names (e.g.
strings/character).

It is recommended to visually inspect the produced ‘.metadata‘ file in any case.

Usage

export.isotree.model(model, file, ...)

export.isotree.model 5

Arguments
model An Isolation Forest model as returned by function isolation.forest.
file File path where to save the model. File connections are not accepted, only file
paths
Additional arguments to pass to writeBin - you might want to pass extra param-
eters if passing files between different CPU architectures or similar.
Details

This function will create 2 files: the serialized model, in binary format, with the name passed in
‘file‘; and a metadata file in JSON format with the same name but ending in ‘.metadata‘. The second
file should NOT be edited manually, except for the field ‘nthreads® if desired.

If the model was built with ‘build_imputer=TRUE", there will also be a third binary file ending in
‘.imputer*.

The metadata will contain, among other things, the encoding that was used for categorical columns
- this is under ‘data_info.cat_levels®, as an array of arrays by column, with the first entry for each
column corresponding to category 0, second to category 1, and so on (the C++ version takes them
as integers). This metadata is written to a JSON file using the ‘jsonlite‘ package, which must be
installed in order for this to work.

The serialized file can be used in the C++ version by reading it as a binary raw file and de-serializing
its contents with the ‘cereal‘ library or using the provided C++ functions for de-serialization. If
using ‘ndim=1°, it will be an object of class ‘IsoForest‘, and if using ‘ndim>1°, will be an object of
class ‘ExtIsoForest‘. The imputer file, if produced, will be an object of class ‘Imputer*.

The metadata is not used in the C++ version, but is necessary for the Python version.

Note that the model treats boolean/logical variables as categorical. Thus, if the model was fit to a
‘data.frame‘ with boolean columns, when importing this model into C++, they need to be encoded
in the same order - e.g. the model might encode ‘TRUE" as zero and ‘FALSE* as one - you need to
look at the metadata for this.

Value

No return value.

References

https://uscilab.github.io/cereal

See Also

load.isotree.model writeBin unpack.isolation.forest

https://uscilab.github.io/cereal

6 isolation.forest

get.num.nodes Get Number of Nodes per Tree

Description

Get Number of Nodes per Tree

Usage

get.num.nodes(model)

Arguments

model An Isolation Forest model as produced by function ‘isolation.forest*.

Value

o

A list with entries ‘"total"‘ and ‘"terminal"‘, both of which are integer vectors with length equal to
the number of trees. ‘"total"‘ contains the total number of nodes that each tree has, while ‘"termi-
nal"‘ contains the number of terminal nodes per tree.

isolation.forest Isolation Forest model

Description

Isolation Forest is an algorithm originally developed for outlier detection that consists in splitting
sub-samples of the data according to some attribute/feature/column at random. The idea is that, the
rarer the observation, the more likely it is that a random uniform split on some feature would put
outliers alone in one branch, and the fewer splits it will take to isolate an outlier observation like
this. The concept is extended to splitting hyperplanes in the extended model (i.e. splitting by more
than one column at a time), and to guided (not entirely random) splits in the SCiForest model that
aim at isolating outliers faster and finding clustered outliers.

This version adds heuristics to handle missing data and categorical variables. Can be used to aprox-
imate pairwise distances by checking the depth after which two observations become separated, and
to approximate densities by fitting trees beyond balanced-tree limit. Offers options to vary between
randomized and deterministic splits too.

Note that the default parameters set up for this implementation will not scale to large datasets. In
particular, if the amount of data is large, you might want to set a smaller sample size for each tree,
and fit fewer of them.

The model offers many tunable parameters. The most likely candidate to tune is ‘prob_pick_pooled_gain‘,
for which higher values tend to result in a better ability to flag outliers in the training data (‘df‘)
at the expense of hindered performance when making predictions on new data (calling function
‘predict‘) and poorer generalizability to inputs with values outside the variables’ ranges to which

isolation.forest

the model was fit (see plots generated from the examples for a better idea of the difference). The
next candidate to tune is ‘prob_pick_avg_gain‘ (along with ‘sample_size‘), for which high values
tend to result in models that are more likely to flag values outside of the variables’ ranges and fewer

ghost regions, at the expense of fewer flagged outliers in the original data.

Usage

is

olation.forest(

df,

sample_weights = NULL,
column_weights = NULL,
sample_size = NROW(df),

ntrees = 500,
ndim = min(3, NCOL(df)),
ntry = 3,

max_depth = ceiling(log2(sample_size)),
prob_pick_avg_gain = 0,
prob_pick_pooled_gain = @,
prob_split_avg_gain = 0,
prob_split_pooled_gain = 0,

min_gain = 0,

missing_action = ifelse(ndim > 1, "impute"”, "divide"),
new_categ_action = ifelse(ndim > 1, "impute”, "weighted"),
categ_split_type = "subset”,

all_perm = FALSE,

coef_by_prop = FALSE,

recode_categ = TRUE,
weights_as_sample_prob = TRUE,
sample_with_replacement = FALSE,
penalize_range = TRUE,
weigh_by_kurtosis = FALSE,

coefs = "normal”,

assume_full_distr = TRUE,

build_imputer = FALSE,
output_imputations = FALSE,

min_imp_obs = 3,

depth_imp = "higher",

weigh_imp_rows = "inverse",
output_score = FALSE,

output_dist = FALSE,

square_dist = FALSE,

random_seed = 1,

nthreads = parallel::detectCores()

Arguments

df

Data to which to fit the model. Can pass a ‘data.frame‘, ‘matrix*, or sparse ma-
trix (in CSC format, either from package ‘Matrix* or from package ‘SparseM®).

isolation.forest

If passing a data.frame, will assume that columns are:
* Numerical, if they are of types ‘numeric’, ‘integer’, ‘Date’, ‘POSIXct".
* Categorical, if they are of type ‘character®, ‘factor‘, ‘bool".

Other column types are not supported.

sample_weights Sample observation weights for each row of ‘df*, with higher weights indicating
either higher sampling probability (i.e. the observation has a larger effect on the
fitted model, if using sub-samples), or distribution density (i.e. if the weight is
two, it has the same effect of including the same data point twice), according to
parameter ‘weights_as_sample_prob‘. Not supported when calculating pairwise
distances while the model is being fit (done by passing ‘output_dist‘* = “TRUE").

column_weights Sampling weights for each column in ‘df*. Ignored when picking columns by
deterministic criterion. If passing ‘NULL’, each column will have a uniform
weight. Cannot be used when weighting by kurtosis. Note that, if passing
a data.frame with both numeric and categorical columns, the column names
must not be repeated, otherwise the column weights passed here will not end up
matching. If passing a ‘data.frame* to ‘df*, will assume the column order is the
same as in there, regardless of whether the entries passed to ‘column_weights*
are named or not.

sample_size Sample size of the data sub-samples with which each binary tree will be built.
Recommended value in references [1], [2], [3], [4] is 256, while the default
value in the author’s code in reference [5] is ‘NROW(df)‘ (same as in here).

ntrees Number of binary trees to build for the model. Recommended value in reference
[1] is 100, while the default value in the author’s code in reference [5] is 10. In
general, the number of trees required for good results is higher when (a) there
are many columns, (b) there are categorical variables, (c) categorical variables
have many categories, (d) you are using large ‘ndim°.

ndim Number of columns to combine to produce a split. If passing 1, will produce
the single-variable model described in references [1] and [2], while if passing
values greater than 1, will produce the extended model described in references
[3] and [4]. Recommended value in reference [4] is 2, while [3] recommends a
low value such as 2 or 3. Models with values higher than 1 are referred hereafter
as the extended model (as in [3]).

ntry In the extended model with non-random splits, how many random combinations
to try for determining the best gain. Only used when deciding splits by gain (see
documentation for parameters ‘prob_pick_avg_gain‘ and ‘prob_pick_pooled_gain®).
Recommended value in refernece [4] is 10. Ignored for single-variable model.

max_depth Maximum depth of the binary trees to grow. By default, will limit it to the
corresponding depth of a balanced binary tree with number of terminal nodes
corresponding to the sub-sample size (the reason being that, if trying to detect
outliers, an outlier will only be so if it turns out to be isolated with shorter aver-
age depth than usual, which corresponds to a balanced tree depth). When a ter-
minal node has more than 1 observation, the remaining isolation depth for them
is estimated assuming the data and splits are both uniformly random (separation
depth follows a similar process with expected value calculated as in reference
[6]). Default setting for references [1], [2], [3], [4] is the same as the default
here, but it’s recommended to pass higher values if using the model for purposes
other than outlier detection.

isolation.forest

prob_pick_avg_gain

Probability of making each split in the single-variable model by choosing a col-
umn and split point in that same column as both the column and split point that
gives the largest averaged gain (as proposed in reference [4]) across all available
columns and possible splits in each column. Note that this implies evaluating ev-
ery single column in the sample data when this type of split happens, which will
potentially make the model fitting much slower, but has no impact on prediction
time. For categorical variables, will take the expected standard deviation that
would be gotten if the column were converted to numerical by assigning to each
category a random number ‘~ Unif(0, 1)‘ and calculate gain with those assumed
standard deviations. For the extended model, this parameter indicates the proba-
bility that the split point in the chosen linear combination of variables will be de-
cided by this averaged gain criterion. Compared to a pooled average, this tends
to result in more cases in which a single observation or very few of them are put
into one branch. Recommended to use sub-samples (parameter ‘sample_size®)
when passing this parameter. Note that, since this will created isolated nodes
faster, the resulting object will be lighter (use less memory). When splits are
not made according to any of ‘prob_pick_avg_gain‘, ‘prob_pick_pooled_gain‘,
‘prob_split_avg_gain‘, ‘prob_split_pooled_gain‘, both the column and the split
point are decided at random. Default setting for references [1], [2], [3] is zero,
and default for reference [4] is 1. This is the randomization parameter that can
be passed to the author’s original code in [5]. Note that, if passing value = 1
with no sub-sampling and using the single-variable model, every single tree will
have the exact same splits.

prob_pick_pooled_gain

Probability of making each split in the single-variable model by choosing a col-
umn and split point in that same column as both the column and split point
that gives the largest pooled gain (as used in decision tree classifiers such as
C4.5 in reference [7]) across all available columns and possible splits in each
column. Note that this implies evaluating every single column in the sample
data when this type of split happens, which will potentially make the model fit-
ting much slower, but has no impact on prediction time. For categorical vari-
ables, will use shannon entropy instead (like in reference [7]). For the ex-
tended model, this parameter indicates the probability that the split point in
the chosen linear combination of variables will be decided by this pooled gain
criterion. Compared to a simple average, this tends to result in more evenly-
divided splits and more clustered groups when they are smaller. Recommended
to pass higher values when used for imputation of missing values. When used
for outlier detection, higher values of this parameter result in models that are
able to better flag outliers in the training data, but generalize poorly to out-
liers in new data and to values of variables outside of the ranges from the
training data. Passing small ‘sample_size‘ and high values of this parameter
will tend to flag too many outliers. Note that, since this makes the trees more
even and thus it takes more steps to produce isolated nodes, the resulting ob-
ject will be heavier (use more memory). When splits are not made according to
any of ‘prob_pick_avg_gain‘, ‘prob_pick_pooled_gain‘, ‘prob_split_avg_gain®,
‘prob_split_pooled_gain°‘, both the column and the split point are decided at
random. Note that, if passing value = 1 with no sub-sampling and using the

10

isolation.forest

single-variable model, every single tree will have the exact same splits.

prob_split_avg_gain

Probability of making each split by selecting a column at random and determin-
ing the split point as that which gives the highest averaged gain. Not supported
for the extended model as the splits are on linear combinations of variables. See
the documentation for parameter ‘prob_pick_avg_gain‘ for more details.

prob_split_pooled_gain

min_gain

missing_action

Probability of making each split by selecting a column at random and determin-
ing the split point as that which gives the highest pooled gain. Not supported for
the extended model as the splits are on linear combinations of variables. See the
documentation for parameter ‘prob_pick_pooled_gain* for more details.

Minimum gain that a split threshold needs to produce in order to proceed with a
split. Only used when the splits are decided by a gain criterion (either pooled or
averaged). If the highest possible gain in the evaluated splits at a node is below
this threshold, that node becomes a terminal node.

How to handle missing data at both fitting and prediction time. Options are

e “"divide"* (for the single-variable model only, recommended), which will
follow both branches and combine the result with the weight given by the
fraction of the data that went to each branch when fitting the model.

* “"impute", which will assign observations to the branch with the most ob-
servations in the single-variable model, or fill in missing values with the
median of each column of the sample from which the split was made in the
extended model (recommended for it).

e “"fail"‘, which will assume there are no missing values and will trigger
undefined behavior if it encounters any.

In the extended model, infinite values will be treated as missing. Note that pass-
ing ‘"fail"‘ might crash the R process if there turn out to be missing values,
but will otherwise produce faster fitting and prediction times along with de-
creased model object sizes. Models from references [1], [2], [3], [4] correspond
to ‘"fail"‘ here.

new_categ_action

What to do after splitting a categorical feature when new data that reaches that
split has categories that the sub-sample from which the split was done did not
have. Options are

* “"weighted"* (for the single-variable model only, recommended), which
will follow both branches and combine the result with weight given by the
fraction of the data that went to each branch when fitting the model.

e “"impute"‘ (for the extended model only, recommended) which will assign
them the median value for that column that was added to the linear combi-
nation of features.

ne

* “"smallest"*, which in the single-variable case will assign all observations
with unseen categories in the split to the branch that had fewer observa-
tions when fitting the model, and in the extended case will assign them the
coefficient of the least common category.

* “"random"‘, which will assing a branch (coefficient in the extended model)
at random for each category beforehand, even if no observations had that
category when fitting the model.

isolation.forest

11

Ignored when passing ‘categ_split_type‘ = ‘"single_categ"*.

categ_split_type

all_perm

coef_by_prop

recode_categ

Whether to split categorical features by assigning sub-sets of them to each branch
(by passing ‘"subset"* there), or by assigning a single category to a branch and
the rest to the other branch (by passing ‘"single_categ"‘ here). For the extended
model, whether to give each category a coefficient (‘"subset"), or only one
while the rest get zero (‘"single_categ"*).

"ne

ne

When doing categorical variable splits by pooled gain with ‘ndim=1° (regular
model), whether to consider all possible permutations of variables to assign to
each branch or not. If ‘FALSE‘, will sort the categories by their frequency and
make a grouping in this sorted order. Note that the number of combinations
evaluated (if ‘TRUE®) is the factorial of the number of present categories in
a given column (minus 2). For averaged gain, the best split is always to put
the second most-frequent category in a separate branch, so not evaluating all
permutations (passing ‘FALSE*) will make it possible to select other splits that
respect the sorted frequency order. Ignored when not using categorical variables
or not doing splits by pooled gain or using ‘ndim>1°.

In the extended model, whether to sort the randomly-generated coefficients for
categories according to their relative frequency in the tree node. This might
provide better results when using categorical variables with too many categories,
but is not recommended, and not reflective of real "categorical-ness". Ignored
for the regular model (‘ndim=1°) and/or when not using categorical variables.

Whether to re-encode categorical variables even in case they are already passed
as factors. This is recommended as it will eliminate potentially redundant cat-
egorical levels if they have no observations, but if the categorical variables are
already of type ‘factor‘ with only the levels that are present, it can be skipped for
slightly faster fitting times. You’ll likely want to pass ‘FALSE‘ here if merging
several models into one through append.trees.

weights_as_sample_prob

If passing ‘sample_weights‘ argument, whether to consider those weights as row
sampling weights (i.e. the higher the weights, the more likely the observation
will end up included in each tree sub-sample), or as distribution density weights
(i.e. putting a weight of two is the same as if the row appeared twice, thus higher
weight makes it less of an outlier). Note that sampling weight is only used when
sub-sampling data for each tree, which is not the default in this implementation.

sample_with_replacement

penalize_range

Whether to sample rows with replacement or not (not recommended). Note that
distance calculations, if desired, don’t work when there are duplicate rows.

Whether to penalize (add +1 to the terminal depth) observations at prediction
time that have a value of the chosen split variable (linear combination in ex-
tended model) that falls outside of a pre-determined reasonable range in the data
being split (given by ‘2 * range‘ in data and centered around the split point),
as proposed in reference [4] and implemented in the authors’ original code in
reference [S]. Not used in single-variable model when splitting by categorical
variables.

weigh_by_kurtosis

Whether to weigh each column according to the kurtosis obtained in the sub-
sample that is selected for each tree as briefly proposed in reference [1]. Note

12

isolation.forest

that this is only done at the beginning of each tree sample, so if not using sub-
samples, it’s better to pass column weights calculated externally. For categorical
columns, will calculate expected kurtosis if the column was converted to numer-
ical by assigning to each category a random number ‘~ Unif(0, 1)°.

coef's For the extended model, whether to sample random coefficients according to a
normal distribution ‘~ N(0, 1)* (as proposed in reference [3]) or according to a
uniform distribution ‘~ Unif(-1, +1)‘ as proposed in reference [4]. Ignored for
the single-variable model. Note that, for categorical variables, the coefficients
will be sampled ~ N (0,1) regardless - in order for both types of variables to
have transformations in similar ranges (which will tend to boost the importance
of categorical variables), pass “"uniform"* here.

assume_full_distr

When calculating pairwise distances (see reference [8]), whether to assume that
the fitted model represents a full population distribution (will use a standardiz-
ing criterion assuming infinite sample as in reference [6], and the results of the
similarity between two points at prediction time will not depend on the pres-
cence of any third point that is similar to them, but will differ more compared to
the pairwise distances between points from which the model was fit). If passing
‘FALSE’, will calculate pairwise distances as if the new observations at predic-
tion time were added to the sample to which each tree was fit, which will make
the distances between two points potentially vary according to other newly in-
troduced points. This will not be assumed when the distances are calculated as
the model is being fit (see documentation for parameter ‘output_dist*).

build_imputer Whether to construct missing-value imputers so that later this same model could
be used to impute missing values of new (or the same) observations. Be aware
that this will significantly increase the memory requirements and serialized ob-
ject sizes. Note that this is not related to *missing_action’ as missing values
inside the model are treated differently and follow their own imputation or divi-
sion strategy.

output_imputations
Whether to output imputed missing values for ‘df‘. Passing ‘TRUE* here will
force ‘build_imputer to “TRUE®. Note that, for sparse matrix inputs, even
though the output will be sparse, it will generate a dense representation of each
row with missing values.

min_imp_obs Minimum number of observations with which an imputation value can be pro-
duced. Ignored if passing ‘build_imputer = ‘FALSE".

depth_imp How to weight observations according to their depth when used for imputing
missing values. Passing ‘"higher"‘ will weigh observations higher the further
down the tree (away from the root node) the terminal node is, while ‘"lower""
will do the opposite, and ‘"same"* will not modify the weights according to
node depth in the tree. Implemented for testing purposes and not recommended

to change from the default. Ignored when passing ‘build_imputer* = ‘FALSE".

weigh_imp_rows How to weight node sizes when used for imputing missing values. Passing

an: ne

inverse"‘ will weigh a node inversely proportional to the number of obser-

vations that end up there, while “"prop"‘ will weight them heavier the more
observations there are, and ‘"flat"‘ will weigh all nodes the same in this regard

isolation.forest 13

regardless of how many observations end up there. Implemented for testing pur-
poses and not recommended to change from the default. Ignored when passing
‘build_imputer = ‘FALSE".

output_score Whether to output outlierness scores for the input data, which will be calculated
as the model is being fit and it’s thus faster. Cannot be done when using sub-
samples of the data for each tree (in such case will later need to call the ‘predict’
function on the same data). If using ‘penalize_range‘, the results from this might
differet a bit from those of ‘predict® called after.

output_dist Whether to output pairwise distances for the input data, which will be calculated
as the model is being fit and it’s thus faster. Cannot be done when using sub-
samples of the data for each tree (in such case will later need to call the ‘predict
function on the same data). If using ‘penalize_range‘, the results from this might
differ a bit from those of ‘predict® called after.

square_dist If passing ‘output_dist‘ = “TRUE*, whether to return a full square matrix or just
the upper-triangular part, in which the entry for pair (i,j) with 1 <=i<j<=nis
located at position p(i, j) = ((i- 1) * (n-i/2) +j - 1).

random_seed Seed that will be used to generate random numbers used by the model.

nthreads Number of parallel threads to use. If passing a negative number, will use the
maximum number of available threads in the system. Note that, the more threads,
the more memory will be allocated, even if the thread does not end up being
used.

Details

When calculating gain, the variables are standardized at each step, so there is no need to center/scale
the data beforehand.

When using sparse matrices, calculations such as standard deviations, gain, and kurtosis, will use
procedures that rely on calculating sums of squared numbers. This is not a problem if most of
the entries are zero and the numbers are small, but if you pass dense matrices as sparse and/or the
entries in the sparse matrices have values in wildly different orders of magnitude (e.g. 0.0001 and
10000000), the calculations might fail due to loss of numeric precision, and the results might not
make sense. For dense matrices it uses more numerically-robust techniques (which would add a
large computational overhead in sparse matrices), so it’s not a problem to have values with different
orders of magnitude.

Value

If passing ‘output_score‘ = ‘FALSE’, ‘output_dist* = ‘FALSE‘, and ‘output_imputations‘ = ‘FALSE‘
(the defaults), will output an ‘isolation_forest* object from which ‘predict’ method can then be
called on new data. If passing “TRUE" to any of the former options, will output a list with entries:

* ‘model‘: the ‘isolation_forest‘ object from which new predictions can be made.

* ‘scores‘: a vector with the outlier score for each inpuit observation (if passing ‘output_score’
= ‘TRUE").

 ‘dist’: the distances (either a 1-d vector with the upper-triangular part or a square matrix), if
passing ‘output_dist‘ = “TRUE".

e ‘imputed‘: the input data with missing values imputed according to the model (if passing
‘output_imputations‘ = “TRUE®).

14 isolation.forest

References
* Liu, Fei Tony, Kai Ming Ting, and Zhi-Hua Zhou. "Isolation forest." 2008 Eighth IEEE
International Conference on Data Mining. IEEE, 2008.

* Liu, Fei Tony, Kai Ming Ting, and Zhi-Hua Zhou. "Isolation-based anomaly detection." ACM
Transactions on Knowledge Discovery from Data (TKDD) 6.1 (2012): 3.

e Hariri, Sahand, Matias Carrasco Kind, and Robert J. Brunner. "Extended Isolation Forest."
arXiv preprint arXiv:1811.02141 (2018).

* Liu, Fei Tony, Kai Ming Ting, and Zhi-Hua Zhou. "On detecting clustered anomalies using
SCiForest." Joint European Conference on Machine Learning and Knowledge Discovery in
Databases. Springer, Berlin, Heidelberg, 2010.

* https://sourceforge.net/projects/iforest/

* https://math.stackexchange.com/questions/3388518/expected-number-of-paths-required-to-separate-
elements-in-a-binary-tree

* Quinlan, J. Ross. "C4. 5: programs for machine learning." Elsevier, 2014.

* Cortes, David. "Distance approximation using Isolation Forests." arXiv preprint arXiv:1910.12362
(2019).

* Cortes, David. "Imputing missing values with unsupervised random trees.'
arXiv:1911.06646 (2019).

arXiv preprint

See Also

predict.isolation_forest, add.isolation.tree unpack.isolation.forest

Examples

Example 1: detect an obvious outlier

(Random data from a standard normal distribution)
library(isotree)

set.seed(1)

n <- 100

m<- 2

X <= matrix(rnorm(n * m), nrow = n)

Will now add obvious outlier point (3, 3) to the data
X <- rbind(X, c(3, 3))

Fit a small isolation forest model
iso <- isolation.forest(X, ntrees = 10, nthreads = 1)

Check which row has the highest outlier score

pred <- predict(iso, X)

cat("Point with highest outlier score: ",
X[which.max(pred), 1, "\n")

#i## Example 2: plotting outlier regions
This example shows predicted outlier score in a small
grid, with a model fit to a bi-modal distribution. As can

isolation.forest

#i## be seen, the extended model is able to detect high

outlierness outside of both regions, without having false
ghost regions of low-outlierness where there isn't any data
library(isotree)

oldpar <- par(mfrow = c(2, 2), mar = c(2.5,2.2,2,2.5))

Randomly-generated data from different distributions
set.seed(1)
groupl <- data.frame(x = rnorm(1000, -1, .4),
y = rnorm(1000, -1, .2))
group2 <- data.frame(x = rnorm(1000, +1, .2),
y = rnorm(1000, +1, .4))
X = rbind(groupl, group2)

Add an obvious outlier which is within the 1d ranges
(As an interesting test, remove and see what happens)
X = rbind(X, c(-1, 1))

Produce heatmaps
pts = seq(-3, 3, .1)
space_d <- expand.grid(x = pts, y = pts)
plot.space <- function(Z, ttl) {
image(pts, pts, matrix(Z, nrow = length(pts)),
col = rev(heat.colors(50)),
main = ttl, cex.main = 1.4,
xlim = c(-3, 3), ylim = c(-3, 3),
xlab = "", ylab = "")
par(new = TRUE)
plot(X, type = "p"”, xlim = c(-3, 3), ylim = c(-3, 3),
col = "#0000801A",
axes = FALSE, main = "",
xlab = "", ylab = "")

3

Now try ouy different variations of the model

Single-variable model
iso_simple = isolation.forest(
X, ndim=1,
ntrees=100,
nthreads=1,
prob_pick_pooled_gain=0,
prob_pick_avg_gain=0)
Z1 <- predict(iso_simple, space_d)
plot.space(Z1, "Isolation Forest")

Extended model

iso_ext = isolation.forest(
X, ndim=2,
ntrees=100,
nthreads=1,
prob_pick_pooled_gain=0,
prob_pick_avg_gain=0)

15

16

Z2 <- predict(iso_ext, space_d)
plot.space(Z2, "Extended Isolation Forest")

SCiForest
iso_sci = isolation.forest(
X, ndim=2,
ntrees=100,
nthreads=1,
prob_pick_pooled_gain=0,
prob_pick_avg_gain=1)
73 <- predict(iso_sci, space_d)
plot.space(Z3, "SCiForest")

Fair-cut forest
iso_fcf = isolation.forest(
X, ndim=2,
ntrees=100,
nthreads=1,
prob_pick_pooled_gain=1,
prob_pick_avg_gain=0)
Z4 <- predict(iso_fcf, space_d)
plot.space(Z4, "Fair-Cut Forest")
par(oldpar)

Example 3: calculating pairwise distances,
with a short validation against euclidean dist.
library(isotree)

Generate random data with 3 dimensions
set.seed(1)

n <- 100

m<- 3

X <= matrix(rnorm(n * m), nrow=n, ncol=m)

Fit isolation forest model
iso <- isolation.forest(X, ntrees=100, nthreads=1)

Calculate distances with the model
D_iso <- predict(iso, X, type = "dist")

Check that it correlates with euclidean distance
D_euc <- dist(X, method = "euclidean")

cat(sprintf(”Correlation with euclidean distance: %f\n",
cor(D_euc, D_iso)))

(Note that euclidean distance will never take

any correlations between variables into account,

which the isolation forest model can do)

Example 4: imputing missing values
(requires package MASS)

isolation.forest

isolation.forest 17

library(isotree)

Generate random data, set some values as NA
if (require(”"MASS")) {
set.seed(1)
S <- matrix(rnorm(5 * 5), nrow = 5)
S <= t(S) %*% S
mu <- rnorm(5)
X <= MASS::mvrnorm(1000, mu, S)
X_na <- X
values_NA <- matrix(runif (1000 * 5) < .15, nrow = 1000)
X_nal[values_NA] = NA

Impute missing values with model
iso <- isolation.forest(X_na,
build_imputer = TRUE,
prob_pick_pooled_gain = 1,
ntry = 10)
X_imputed <- predict(iso, X_na, type = "impute")
cat(sprintf("MSE for imputed values w/model: %f\n",
mean((X[values_NA] - X_imputed[values_NAJ])*2)))

Compare against simple mean imputation
X_means <- apply(X, 2, mean)
X_imp_mean <- X_na
for (cl in 1:5)
X_imp_mean[values_NA[,cl], cl] <- X_means[cl]
cat(sprintf("MSE for imputed values w/means: %f\n",
mean ((X[values_NA] - X_imp_mean[values_NA1)"2)))

#i### A more interesting example
(requires package outliertree)

Compare outliers returned by these different methods,
and see why some of the outliers returned by the
isolation forest could be flagged as outliers
if (require("outliertree”)) {
hypothyroid <- outliertree::hypothyroid

iso <- isolation.forest(hypothyroid, nthreads=1)
pred_iso <- predict(iso, hypothyroid)
otree <- outliertree::outlier.tree(
hypothyroid,
z_outlier = 6,
pct_outliers = 0.02,
outliers_print = 20,
nthreads = 1)

Now compare against the top
outliers from isolation forest

18 load.isotree.model

head (hypothyroid[order(-pred_iso), 1, 20)
3

load.isotree.model Load an Isolation Forest model exported from Python

Description

Loads a serialized Isolation Forest model as produced and exported by the Python version of this
package. Note that the metadata must be something importable in R - e.g. column names must be
valid for R (numbers are not valid names for R). It’s recommended to visually inspect the ‘.meta-
data‘ file in any case.

This function is not meant to be used for passing models to and from R - in such case, you can use
‘saveRDS* and ‘readRDS° instead.

Usage

load.isotree.model(file)

Arguments
file Path to the saved isolation forest model along with its metadata file,. and imputer
file if produced. Must be a file path, not a file connection.
Details

Internally, this function uses ‘readr::read_file_raw* (from the ‘readr‘ package) and ‘jsonlite::fromJSON*
(from the ‘jsonlite‘ package). Be sure to have those installed and that the files are readable through
them.

Note: If the model was fit to a “DataFrame* using Pandas’ own Boolean types, take a look at the
metadata to check if these columns will be taken as booleans (R logicals) or as categoricals with
string values “"True"*

ne

or ‘"False"*.

Value

An isolation forest model, as if it had been constructed through isolation.forest.

See Also

export.isotree.model unpack.isolation.forest

predict.isolation_forest 19

predict.isolation_forest
Predict method for Isolation Forest

Description

Predict method for Isolation Forest

Usage

S3 method for class 'isolation_forest'
predict(

object,

newdata,

type = "score",

square_mat = FALSE,

refdata = NULL,

Arguments

object An Isolation Forest object as returned by ‘isolation.forest*.

newdata A ‘data.frame’, ‘matrix‘, or sparse matrix (from package ‘Matrix* or ‘SparseM°,
CSC format for distance and outlierness, or CSR format for outlierness and
imputations) for which to predict outlierness, distance, or imputations of missing
values. Note that when passing ‘type‘ = “"impute"‘ and ‘newdata‘ is a sparse

matrix, under some situations it might get modified in-place.

ne

type Type of prediction to output. Options are:

e “"score"‘ for the standardized outlier score, where values closer to 1 indicate
more outlierness, while values closer to 0.5 indicate average outlierness,
and close to 0 more averageness (harder to isolate).

* “"avg_depth"* for the non-standardized average isolation depth.

e “"dist"* for approximate pairwise or between-points distances (must pass
more than 1 row) - these are standardized in the same way as outlierness,
values closer to zero indicate nearer points, closer to one further away
points, and closer to 0.5 average distance.

for the non-standardized average separation depth.

* “"tree_num"‘ for the terminal node number for each tree - if choosing this
option, will return a list containing both the outlier score and the terminal
node numbers, under entries ‘score‘ and ‘tree_num°, respectively.

for imputation of missing values in ‘newdata‘.

o "ne

* “"avg_sep

ne

* “"impute
square_mat When passing ‘type‘ = “"dist‘ or ‘"avg_sep"* with no ‘refdata‘, whether to return
a full square matrix or just the upper-triangular part, in which the entry for pair
(i,)) with 1 <=1 < j <=nis located at position p(i, j) = ((i - 1) * (n-1/2) +j - 1).
Ignored when not predicting distance/separation or when passing ‘refdata‘.

20

print.isolation_forest

refdata If passing this and calculating distance or average separation depth, will cal-
culate distances between each point in ‘newdata‘ and each point in ‘refdata‘,
outputing a matrix in which points in ‘newdata‘ correspond to rows and points
in ‘refdata‘ correspond to columns. Must be of the same type as ‘newdata‘
(e.g. ‘data.frame‘, ‘matrix‘, ‘dgCMatrix‘, etc.). If this is not passed, and type is
“"dist"* or “"avg_sep"*, will calculate pairwise distances/separation between the
points in ‘newdata‘.

Not used.

Details

The more threads that are set for the model, the higher the memory requirement will be as each
thread will allocate an array with one entry per row (outlierness) or combination (distance).

Outlierness predictions for sparse data will be much slower than for dense data. Not recommended
to pass sparse matrices unless they are too big to fit in memory.

Note that after loading a serialized object from ‘isolation.forest‘ through ‘readRDS* or ‘load’, it
will only de-serialize the underlying C++ object upon running ‘predict’, ‘print‘, or ‘summary*, so
the first run will be slower, while subsequent runs will be faster as the C++ object will already be
in-memory.

In order to save memory when fitting and serializing models, the functionality for outputting termi-
nal node numbers will generate index mappings on the fly for all tree nodes, even if passing only 1
row, so it’s only recommended for batch predictions.

The outlier scores/depth predict functionality is optimized for making predictions on one or a
few rows at a time - for making large batches of predictions, it might be faster to use the ‘out-
put_score=TRUE® in ‘isolation.forest".

Value

The requested prediction type, which can be a vector with one entry per row in ‘newdata‘ (for output
types ‘"score"‘, ‘"avg_depth", ‘"tree_num"‘), a square matrix or vector with the upper triangular
part of a square matrix (for output types ‘"dist"‘, “"avg_sep"‘, with no ‘refdata‘), a matrix with

ne

points in ‘newdata‘ as rows and points in ‘refdata‘ as columns (for output types “"dist"*, “"avg_sep"*,

an:

with ‘refdata‘), or the same type as the input ‘newdata‘ (for output type ‘"impute"*).

o

See Also

isolation.forest unpack.isolation.forest

print.isolation_forest
Print summary information from Isolation Forest model

Description

Displays the most general characteristics of an isolation forest model (same as ‘summary*).

summary.isolation_forest 21

Usage
S3 method for class 'isolation_forest'
print(x, ...)
Arguments
X An Isolation Forest model as produced by function ‘isolation.forest".
Not used.
Details

Note that after loading a serialized object from ‘isolation.forest‘ through ‘readRDS* or ‘load’, it
will only de-serialize the underlying C++ object upon running ‘predict’, ‘print‘, or ‘summary*, so
the first run will be slower, while subsequent runs will be faster as the C++ object will already be
in-memory.

Value

No return value.

See Also

isolation.forest

summary.isolation_forest
Print summary information from Isolation Forest model

Description

Displays the most general characteristics of an isolation forest model (same as ‘print*).

Usage
S3 method for class 'isolation_forest'
summary(object, ...)
Arguments
object An Isolation Forest model as produced by function ‘isolation.forest".
Not used.
Details

Note that after loading a serialized object from ‘isolation.forest‘ through ‘readRDS* or ‘load’, it
will only de-serialize the underlying C++ object upon running ‘predict‘, “print‘, or ‘summary‘, so
the first run will be slower, while subsequent runs will be faster as the C++ object will already be
in-memory.

22 unpack.isolation.forest

Value

No return value.

See Also

isolation.forest

unpack.isolation.forest
Unpack isolation forest model after de-serializing

Description

After persisting an isolation forest model object through ‘saveRDS®, ‘save, or restarting a session,
the underlying C++ objects that constitute the isolation forest model and which live only on the C++
heap memory are not saved along, thus not restored after loading a saved model through ‘readRDS*
or ‘load".

The model object however keeps serialized versions of the C++ objects as raw bytes, from which
the C++ objects can be reconstructed, and are done so automatically after calling ‘predict’, ‘print*,
‘summary*, or ‘add.isolation.tree‘ on the freshly-loaded object from ‘readRDS* or ‘load*.

But due to R’s environments system (as opposed to other systems such as Python which can use
pass-by-reference), they will only be re-constructed in the environment that is calling ‘predict’,
‘print‘, etc. and not in higher-up environments (i.e. if you call ‘predict‘ on the object from inside
different functions, each function will have to reconstruct the C++ objects independently and they
will only live within the function that called ‘predict®).

This function serves as an environment-level unpacker that will reconstruct the C++ object in the
environment in which it is called (i.e. if you need to call ‘predict‘ from inside multiple functions,
use this function before passing the freshly-loaded model object to those other functions, and then
they will not need to reconstruct the C++ objects anymore), in the same way as ‘predict‘ or ‘print*,
but without producing any outputs or messages.

Usage

unpack.isolation.forest(model)

Arguments
model An Isolation Forest object as returned by ‘isolation.forest‘, which has been just
loaded from a disk file through ‘readRDS®, ‘load’, or a session restart.
Value

No return value. Object is modified in-place.

unpack.isolation.forest 23

Examples

Warning: this example will generate a temporary .Rds
file in your temp folder, and will then delete it
library(isotree)

set.seed(1)

X <= matrix(rnorm(100), nrow = 20)

iso <- isolation.forest(X, ntrees=10, nthreads=1)
temp_file <- file.path(tempdir(), "iso.Rds")
saveRDS(iso, temp_file)

is02 <- readRDS(temp_file)

file.remove(temp_file)

will de-serialize inside, but object is short-lived
wrap_predict <- function(model, data) {
pred <- predict(model, data)
cat("pointer inside function is this: ")
print(modelcpp_objptr)
return(pred)
}
temp <- wrap_predict(iso2, X)
cat("pointer outside function is this: \n")
print(iso2cpp_objptr) ### pointer to the C++ object

now unpack the C++ object beforehand
unpack.isolation. forest(iso2)

print("after unpacking beforehand")

temp <- wrap_predict(iso2, X)

cat("pointer outside function is this: \n")
print(iso2cpp_objptr)

Index

add.isolation.tree, 2, 14
append. trees, 3, 11

export.isotree.model, 4, 18
get.num.nodes, 6
isolation.forest, 3, 5,6, 18, 20-22
load.isotree.model, 5, 18

predict.isolation_forest, /4, 19
print.isolation_forest, 20

summary.isolation_forest, 21

unpack.isolation.forest, 3, 5, 14, 18, 20,
22

writeBin, 5

24

	add.isolation.tree
	append.trees
	export.isotree.model
	get.num.nodes
	isolation.forest
	load.isotree.model
	predict.isolation_forest
	print.isolation_forest
	summary.isolation_forest
	unpack.isolation.forest
	Index

