Package 'intrval'

January 22, 2017

Type Package

Title Relational Operators for Intervals

Version 0.1-1

Date 2017-01-21

Author Peter Solymos

Maintainer Peter Solymos <solymos@ualberta.ca>

Description Evaluating if values of vectors are within different open/closed intervals (`x %[]% c(a, b)`), or if two closed

intervals overlap (c(a, b)), of it two closed intervals overlap (c(a1, b1) %[]o[]% c(a2, b2)). Operators for negation and directional relations also implemented.

License GPL-2

URL https://github.com/psolymos/intrval

BugReports https://github.com/psolymos/intrval/issues

LazyLoad yes

LazyData true

NeedsCompilation no

Repository CRAN

Date/Publication 2017-01-22 12:38:33

R topics documented:

intrval-package	
intrval	
ovrlap	
%ni%	

10

Index

intrval-package

Description

Evaluating if values of vectors are within different open/closed intervals ('x intervals overlap ('c(a1, b1) Operators for negation and directional relations also implemented.

Details

The DESCRIPTION file:

Package:	intrval
Type:	Package
Title:	Relational Operators for Intervals
Version:	0.1-1
Date:	2017-01-21
Author:	Peter Solymos
Maintainer:	Peter Solymos <solymos@ualberta.ca></solymos@ualberta.ca>
Description:	Evaluating if values of vectors are within different open/closed intervals ('x intervals overlap ('c(a1, b1) Opera
License:	GPL-2
URL:	https://github.com/psolymos/intrval
BugReports:	https://github.com/psolymos/intrval/issues
LazyLoad:	yes
LazyData:	true

Index of help topics:

interval	Relational Operators Comparing Values to
	Intervals
intrval-package	Relational Operators for Intervals
overlap	Relational Operators Comparing Two Intervals

Relational operators for value-to-interval comparisons: %[]% and alikes.

Relational operators for interval-to-interval comparisons: %[0]% and alikes.

Negated value matching: %ni%.

Author(s)

Peter Solymos

Maintainer: Peter Solymos <solymos@ualberta.ca>

intrval

Description

Functions for evaluating if values of vectors are within intervals.

Usage

x %[]% interval x %)(% interval x %[<]% interval x %[>]% interval x %[)% interval x %)[% interval x %[<)% interval x %[>)% interval x %(]% interval x %](% interval x %(<]% interval x %(>]% interval x %()% interval x %][% interval x %(<)% interval x %(>)% interval

intrval_types(type = NULL, plot = FALSE)

Arguments

x	vector or NULL: the values to be compared to interval endpoints.
interval	vector, 2-column matrix, list, or NULL: the interval end points.
type	character, type of operator for subsetting the results. The default NULL means that all types will be displayed.
plot	logical, whether to plot the results, or print a table to the console instead.

Details

Values of x are compared to interval endpoints a and b ($a \le b$). Endpoints can be defined as a vector with two values (c(a, b)): these values will be compared as a single interval with each value in x. If endpoints are stored in a matrix-like object or a list, comparisons are made element-wise. If lengths do not match, shorter objects are recycled. These value-to-interval operators work for numeric (integer, real) and ordered vectors, and object types which are measured at least on ordinal

scale (e.g. dates), see Examples. Note: interval endpoints are sorted internally thus ensuring the condition $a \le b$ is not necessary.

Values of x are compared to interval endpoints. The type argument or the specification of the special function determines the open ((and)) or closed ([and]) endpoints and relations.

There are four types of intervals ([], [), (], ()), their negation ()(,)[,](,][, respectively), less than ([<], [<), (<], (<)), and greater than ([>], [>), (>], (>)) relations.

Note that some operators return identical results but are syntactically different: %[<]% and %[<)% both evaluate x < a; %[>]% and %(>]% both evaluate x > b; %(<]% and %(<)% evaluate x <= a; %[>)% and %(>)% both evaluate x >= b. This is so because we evaluate only one end of the interval but still conceptually referring to the relationship defined by the right-hand-side interval object and given that a <= b. This implies 2 conditional logical evaluations instead of treating it as a single 3-level ordered factor.

Value

A logical vector, indicating if x is in the interval specified. Values are TRUE, FALSE, or NA (when any of the 3 values (x or endpoints in interval) is NA).

The helper function intrval_types can be used to understand and visualize the operators effects. It returns a matrix explaining the properties of the operators.

Author(s)

Peter Solymos <solymos@ualberta.ca>

See Also

See help page for relational operators: Comparison.

See %[0]% for relational operators for interval-to-interval comparisons.

See factor for the behavior with factor arguments. See also %in% for value matching and %% for negated value matching for factors.

Examples

motivating example from example(lm)

```
## Annette Dobson (1990) "An Introduction to Generalized Linear Models".
## Page 9: Plant Weight Data.
ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)
group <- gl(2, 10, 20, labels = c("Ctl", "Trt"))
weight <- c(ctl, trt)
lm.D9 <- lm(weight ~ group)
## compare 95% confidence intervals with 0
(CI.D9 <- confint(lm.D9))
0 %[]% CI.D9
## comparing dates
DATE <- as.Date(c("2000-01-01", "2000-02-01", "2000-03-31"))</pre>
```

ovrlap

```
DATE %[<]% as.Date(c("2000-01-151", "2000-03-15"))
DATE %[]% as.Date(c("2000-01-151", "2000-03-15"))</pre>
DATE %[>]% as.Date(c("2000-01-151", "2000-03-15"))
## interval formats
x <- rep(4, 5)
a <- 1:5
b <- 3:7
cbind(x=x, a=a, b=b)
x %[]% cbind(a, b) # matrix
x %[]% data.frame(a=a, b=b) # data.frame
x %[]% list(a, b) # list
## helper functions
intrval_types() # print
intrval_types(plot = TRUE) # plot
## graphical examples
## bounding box
set.seed(1)
n <- 10^4
x <- runif(n, -2, 2)
y <- runif(n, -2, 2)
iv1 <- x %[]% c(-1, 1) & y %[]% c(-1, 1)
plot(x, y, pch = 19, cex = 0.25, col = iv1 + 1, main = "Bounding box")
## time series filtering
x <- seq(0, 4*24*60*60, 60*60)
dt <- as.POSIXct(x, origin="2000-01-01 00:00:00")</pre>
f <- as.POSIXlt(dt)$hour %[]% c(0, 11)</pre>
plot(sin(x) ~ dt, type="l", col="grey",
    main = "Filtering date/time objects")
points(sin(x) \sim dt, pch = 19, col = f + 1)
```

ovrlap

Relational Operators Comparing Two Intervals

Description

Functions for evaluating if two intervals overlap or not.

Usage

interval1 %[o]% interval2 interval1 %)o(% interval2 interval1 %[<o]% interval2 interval1 %[o>]% interval2

ovrlap

```
interval1 %(o)% interval2
interval1 %]o[% interval2
interval1 %(<o)% interval2
interval1 %(o>)% interval2
interval1 %[]o[]% interval2
interval1 %[]o[)% interval2
interval1 %[]o(]% interval2
interval1 %[]o()% interval2
interval1 %[)o[]% interval2
interval1 %[)o[)% interval2
interval1 %[)o(]% interval2
interval1 %[)o()% interval2
interval1 %(]o[]% interval2
interval1 %(]o[)% interval2
interval1 %(]o(]% interval2
interval1 %(]o()% interval2
interval1 %()o[]% interval2
interval1 %()o[)% interval2
interval1 %()o(]% interval2
interval1 %()o()% interval2
```

Arguments

interval1, interval2

vector, 2-column matrix, list, or NULL: the interval end points of two (sets) of closed intervals to compare.

Details

The operators define the open/closed nature of the lower/upper limits of the intervals on the left and right hand side of the o in the middle.

The overlap of two closed intervals, [a1, b1] and [a2, b2], is evaluated by the [0] (alias for [0]) operator (a1 <= b1, a2 <= b2). Endpoints can be defined as a vector with two values (c(a1, b1))or can be stored in matrix-like objects or a lists in which case comparisons are made element-wise. If lengths do not match, shorter objects are recycled. These value-to-interval operators work for numeric (integer, real) and ordered vectors, and object types which are measured at least on ordinal scale (e.g. dates), see Examples. Note: interval endpoints are sorted internally thus ensuring the conditions a1 <= b1 and a2 <= b2 is not necessary.)o(is used for the negation of two closed interval overlap, directional evaluation is done via the operators [<o] and [<o].

The overlap of two open intervals is evaluated by the (0) (alias for (0)).]0[is used for the negation of two open interval overlap, directional evaluation is done via the operators (<0) and (0>).

Overlap operators with mixed endpoint do not have negation and directional counterparts.

Value

A logical vector, indicating if interval1 overlaps interval2. Values are TRUE, FALSE, or NA.

ovrlap

Author(s)

Peter Solymos <solymos@ualberta.ca>

See Also

See help page for relational operators: Comparison.

See %[]% for relational operators for value-to-interval comparisons.

See factor for the behavior with factor arguments. See also %in% for value matching and %ni% for negated value matching for factors.

Examples

motivating examples from example(lm)

```
## Annette Dobson (1990) "An Introduction to Generalized Linear Models".
## Page 9: Plant Weight Data.
ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)
group <- gl(2, 10, 20, labels = c("Ctl","Trt"))
weight <- c(ctl, trt)
lm.D90 <- lm(weight ~ group - 1) # omitting intercept
## compare 95% confidence of the 2 groups to each other
(CI.D90 <- confint(lm.D90))
CI.D90[1,] %[o]% CI.D90[2,]
```

simple interval comparisons
c(2:3) %[o]% c(0:1)

```
## vectorized comparisons
c(2:3) %[o]% list(0:4, 1:5)
c(2:3) %[o]% cbind(0:4, 1:5)
c(2:3) %[o]% data.frame(a=0:4, b=1:5)
list(0:4, 1:5) %[o]% c(2:3)
cbind(0:4, 1:5) %[o]% c(2:3)
data.frame(a=0:4, b=1:5) %[o]% c(2:3)
```

list(0:4, 1:5) %[o]% cbind(rep(2,5), rep(3,5)) cbind(rep(2,5), rep(3,5)) %[o]% list(0:4, 1:5)

```
cbind(rep(3,5),rep(4,5)) %)o(% cbind(1:5, 2:6)
cbind(rep(3,5),rep(4,5)) %[<o]% cbind(1:5, 2:6)
cbind(rep(3,5),rep(4,5)) %[o>]% cbind(1:5, 2:6)
```

open intervals

list(0:4, 1:5) %(o)% cbind(rep(2,5), rep(3,5)) cbind(rep(2,5), rep(3,5)) %(o)% list(0:4, 1:5)

cbind(rep(3,5),rep(4,5)) %]o[% cbind(1:5, 2:6) cbind(rep(3,5),rep(4,5)) %(<0)% cbind(1:5, 2:6) cbind(rep(3,5),rep(4,5)) %(o>)% cbind(1:5, 2:6)

dt1 <- as.Date(c("2000-01-01", "2000-03-15"))
dt2 <- as.Date(c("2000-03-15", "2000-06-07"))
dt1 %[]o[]% dt2
dt1 %[]o[)% dt2
dt1 %[]o(]% dt2
dt1 %[]o()% dt2
dt1 %[)o[]% dt2
dt1 %[)o[)% dt2
dt1 %[)o(]% dt2
dt1 %[)o()% dt2
dt1 %(]o[]% dt2
dt1 %(]o[)% dt2
dt1 %(]o(]% dt2
dt1 %(]o()% dt2
dt1 %()o[]% dt2
dt1 %()o[)% dt2
dt1 %()o(]% dt2
dt1 %()o()% dt2

%ni%

Negated Value Matching

Description

%ni% is the negation of %in%, which returns a logical vector indicating if there is a non-match or not for its left operand.

Usage

x %ni% table

Arguments

х	vector or NULL: the values to be matched.
table	vector or NULL: the values to be matched against.

Value

A logical vector, indicating if a non-match was located for each element of x: thus the values are TRUE or FALSE and never NA.

Author(s)

Peter Solymos <solymos@ualberta.ca>

%ni%

See Also

All the opposite of what is written for %in%. See relational operators for intervals: %[]%.

Examples

```
1:10 %ni% c(1,3,5,9)
sstr <- c("c","ab","B","bba","c",NA,"@","bla","a","Ba","%")
sstr[sstr %ni% c(letters, LETTERS)]
```

Index

*Topic logic %ni%,8 intrval, 3 ovrlap, 5 *Topic manip %ni%,8 intrval, 3 ovrlap,5 *Topic package intrval-package, 2 %)[%(intrval),3 %[)%(intrval),3 %[)o[)%(ovrlap),5 %[)o[]%(ovrlap),5 %[<)%(intrval),3 %[<]%(intrval), 3 %[<o]%(ovrlap),5 %[>)%(intrval), 3 %[>]%(intrval),3 %[]%(intrval),3 %[]o[)%(ovrlap),5 %[]o[]%(ovrlap),5 %[o>]%(ovrlap),5 %[o]%(ovrlap),5 %][%(intrval),3 %]o[%(ovrlap),5 %[]%, 2, 7, 9 %[o]%, 2, 4 %%, **4** %in%, 4, 7-9 %ni%, 2, 7, 8 Comparison, 4, 7 factor, 4, 7 interval (intrval), 3 intrval, 3 intrval-package, 2

intrval_types(intrval), 3

ni(%ni%),8

overlap(ovrlap), 5 ovrlap, 5