Package 'iq'

June 27, 2020

2 create_protein_list

fast_MaxLFQ .		•			•		•		•				•	•	•	•	•	•	•	•	
$fast_preprocess$																					
fast_read																					
maxLFQ																					
meanInt																					
median_polish .																					
plot_protein																					
preprocess																					
spikeins																					
topN																					

15

Description

For each protein, a numerical matrix is formed where the columns are samples and rows are fragment ions.

Usage

Index

```
create_protein_list(preprocessed_data)
```

Arguments

preprocessed_data

A data frame of four components as output of the preprocess function.

Value

A list where each element contains the quantitative data of a protein. The column names are sample names and the row names fragment ions.

Author(s)

Thang V. Pham

References

Pham TV, Henneman AA, Jimenez CR. iq: an R package to estimate relative protein abundances from ion quantification in DIA-MS-based proteomics. *Bioinformatics* 2020 Apr 15;36(8):2611-2613.

See Also

preprocess

create_protein_table 3

Examples

```
data("spikeins")
head(spikeins)
# This example set of spike-in proteins has been 'median-normalized'.
norm_data <- iq::preprocess(spikeins, median_normalization = FALSE, pdf_out = NULL)
protein_list <- iq::create_protein_list(norm_data)</pre>
```

create_protein_table Protein quantification for a list of proteins

Description

Travels through the input list and quantifies all proteins one by one.

Usage

```
create_protein_table(protein_list, method = "maxLFQ", ...)
```

Arguments

protein_list The input protein list

method Possible values are "maxLFQ", "median_polish", "topN", and "meanInt".

... Additional parameters for individual quantitation methods.

Value

A list of two components is returned

estimate A table of protein abundances for all samples.

annotation A vector of annotations, one for each protein.

Author(s)

Thang V. Pham

References

Pham TV, Henneman AA, Jimenez CR. iq: an R package to estimate relative protein abundances from ion quantification in DIA-MS-based proteomics. *Bioinformatics* 2020 Apr 15;36(8):2611-2613.

See Also

```
create_protein_list, maxLFQ, median_polish, topN, meanInt
```

4 extract_annotation

Examples

```
data("spikeins")
# This example set of spike-in proteins has been 'median-normalized'.
norm_data <- iq::preprocess(spikeins, median_normalization = FALSE, pdf_out = NULL)
protein_list <- iq::create_protein_list(norm_data)
result <- iq::create_protein_table(protein_list)
head(result)</pre>
```

extract_annotation

Protein annotation extraction

Description

Extracts annotation columns from a long-format input

Usage

Arguments

protein_ids A vector of protein ids.

quant_table A long-format input table. The input is typically the same as input to the

preprocess function.

primary_id The column containing protein ids.

annotation_columns

A vector of columns for annotation.

Value

A table of proteins and associated annotation extracted from the input.

Author(s)

Thang V. Pham

References

Pham TV, Henneman AA, Jimenez CR. iq: an R package to estimate relative protein abundances from ion quantification in DIA-MS-based proteomics. *Bioinformatics* 2020 Apr 15;36(8):2611-2613.

See Also

preprocess

fast_MaxLFQ 5

Examples

fast_MaxLFQ

The MaxLFQ algorithm

Description

A fast implementation of the MaxLFQ algorithm.

Usage

```
fast_MaxLFQ(norm_data, row_names = NULL, col_names = NULL)
```

Arguments

norm_data A list of four vectors with equal length protein_list, sample_list, id and

quant as prepared by the fast_preprocess function or the quant_table component returned by the fast_read function. Note that quant should contain

log2 intensities.

row_names A vector of character strings for row names. If NULL, unique values in the

protein_list component of norm_data will be used. Otherwise, it should

be the sample component returned by the fast_read.

col_names A vector of character strings for column names. If NULL, unique values in the

sample_list component of norm_data will be used. Otherwise, it should be

the sample component returned by the fast_read.

Value

A list is returned with two components

estimate A quantification result table.

annotation A vector of strings indicating membership in case of multiple connected com-

ponents for each row of estimate.

Author(s)

Thang V. Pham

References

fast_preprocess

See Also

```
fast_read, fast_preprocess
```

fast_preprocess

Data filtering and normalization

Description

Filters out low intensities and performs median normalization.

Usage

Arguments

quant_table The quant_table component as returned by fast_read. median_normalization

A logical value. The default TRUE value is to perform median normalization.

log2_intensity_cutoff

Entries lower than this value in log2 space are ignored. Plot a histogram of all

intensities to set this parameter.

pdf_out A character string specifying the name of the PDF output. A NULL value will

suppress the PDF output.

pdf_width Width of the pdf output in inches. pdf_height Height of the pdf output in inches.

Value

A list is returned with the same components as input data in which low intensities are filtered out and median normalization is performed if requested.

Author(s)

Thang V. Pham

References

fast_read 7

See Also

fast_read

fast_read Reading data from an input file

Description

A highly efficient reading of a tab-separated text file for iq processing.

Usage

Arguments

filename A long-format tab-separated text file with a primary column of protein identification, secondary columns of fragment ions, a column of sample names, a column for quantitative intensities, and extra columns for annotation.

Unique values in this column form the list of proteins to be quantified.

primary_1d Unique values in this column form the list of proteins to be quantified.

secondary_id A concatenation of these columns determines the fragment ions used for quan-

tification.

sample_id Unique values in this column form the list of samples.

intensity_col The column for intensities. annotation_col Annotation columns

filter etring equal

filter_string_equal

A named vector of strings. Only rows satisfying the filter are kept.

filter_double_less

A named vector of strings. Only rows satisfying the filter are kept. Default PG.Qvalue < 0.01 and EG.Qvalue < 0.01.

Value

A list is returned with following components

protein A table of proteins in the first column followed by annotation columns.

sample A vector of samples.

ion A vector of fragment ions to be used for quantification.

quant_table A list of four components: protein_list (index pointing to protein)), sample_list

(index pointing to sample), id (index pointing to ion), and quant (intensities).

8 maxLFQ

Author(s)

Thang V. Pham

References

Pham TV, Henneman AA, Jimenez CR. iq: an R package to estimate relative protein abundances from ion quantification in DIA-MS-based proteomics. *Bioinformatics* 2020 Apr 15;36(8):2611-2613.

maxLFQ

The MaxLFQ algorithm for protein quantification

Description

Estimates protein abundances by aiming to maintain the fragment intensity ratios between samples.

Usage

maxLFQ(X)

Arguments

Χ

A matrix of ion intensities in log2 space. Columns are samples and rows are fragment ions.

Value

A list of two components is returned

estimate A vector with length equal to the number of columns of the input containing the

protein abundances.

annotation An empty string if all quantified samples are connected. Otherwise, a string of

membership of the connected components is returned.

Author(s)

Thang V. Pham

References

Cox J, Hein MY, Luber CA, et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. *Mol Cell Proteomics*. 2014;13(9):2513–2526.

meanInt 9

	_		
maar	٠Т	n	+
mear	IТ	11	ι

The meanInt algorithm for protein quantification

Description

Estimates protein abundances by averaging all associated ion intensities

Usage

```
meanInt(X, aggregation_in_log_space = TRUE)
```

Arguments

A matrix of ion intensities in log2 space. Columns are samples and rows are fragment ions.

aggregation_in_log_space

A logical value. If FALSE, the data aggregation is performed in the original intensity space.

Value

A list of two components is returned

estimate A vector with length equal to the number of columns of the input containing the

protein abundances.

annotation Reserved, currently an empty string.

Author(s)

Thang V. Pham

References

10 plot_protein

median_polish

A wrapper for the R implementation of the median polish algorithm

Description

Estimates protein abundances using the Tukey median polish algorithm.

Usage

```
median_polish(X)
```

Arguments

Χ

A matrix of ion intensities in log2 space. Columns are samples and rows are fragment ions.

Value

A list of two components is returned

estimate A vector with length equal to the number of columns of the input containing the

protein abundances.

annotation Reserved, currently an empty string

Author(s)

Thang V. Pham

References

Pham TV, Henneman AA, Jimenez CR. iq: an R package to estimate relative protein abundances from ion quantification in DIA-MS-based proteomics. *Bioinformatics* 2020 Apr 15;36(8):2611-2613.

Tukey JW. Exploratory Data Analysis, Reading Massachusetts: Addison-Wesley, 1977.

plot_protein

Plotting the underlying quantitative data for a protein

Description

Displays the underlying data for a protein.

Usage

```
plot_protein(X, main = "", col = NULL, split = 0.6, ...)
```

preprocess 11

Arguments

Χ	Protein data matrix.
main	Title of the plot.
col	Colors of the rows of the data matrix.
split	Fraction of the plotting area for the main figure. The remaining one is for legend. Set this parameter to NULL to ignore the legend area.
• • •	Additional parameters for plotting.

Value

A NULL value is returned.

Author(s)

Thang V. Pham

References

Pham TV, Henneman AA, Jimenez CR. iq: an R package to estimate relative protein abundances from ion quantification in DIA-MS-based proteomics. *Bioinformatics* 2020 Apr 15;36(8):2611-2613.

Examples

```
data("spikeins")
head(spikeins)
# This example set of spike-in proteins has been 'median-normalized'.
norm_data <- iq::preprocess(spikeins, median_normalization = FALSE, pdf_out = NULL)
protein_list <- iq::create_protein_list(norm_data)
iq::plot_protein(protein_list$P00366, main = "Protein P00366", split = NULL)</pre>
```

preprocess

Data preprocessing for protein quantification

Description

Prepares a long-format input including removing low-intensity ions and performing median normalization.

Usage

12 preprocess

```
median_normalization = TRUE,
log2_intensity_cutoff = 0,
pdf_out = "qc-plots.pdf",
pdf_width = 12,
pdf_height = 8)
```

Arguments

quant_table A long-format table with a primary column of protein identification, secondary

columns of fragment ions, a column of sample names, and a column for quanti-

tative intensities.

primary_id Unique values in this column form the list of proteins to be quantified.

secondary_id A concatenation of these columns determines the fragment ions used for quan-

tification.

sample_id Unique values in this column form the list of samples.

intensity_col The column for intensities.

median_normalization

A logical value. The default TRUE value is to perform median normalization.

log2_intensity_cutoff

Entries lower than this value in log2 space are ignored. Plot a histogram of all

intensities to set this parameter.

pdf_out A character string specifying the name of the PDF output. A NULL value will

suppress the PDF output.

pdf_width Width of the pdf output in inches.

pdf_height Height of the pdf output in inches.

Value

A data frame is returned with following components

protein_list A vector of proteins.
sample_list A vector of samples.

id A vector of fragment ions to be used for quantification.

quant A vector of log2 intensities.

Author(s)

Thang V. Pham

References

spikeins 13

Examples

```
data("spikeins")
head(spikeins)
# This example set of spike-in proteins has been 'median-normalized'.
norm_data <- iq::preprocess(spikeins, median_normalization = FALSE, pdf_out = NULL)</pre>
```

spikeins

An example dataset of 12 spike-in proteins

Description

A subset of the Bruderer 2015 dataset containing 12 spike-in proteins. The full dataset was exported from the Spectronaut software. The complete dataset has been median-normalized.

Usage

```
data("spikeins")
```

Format

A data frame with 18189 observations on the following 9 variables.

R.Condition Sample names.

PG.ProteinGroups Protein identifiers.

EG. Modified Sequence Sequence of the fragment ions.

FG. Charge Fragment group charge.

F.FrgIon Fragment ions.

F. Charge Fragment charges.

F. PeakArea Quantitative values.

PG. Genes Gene names.

PG. ProteinNames Protein names.

Examples

```
data("spikeins")
head(spikeins)
```

14 topN

topN

The topN algorithm for protein quantification

Description

Estimates protein abundances using the N most intense ions.

Usage

```
topN(X, N = 3, aggregation_in_log_space = TRUE)
```

Arguments

X A matrix of ion intensities in log2 space. Columns are samples and rows are

fragment ions.

N The number of top ions used for quantification.

aggregation_in_log_space

A logical value. If FALSE, data aggregation is performed in the original intensity

space.

Value

A list of two components is returned

estimate A vector with length equal to the number of columns of the input containing the

protein abundances.

annotation Reserved, currently an empty string.

Author(s)

Thang V. Pham

References

Index

```
*Topic datasets
spikeins, 13

create_protein_list, 2, 3
create_protein_table, 3

extract_annotation, 4

fast_MaxLFQ, 5
fast_preprocess, 6, 6
fast_read, 6, 7, 7

maxLFQ, 3, 8
meanInt, 3, 9
median_polish, 3, 10

plot_protein, 10
preprocess, 2, 4, 11

spikeins, 13

topN, 3, 14
```