The current version provides functions to compute, print and summarize the Index of Sensitivity to Nonignorability (ISNI) in the generalized linear model for independent data, and in the marginal multivariate Gaussian model and the mixed-effects models for continuous and binary longitudinal/clustered data. It allows for arbitrary patterns of missingness in the regression outcomes caused by dropout and/or intermittent missingness. One can compute the sensitivity index without estimating any nonignorable models or positing specific magnitude of nonignorability. Thus ISNI provides a simple quantitative assessment of how robust the standard estimates assuming missing at random is with respect to the assumption of ignorability. For a tutorial, download at <http://huixie.people.uic.edu/Research/ISNI_R_tutorial.pdf>. For more details, see Troxel Ma and Heitjan (2004) and Xie and Heitjan (2004) <doi:10.1191/1740774504cn005oa> and Ma Troxel and Heitjan (2005) <doi:10.1002/sim.2107> and Xie (2008) <doi:10.1002/sim.3117> and Xie (2012) <doi:10.1016/j.csda.2010.11.021> and Xie and Qian (2012) <doi:10.1002/jae.1157>.
Version: | 1.2 |
Depends: | R (≥ 3.0.1) |
Imports: | nlme, mvtnorm, nnet, matrixcalc, Formula, mixor, lme4 |
Suggests: | knitr, rmarkdown |
Published: | 2020-02-29 |
Author: | Hui Xie, Weihua Gao, Baodong Xing, Daniel Heitjan, Donald Hedeker, Chengbo Yuan |
Maintainer: | Hui Xie <huixie at uic.edu> |
License: | GPL-2 |
NeedsCompilation: | no |
Citation: | isni citation info |
Materials: | NEWS |
CRAN checks: | isni results |
Reference manual: | isni.pdf |
Vignettes: |
ISNI |
Package source: | isni_1.2.tar.gz |
Windows binaries: | r-devel: isni_1.2.zip, r-release: isni_1.2.zip, r-oldrel: isni_1.2.zip |
macOS binaries: | r-release: isni_1.2.tgz, r-oldrel: isni_1.2.tgz |
Old sources: | isni archive |
Please use the canonical form https://CRAN.R-project.org/package=isni to link to this page.