Type Package

Package ‘ipc’

June 23, 2019

Title Tools for Message Passing Between Processes

Version 0.1.3

Author Ian E. Fellows

Maintainer Ian E. Fellows <ian@fellstat.com>

Description Provides tools for passing messages between R processes.
Shiny Examples are provided showing how to perform useful tasks such as:
updating reactive values from within a future, progress bars for long running
async tasks, and interrupting async tasks based on user input.

URL https://github.com/fellstat/ipc

BugReports https://github.com/fellstat/ipc/issues

Imports R6, shiny, txtq
License MIT + file LICENCE

Encoding UTF-8
LazyData true

Suggests testthat, knitr, rmarkdown, future, promises, redux

VignetteBuilder knitr

RoxygenNote 6.1.1

NeedsCompilation no

Repository CRAN

Date/Publication 2019-06-23 06:00:03 UTC

R topics documented:

ipec-package e
AsyncInterruptor e e e e e
AsyncProgress e

Consumer

defaultSource e

https://github.com/fellstat/ipc
https://github.com/fellstat/ipc/issues

2 AsynclInterruptor

Producer 6
QUEUE .+ . v o e 7
redisConfig e 7
redisldGenerator 7
RedisSource 8
ShinyConsumer v v it e e e e e e e e e e e e 8
shinyExample e 8
ShinyProducer e 9
shinyQueue e 9
stopMulticoreFuture L 10
tempFileGenerator 10
TextFileSource L 11
Index 12
ipc-package Tools for performing async communication between workers in shiny
Description

Tools for performing async communication between workers in shiny

Author(s)

Tan Fellows <ian@fellstat.com>

AsyncInterruptor An interruptor useful for stopping child processes.

Description

This class is a simple wrapper around a Queue object making adding interrupt checking to future
code easy to implement and read.

Arguments

queue a shiny queue

msg An error message string.
Details

Methods

initialize(queue=shinyQueue()) Creates a new interruptor.
interrupt(msg="Signaled Interrupt”) Signals an interrupt
execInterrupts() Executes anything pushed to the queue, including interrupts.

getInterrupts() Gets the result of the queue’s executing, not throwing the interrupts.

AsyncProgress

Examples

library(future)

strategy <- "future::multisession’

plan(strategy)

"

inter <- AsyncInterruptor$new()

fut <- future({

for(i in 1:100){
Sys.sleep(.01)
inter$execInterrupts()

b
b

inter$interrupt("Error: Stop Future”)

try(value(fut))
inter$destroy()

Clean up multisession cluster

plan(sequential)
AsyncProgress A progress bar object where inc and set are usable within other pro-
cesses
Description

An async compatible wrapper around Shiny’s progress bar. It should be instatiated from the main
process, but may be closed, set and incremented from any process.

Arguments
session

min

max

message

detail

value

queue

millis

The Shiny session object, as provided by shinyServer to the server function.

The value that represents the starting point of the progress bar. Must be less
tham max.

The value that represents the end of the progress bar. Must be greater than min.

A single-element character vector; the message to be displayed to the user, or
NULL to hide the current message (if any).

A single-element character vector; the detail message to be displayed to the user,
or NULL to hide the current detail message (if any). The detail message will be
shown with a de-emphasized appearance relative to message.

A numeric value at which to set the progress bar, relative to min and max.
A Queue object for message passing

How often in milliseconds should updates to the progress bar be checked for.

AsyncProgress

Details

Methods
initialize(..., queue=shinyQueue(), millis=250, value=NULL, message=NULL, detail=NULL)
Creates a new progress panel and displays it.

set(value = NULL, message = NULL, detail = NULL) Updates the progress panel. When called
the first time, the progress panel is displayed.

inc(amount = 0.1, message = NULL, detail = NULL) Like set, this updates the progress panel.
The difference is that inc increases the progress bar by amount, instead of setting it to a spe-
cific value.

sequentialClose() Removes the progress panel and destroys the queue. Must be called from
main process.

close() Fires a close signal and may be used from any process.

Examples

Only run examples in interactive R sessions

if (interactive()) {

library(shiny)

library(future)

plan(multiprocess)

ui <- fluidPage(
actionButton("run”,"Run"),
tableOutput("dataset”)

)

server <- function(input, output, session) {

dat <- reactiveVal()
observeEvent (input$run, {
progress <- AsyncProgress$new(session, min=1, max=15)
future({
for (i in 1:15) {
progress$set(value = i)
Sys.sleep(0.5)
}
progress$close()
cars
1 %...>% dat
NULL
b))

output$dataset <- renderTable({
req(dat())
i)
}

shinyApp(ui, server)

}

Consumer 5

Consumer A Class for reading and executing tasks from a source

Description

Methods

initialize(source, env=parent.frame(2)) Creates a Consumer object linked to the source.
setSource(source) Sets the Source for this consumer.
getSource(source) Gets the Source of this consumer.

consume (throwErrors=TRUE, env=parent.frame()) Executes all (unprocessed) signals fired
to source from a Producer. if throwErrors is TRUE, the first error encountered is thrown
after executing all signals. Signals are executed in the env environment. If env is NULL, the
enviroment set at initialization is used.

start(millis=250, throwErrors=TRUE, env=parent.frame()) Startsexecuting consume ev-
ery millis milliseconds. throwErrors and env are passed down to consume

stop() Stops the periodic execution of consume.
clearHandlers() Removes all handlers
removeHandler(signal, index) Removes handler from ’signal’ with position index

addHandler(func, signal) Adds a handler for ’signal’. func should take three parameters: 1.
the signal, 2. the message object, and 3. the evaluation environment.

initHandlers() Adds the two default executeors.

finalize() runs stop on object distruction

Arguments
source a source, e.g. TextFileSource.
millis milliseconds.
env An enviroment specifying where to execute signals.
signal A string.

index A position.

6 Producer

defaultSource Get/set the class used to sink/read from the file system

Description

Get/set the class used to sink/read from the file system

Usage

defaultSource(sourceClass)

Arguments
sourceClass An R6 object
Producer A Class for sending signals to a source
Description
Methods

initialize(source) Creates a Producer object linked to the source.
setSource(source) Sets the Source for this producer.

getSource(source) Gets the Source of this producer.

fire(signal, obj=NA) Sends a signal to the source with associates object obj.

fireEval(expr, env) Signals for execution of the expression obj with values from the environ-
ment (or list) env substituted in.

fireDoCall(name, param) Signals for execution of the function whose string value is name with
the parameters in list param.

fireDoCall(name, ...) Signals for execution of the function whose string value is name with
the parameters

Details

@param obj The object to associate with the signal. @param signal A string signal to send. @param
env An environment or list for substitution @param param A list of function parameters. @param
expr An expression to evaluate. @param name the name of the function @param ... parameters to
be passed to function

queue

queue Create a Queue object

Description

Create a Queue object

Usage

queue(source = defaultSource()$new(), producer = Producer$new(source),
consumer = Consumer$new(source))

Arguments
source The source for reading and writing the queue
producer The producer for the source
consumer The consumer of the source
redisConfig Get/set redis configuration
Description

Get/set redis configuration

Usage
redisConfig(config)

Arguments

config a function generating id strings

redisIdGenerator Get/set the location for temporary files

Description

Get/set the location for temporary files

Usage

redisIdGenerator(generator)

Arguments

generator a function generating id strings

8 shinyExample

RedisSource Reads and writes the queue to a redis db

Description

Reads and writes the queue to a redis db

Arguments

id An identifier to use for the queue

config A configuration list for redux::hiredis

n The number of records to pop (-1 indicates all available).

msg A string indicating the signal.

obj The object to associate with the signal.

ShinyConsumer A Consumer class with common task handlers useful in Shiny apps

Description

In addtion to ’eval’ and ’function’ signals, ShinyConsumer object process ’interrupt’ and ’notify’
signals for throwing errors and displying Shiny notifictions.

shinyExample Run Example Shiny Apps

Description

Run Example Shiny Apps

Usage

shinyExample(application = c("progress”, "changeReactive”, "cancel"))

Arguments

application The example to run

Details

‘progress’ is an example application with a long running analysis that is cancelable and has a
progress bar. ’changeReaction’ is the old faithful example, but with the histogram colors chang-
ing over time. ’cancel’ is an example with a cancelable long running process.

ShinyProducer 9

ShinyProducer A Producer with methods specific for Shiny

Description

A Producer object with additional methods for firing interrupts, shiny notifications, and reactive
value assignments.

Details
Methods

fireInterrupt(msg="Interrupt”) Sends an error with message msg.
fireNotify(msg="Interrupt”) Sends a signal to create a shiy Notifiction with message msg.

fireAssignReactive(name, value) Signals for assignment for reactive name to value.

@param msg A string @param name The name of the reactive value. @param value The
value to assign the reactive to.

shinyQueue Create a Queue object

Description

Create a Queue object

Usage

shinyQueue(source = defaultSource()$new(),
producer = ShinyProducer$new(source),
consumer = ShinyConsumer$new(source),
session = shiny::getDefaultReactiveDomain())

Arguments
source The source for reading and writing the queue
producer The producer for the source
consumer The consumer of the source
session A Shiny session
Details

Creates a Queue object for use with shiny, backed by ShinyTextSource, ShiyProducer and Shiny-
Consumer objects by default. The object will be cleaned up and destroyed on session end.

10 tempFileGenerator

stopMulticoreFuture Stops a future run in a multicore plan

Description

Stops a future run in a multicore plan

Usage

stopMulticoreFuture(x)

Arguments

X The MulticoreFuture

Details

This function sends terminate and kill signals to the process running the future, and will only work
for futures run on a multicore plan. This approach is not recommended for cases where you can
listen for interrupts within the future (with AsyncInterruptor). However, for cases where long
running code is in an external library for which you don’t have control, this can be the only way to
terminate the execution.

tempFileGenerator Get/set the location for temporary files

Description

Get/set the location for temporary files

Usage

tempFileGenerator(tempfile)

Arguments

tempfile a function generating working file path (e.g. tempfile())

TextFileSource 11

TextFileSource Reads and writes the queue to a text file

Description

A wrapper around txtq. This object saves signals and associated objects to and queue, and retrieves
them for processing.

Arguments
filePath The path to the file
n The number of records to pop (-1 indicates all available).
msg A string indicating the signal.

obj The object to associate with the signal.

Index

+Topic datasets
AsyncInterruptor, 2
AsyncProgress, 3
Consumer, 5
Producer, 6
RedisSource, 8
ShinyConsumer, 8
ShinyProducer, 9
TextFileSource, 11

AsyncInterruptor, 2
AsyncProgress, 3

Consumer, 5
defaultSource, 6
ipc-package, 2
Producer, 6

Queue (queue), 7
queue, 7

redisConfig, 7
redisIdGenerator, 7
RedisSource, 8

ShinyConsumer, 8
shinyExample, 8
ShinyProducer, 9
shinyQueue, 9
stopMulticoreFuture, 10

tempFileGenerator, 10
TextFileSource, 11

12

	ipc-package
	AsyncInterruptor
	AsyncProgress
	Consumer
	defaultSource
	Producer
	queue
	redisConfig
	redisIdGenerator
	RedisSource
	ShinyConsumer
	shinyExample
	ShinyProducer
	shinyQueue
	stopMulticoreFuture
	tempFileGenerator
	TextFileSource
	Index

