Package ‘interp’

January 9, 2020

Type Package

Title Interpolation Methods

Version 1.0-33

Date 2020-01-07

Maintainer Albrecht Gebhardt <albrecht.gebhardt@aau.at>

Description Bivariate data interpolation on regular and irregular
grids, either linear or using splines are the main part of this

package. It is intended to provide FOSS replacement functions for

the ACM licensed akima::interp and tripack::tri.mesh functions.
Currently the piecewise linear interpolation part of akima::interp
(and also akima::interpp) is implemented in interp::interp, this

corresponds to the call akima::interp(..., linear=TRUE) which is the

default setting and covers most of akima::interp use cases in
depending packages. A re-implementation of Akimas spline

interpolation (akima::interp(..., linear=FALSE)) is currently under

development and will complete this package in a later

version. Estimators for partial derivatives are already available,
these are a prerequisite for the spline interpolation. The basic
part is currently a GPLed triangulation algorithm (sweep hull
algorithm by David Sinclair) providing the starting point for the
piecewise linear interpolator. As side effect this algorithm is also

used to provide replacements for the basic functions of the tripack
package which also suffer from the ACM restrictions. All functions
are designed to be backward compatible with their akima / tripack

counterparts.
License GPL (>=2)
Imports Rcpp (>=0.12.9), deldir
Suggests sp, Deriv
LinkingTo Rcpp, ReppEigen
NeedsCompilation yes

Author Albrecht Gebhardt [aut, cre, cph] (...),
Roger Bivand [aut],
David Sinclair [aut, cph]

R topics documented:

Repository CRAN

Date/Publication 2020-01-08 23:01:13 UTC

R topics documented:

Index

Interp-package e e 3
ATCS o v v e e e e e e e e e e e e e e 3
ATEA « . v o v e e e e e e e e e e e e e e 4
circles L 5
convex.hull e 6
franke.data L 7
identify.triShto 9
INEIP . . o o o o o e e 10
INMETPD -+« o v e o e e e e e e e e e e e e e 12
locpoly e 14
nearest.neighbours L 18
0] 19
on.convex.hull L 20
outerconvhull L 21
plot.triSht 22
PIOLVOTONOL o e e e e e e e e e 23
plot.voronoi.polygons oL 25
print.summary.triSht oL 26
Print.suUmMmary.VoronOol o v v vt e e e e e e e 26
print.triSht e 27
PriNt.VOTONOL o it it e e e e e e e e e e e 28
summary.triSht L. 28
SUMMATY.VOTONOL + & v v v v v v v v e 29
trifind L e e 30
trimesh 31
triangleso L e e e e 33
triSht . . . e 34
VOTOMOL . v v v v v i i e e e e et e e e e e e e e e e 35
VOTONOLATEA . « « o v v v v v et e et e e e e e e e e e e e e e e 36
voronoi.findrejectsSites e e e e e 37
VOTONOLIMOSAIC + . v v v v v v v v e e e e e e e e e e e e e e e e 38
VOrOnoi.polygons e e 39

interp-package 3

interp-package Interpolation of data

Description

Interpolation of z values given regular or irregular gridded data sets containing coordinates (x;, y;)
and function values z; is (will be) available through this package. As this interpolation is (for the
irregular gridded data case) based on trianglation of the data locations also triangulation functions
are implemented. Moreover the (not yet finished) spline interpolation needs estimators for partial
derivates, these are also made available to the end user for direct use.

Details

The interpolation use can be divided by the used method into piecewise linear (finished in 1_0.27)
and spline (not yet finished) interpolation and by input and output settings into gridded and point-
wise setups.

Note

This package is a FOSS replacement for the ACM licensed packages akima and tripack. The
function calls are backward compatible.

Author(s)

Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>
Maintainer: Albrecht Gebhardt <albrecht.gebhardt@aau.at>

See Also

interp, tri.mesh, voronoi.mosaic, locpoly

arcs Extract a list of arcs from a triangulation object.

Description

This function extracts a list of arcs from a triangulation object created by tri.mesh.

Usage

arcs(tri.obj)

Arguments

tri.obj object of class triSht

4 area

Details
This function acesses the arcs component of a triangulation object returned by tri.mesh and
extracts the arcs contained in this triangulation. This is e.g. used for plotting.

Value
A matrix with two columns "from” and "to" containing the indices of points connected by the arc
with the corresponding row index.

Author(s)
Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

See Also

trisht, triangles, area

Examples

data(franke)
tr <- tri.mesh(franke$ds3)
arcs(tr)

area Extract a list of triangle areas from a triangulation object.

Description
This function returns a list containing the areas of each triangle of a triangulation object created by
tri.mesh.

Usage

area(tri.obj)

Arguments

tri.obj object of class triSht

Details
This function acesses the cclist component of a triangulation object returned by tri.mesh and
extracts the areas of the triangles contained in this triangulation.

Value

A vector containing the area values.

circles

Author(s)

Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

See Also

trisht, triangles, arcs

Examples

data(franke)
tr <- tri.mesh(franke$ds3)
area(tr)

circles Add circles to a plot

Description

This function plots circles at given locations with given radii.

Usage

circles(x, y, r, ...)
Arguments

X vector of X coordinates

y vector of y coordinates

r vactor of radii

additional graphic parameters will be passed through

Note

This function needs a previous plot where it adds the circles.

This function was earlier used in package tripack.

Author(s)

Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

See Also

lines, points

6 convex.hull

Examples

x<-rnorm(10)

y<-rnorm(10)

r<-runif(10,0,0.5)

plot(x,y, xlim=c(-3,3), ylim=c(-3,3), pch="+")
circles(x,y,r)

convex.hull Return the convex hull of a triangulation object

Description

Given a triangulation tri.obj of n points in the plane, this subroutine returns two vectors contain-
ing the coordinates of the nodes on the boundary of the convex hull.

Usage

convex.hull(tri.obj, plot.it=FALSE, add=FALSE,...)

Arguments
tri.obj object of class triSht
plot.it logical, if TRUE the convex hull of tri.obj will be plotted.
add logical. if TRUE (and plot.it=TRUE), add to a current plot.
additional plot arguments
Value
X x coordinates of boundary nodes.
y y coordinates of boundary nodes.
Author(s)

Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

See Also

trisht, print.triSht, plot.triSht, summary.triSht, triangles.

franke.data 7

Examples

random points:

rand. tr<-tri.mesh(runif(10),runif(10))

plot(rand.tr)

rand.ch<-convex.hull(rand.tr, plot.it=TRUE, add=TRUE, col="red")

use a part of the quakes data set:

data(quakes)

quakes.part<-quakes[(quakes[,1]<=-17 & quakes[,1]>=-19.0 &
quakes[,2]<=182.0 & quakes[,2]>=180.0),]

quakes.tri<-tri.mesh(quakes.part$lon, quakes.part$lat, duplicate="remove")

plot(quakes.tri)

convex.hull(quakes.tri, plot.it=TRUE, add=TRUE, col="red")

franke.data Test datasets from Franke for interpolation of scattered data

Description

franke.data generates the test datasets from Franke, 1979, see references.

Usage

franke.data(fn = 1, ds = 1, data)
franke.fn(x, y, fn = 1)

Arguments
fn function number, from 1 to 5.
X ’x’ value
y 'y’ value
ds data set number, from 1 to 3. Dataset 1 consists of 100 points, dataset 2 of 33
points and dataset 3 of 25 points scattered in the square [0,1] x [0,1]. (and
partially slightly outside).
data A list of dataframes with ’x’ and "y’ to choose from, dataset franke should be
used here.
Details

These datasets are mentioned in Akima, (1996) as a testbed for the irregular scattered data interpo-
lator.

Franke used the five functions:

_ (9z—2)24(9y—2)? (92+1)2 9y+41 _ (9z—=7)24(9y—3)2 _ N2 (g2
3 0 4+ (0.be 1 —0.2¢e ((9z—4)"—(9y—7)%)

0.75e +0.75e” a0

tanh(9y — 9z) + 1
9

8 franke.data

1.25 + cos(5.4y)
6(1+4 (3z—1)2)

_0.5)2
B 81((2—0.5)24+ =05)")
e 3

52
81((2—0.5)2+ W=0-5)"

e 3

)

/64 —81((z — 0.5)2 + (y — 0.5)2)

—-0.5
9

and evaluated them on different more or less dense grids over [0,1] x [0, 1].

Value

A data frame with components

X ’x” coordinate

y 'y’ coordinate

z ’z’ value
Note

The datasets have to be generated via franke.data before use, the dataset franke only contains a
list of 3 dataframes of "x” and ’y’ coordinates for the above mentioned irregular grids. Do not forget
to load the franke dataset first.

The ’x’ and ’y’ values have been taken from Akima (1996).

Author(s)
Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

References

FRANKE, R., (1979). A critical comparison of some methods for interpolation of scattered data.
Tech. Rep. NPS-53-79-003, Dept. of Mathematics, Naval Postgraduate School, Monterey, Calif.

Akima, H. (1996). Algorithm 761: scattered-data surface fitting that has the accuracy of a cubic
polynomial. ACM Transactions on Mathematical Software 22, 362-371.

See Also

interp

identify.triSht 9

Examples

generate Frankes data set for function 2 and dataset 3:

data(franke)
F23 <- franke.data(2, 3, franke)
str(F23)
identify.triSht Identify points in a triangulation plot
Description

Identify points in a plot of "x" with its coordinates. The plot of "x" must be generated with
plot.tri.

Usage

S3 method for class 'triSht'
identify(x,...)

Arguments
X object of class triSht
additional paramters for identify
Value

an integer vector containing the indexes of the identified points.

Author(s)

Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

See Also

trisht, print.triSht, plot.triSht, summary.triSht

Examples

Not run:

data(franke)

tr <- tri.mesh(franke$ds3$x, franke$ds3s$y)
plot(tr)

identify(tr)

End(Not run)

10

interp

interp

Interpolation function

Description

This function currently implements piecewise linear interpolation (=barycentric interpolation).

Usage

interp(x, y = NULL, z, xo = seq(min(x), max(x), length = nx),

Arguments

X

X0

yo

input

yo = seq(min(y), max(y), length = ny),

linear = (method == "linear"), extrap = FALSE,
duplicate = "error"”, dupfun = NULL,

nx = 40, ny = 40, input="points”, output = "grid",
method = "linear”, deltri = "shull")

vector of z-coordinates of data points or a SpatialPointsDataFrame object.
Missing values are not accepted.

vector of y-coordinates of data points. Missing values are not accepted.

If left as NULL indicates that x should be a SpatialPointsDataFrame and z
names the variable of interest in this dataframe.

vector of z-values at data points or a character variable naming the variable of
interest in the SpatialPointsDataFrame x.

Missing values are not accepted.

X, Yy, and z must be the same length (execpt if x is a SpatialPointsDataFrame)
and may contain no fewer than four points. The points of x and y should not be
collinear, i.e, they should not fall on the same line (two vectors x and y such that
y = ax + b for some a, b will not produce menaningful results).

interp is meant for cases in which you have x, y values scattered over a plane
and a z value for each. If, instead, you are trying to evaluate a mathematical
function, or get a graphical interpretation of relationships that can be described
by a polynomial, try outer.

If output="grid" (default): sequence of x locations for rectangular output grid,
defaults to nx points between min(x) and max(x).

If output="points": vector of x locations for output points.

If output="grid" (default): sequence of y locations for rectangular output grid,
defaults to ny points between min(y) and max(y).

If output="points": vector of y locations for output points. In this case it has
to be same length as xo.

text, possible values are "grid” (not yet implemented) and "points” (default).
This is used to distinguish between regular and irregular gridded data.

interp 11

output text, possible values are "grid"” (=default) and "points”.

If "grid"” is choosen then xo and yo are interpreted as vectors spanning a rect-

angular grid of points (xoli],yo[j]), ¢ = 1,...,nx, j = 1,...,ny. This default

behaviour matches how akima: :interp works.

In the case of "points” xo and yo have to be of same length and are taken as

possibly irregular spaced output points (zo[i], yo[i]), ¢ = 1, ..., no with no=length(xo).

nx and ny are ignored in this case. This case is meant as replacement for the

pointwise interpolation done by akima: : interpp. If the input x is a SpatialPointsDataFrame
and output="points” then xo has to be a SpatialPointsDataFrame, yo will

be ignored.

linear logical, only for backward compatibility with akima: : interp, indicates if piece-
wise linear interpolation or Akima splines should be used. Warning: in this
release only 1inear=TRUE is implemented!

Please use the new method argument instead!

method text, possible methods are (currently only, more is under developement) "linear”
(piecewise linear interpolation within the triangles of the Delauney triangula-
tion, also referred to as barycentric interpolation based on barycentric coordi-
nates).

This replaces the old 1inear argument of akima: :interp.

extrap logical, indicates if extrapolation outside the convex hull is intended, will not
work for piecewise linear interpolation!

duplicate character string indicating how to handle duplicate data points. Possible values
are

"error” produces an error message,

"strip” remove duplicate z values,

non nn

"mean”,"median","user"” calculate mean , median or user defined function
(dupfun) of duplicate z values.

dupfun a function, applied to duplicate points if duplicate= "user”.

nx dimension of output grid in x direction

ny dimension of output grid in y direction

deltri triangulation method used, this argument will later be moved into a control

set together with others related to the spline interpolation! Possible values are
"shull” (default, sweep hull algorithm) and "deldir” (uses packagedeldir).

Value

a list with 3 components:

X,y If output="grid": vectors of - and y-coordinates of output grid, the same as
the input argument xo, or yo, if present. Otherwise, their default, a vector 40
points evenly spaced over the range of the input x and y.

If output="points": vectors of x- and y-coordinates of output points as given
by xo and yo.

12 interpp

z If output="grid": matrix of fitted z-values. The value z[i, j] is computed at
the point (zo[i], yo[j]). z has dimensions length(xo) times length(yo).
If output="points": a vector with the calculated z values for the output points
as given by xo and yo.

If the input was a SpatialPointsDataFrame a SpatialPixelsDataFrame is
returned for output="grid" and a SpatialPointsDataFrame for output="points".

Author(s)

Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

References

Moebius, A. F. (1827) Der barymetrische Calcul. Verlag v. Johann Ambrosius Barth, Leipzig,
https://books.google.at/books?id=eFPluv_UqFEC&hl=de&pg=PR 1#v=onepage&q&f=false

Franke, R., (1979). A critical comparison of some methods for interpolation of scattered data. Tech.
Rep. NPS-53-79-003, Dept. of Mathematics, Naval Postgraduate School, Monterey, Calif.

See Also

interpp

Examples

Use all datasets from Franke, 1979:

data(franke)

for(i in 1:5)

for(j in 1:3){

FR <- franke.data(i,j,franke)
IL <- with(FR, interp(x,y,z,method="1linear"))
image (IL)
contour (IL,add=TRUE)
with(FR,points(x,y))

interpp Pointwise interpolate irregular gridded data

Description

This function implements bivariate interpolation onto a set of points for irregularly spaced input
data.

This function is meant for backward compatibility to package akima, please use interp with its
output argument set to "points” now.

interpp 13

Usage

interpp(x, y = NULL, z, xo0, yo = NULL, linear = TRUE,
extrap = FALSE, duplicate = "error”, dupfun = NULL,
deltri = "shull")

Arguments

X vector of x-coordinates of data points or a SpatialPointsDataFrame object.
Missing values are not accepted.

y vector of y-coordinates of data points. Missing values are not accepted.
If left as NULL indicates that x should be a SpatialPointsDataFrame and z
names the variable of interest in this dataframe.

z vector of z-coordinates of data points or a character variable naming the variable
of interest in the SpatialPointsDataFrame x.
Missing values are not accepted.
X, ¥, and z must be the same length (execpt if x is a SpatialPointsDataFrame)
and may contain no fewer than four points. The points of x and y cannot be
collinear, i.e, they cannot fall on the same line (two vectors x and y such that y
= ax + b for some a, b will not be accepted).

X0 vector of x-coordinates of points at which to evaluate the interpolating function.
If xis a SpatialPointsDataFrame this has also to be a SpatialPointsDataFrame.

yo vector of y-coordinates of points at which to evaluate the interpolating function.
If operating on SpatialPointsDataFrames this is left as NULL

linear logical — indicating wether linear or spline interpolation should be used.

extrap logical flag: should extrapolation be used outside of the convex hull determined
by the data points? Not possible for linear interpolation.

duplicate indicates how to handle duplicate data points. Possible values are "error” - pro-
duces an error message, "strip"” - remove duplicate z values, "mean”,”"median","user”
- calculate mean , median or user defined function of duplicate z values.

dupfun this function is applied to duplicate points if duplicate="user"

deltri triangulation method used, this argument will later be moved into a control set
together with others related to the spline interpolation!

Value

a list with 3 components:

X,y If output="grid": vectors of - and y-coordinates of output grid, the same as
the input argument xo, or yo, if present. Otherwise, their default, a vector 40
points evenly spaced over the range of the input x and y.
If output="points": vectors of - and y-coordinates of output points as given
by xo and yo.

z If output="grid": matrix of fitted z-values. The value z[1i, j] is computed at
the point (zo[i], yo[j]). z has dimensions length(xo) times length(yo).

14 locpoly

If output="points": a vector with the calculated z values for the output points

as given by xo and yo.

If the input was a SpatialPointsDataFrame a SpatialPixelssDataFrame is
returned for output="grid" and a SpatialPointsDataFrame for output="points".

Note

This is only a call wrapper meant for backward compatibility, see interp for more details!

Author(s)
Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

References

Moebius, A. F. (1827) Der barymetrische Calcul. Verlag v. Johann Ambrosius Barth, Leipzig,
https://books.google.at/books?id=eFPluv_UqFEC&hl=de&pg=PR 1 #v=0onepage&q&f=false

Franke, R., (1979). A critical comparison of some methods for interpolation of scattered data. Tech.
Rep. NPS-53-79-003, Dept. of Mathematics, Naval Postgraduate School, Monterey, Calif.

See Also

interp

Examples

#i## Use all datasets from Franke, 1979:
calculate z at shifted original locations.
data(franke)
for(i in 1:5)
for(j in 1:3){
FR <- franke.data(i,j,franke)
IL <- with(FR, interpp(x,y,z,x+0.1,y+0.1,1linear=TRUE))
str(IL)

locpoly Local polynomial fit.

Description

This function performs a local polynomial fit of up to order 3 to bivariate data. It returns estimated
values of the regression function as well as estimated partial derivatives up to order 3.

Usage

locpoly(x, y, z, xo = seq(min(x), max(x), length = nx), yo = seq(min(y),
max(y), length = ny), nx = 40, ny = 40, input = "points”, output = "grid",
h = 0, kernel = "uniform”, solver = "QR", degree = 3, pd = "")

locpoly 15

Arguments

X vector of z-coordinates of data points.
Missing values are not accepted.

y vector of y-coordinates of data points.
Missing values are not accepted.

z vector of z-values at data points.
Missing values are not accepted.
X, ¥, and z must be the same length

X0 If output="grid" (default): sequence of x locations for rectangular output grid,
defaults to nx points between min(x) and max(x).
If output="points": vector of x locations for output points.

yo If output="grid" (default): sequence of y locations for rectangular output grid,
defaults to ny points between min(y) and max(y).
If output="points": vector of y locations for output points. In this case it has
to be same length as xo.

input text, possible values are "grid” (not yet implemented) and "points” (default).
This is used to distinguish between regular and irregular gridded data.

output text, possible values are "grid"” (=default) and "points”.
If "grid"” is choosen then xo and yo are interpreted as vectors spanning a rect-
angular grid of points (zoli],yo[j]), i = 1,...,nz, j = 1,...,ny. This default
behaviour matches how akima: :interp works.
In the case of "points” xo and yo have to be of same lenght and are taken as
possibly irregular spaced output points (zo[i], yo[i]), ¢ = 1, ..., no with no=length(xo).
nx and ny are ignored in this case.

nx dimension of output grid in x direction

ny dimension of output grid in y direction

h bandwidth parameter, between 0 and 1. If a scalar is given it is interpreted as
ratio applied to the dataset size to determine a local search neighbourhood, if set
to 0 a minimum useful search neighbourhood is choosen (e.g. 10 points for a
cubic trend function to determine all 10 parameters).
If a vector of length 2 is given both components are interpreted as ratio of the z-
and y-range and taken as global bandwidth.

kernel Text value, implemented kernels are uniform (default), epanechnikov and gaussian.

solver Text value, determines used solver in fastL.M algorithm used by this code
Possible values are LLt, QR (default), SVD, Eigen and CPivQR (compare fastLm).

degree Integer value, degree of polynomial trend, maximum allowed value is 3.

pd Text value, determines which partial derivative should be returned, possible val-

nyn o ononon n o on n o on n o on n

ues are "" (default, the polynomial itself), "x", "y", "xx", "xy", "yy", "xxx",

non non

"xxy", "xyy", "yyy" or "all".

16 locpoly

Value

If pd="all":
X x coordinates
y y coordinates

estimates of z
zX estimates of dz/dx
zy estimates of dz/dy
ZXX estimates of d?z/dx?
zXy estimates of d?z/dxdy
zyy estimates of d?z/dy?
ZXXX estimates of d®z/dx?
ZXXy estimates of d°z/dz%dy
ZXyy estimates of d°z/dxdy?
zyyy estimates of d°z/dy?

If pd!="all" only the elements x, y and the desired derivative will be returned, e.g. zxy for
pd:llxylﬁ'

Note

Function locpoly of package KernSmooth performs a similar task for univariate data.

Author(s)
Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

References

Douglas Bates, Dirk Eddelbuettel (2013). Fast and Elegant Numerical Linear Algebra Using the
ReppEigen Package. Journal of Statistical Software, 52(5), 1-24. URL http://www.jstatsoft.org/v52/i05/.

See Also

locpoly, fastlm

Examples

choose a kernel
knl <- "gaussian”

choose global and local bandwidth
bwg <- 0.25 # *100% of x- y-range
bwl <- 0.1 # *100% of data set

a bivariate polynomial of degree 5:

locpoly

f <= function(x,y) 0.1+ 0.2xx-0.3*xy+0Q.1*x*y+0.3*x"2%xy-0.5xy*2xx+y*3*x*2+0.1*%y"5

degree of model
dg=3

part 1:
regular gridded data:
ng<- 21 # x/y size of a square data grid

build and fill the grid with the theoretical values:

xg<-seq(@,1,length=ng)
yg<-seq(@,1,length=ng)

xg and yg as matrix matching fg
nx <- length(xg)

ny <- length(yg)

xx <- t(matrix(rep(xg,ny),nx,ny))
yy <- matrix(rep(yg,nx),ny,nx)

fg <- outer(xg,yg,f)

local polynomial estimate
global bw:
ttg <- system.time(pdg <- locpoly(xg,yg,fg,
input="grid"”, pd="all", h=c(bwg,bwg), solver="QR", degree=dg, kernel=knl))
time used:
ttg

local bw:
ttl <- system.time(pdl <- locpoly(xg,yg,fg,
input="grid"”, pd="all", h=bwl, solver="QR", degree=dg, kernel=knl))
time used:
ttl

image (pdg$x, pdgsy, pdg$z)

contour (pdlx,pdly,pdl$zx,add=TRUE, lty="dotted")
contour (pdlx,pdly,pdl$zy,add=TRUE, 1ty="dashed")
points(xx,yy,pch=".")

part 2:
irregular data,
results will not be as good as with the regular 21%21=231 points.

nd<- 41 # size of data set

random irregular data
oldseed <- set.seed(42)
x<-runif(ng)
y<-runif(ng)
set.seed(oldseed)

18 nearest.neighbours

z <- f(x,y)

global bw:
ttg <- system.time(pdg <- interp::locpoly(x,y,z, xg,yg, pd="all",
h=c(bwg,bwg), solver="QR", degree=dg,kernel=knl))

ttg

local bw:
ttl <- system.time(pdl <- interp::locpoly(x,y,z, xg,yg, pd="all",
h=bwl, solver="QR", degree=dg,kernel=knl))

ttl

image (pdg$x, pdgsy, pdg$z)

contour (pdlx,pdly, pdl$zx,add=TRUE,lty="dotted")
contour (pdlx,pdly,pdl$zy,add=TRUE, 1ty="dashed")
points(x,y,pch=".")

nearest.neighbours Nearest neighbour structure for a data set

Description

This function can be used to generate nearest neighbour information for a set of 2D data points.

Usage

nearest.neighbours(x, y)

Arguments
X vector containing x ccordinates of points.
y vector containing x ccordinates of points.
Details

The C++ implementation of this function is used inside the locpoly and interp functions.

Value
A list with two components

index A matrix with one row per data point. Each row contains the indices of the
nearest neigbours to the point associated with this row, currently the point itself
is also listed in the first row, so this matrix is of dimension n times n (will change
to n times n — 1 later).

dist A matrix containing the distances according to the neigbours listed in compo-
nent index.

on 19

Author(s)

Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

See Also

convex.hull

Examples

data(franke)

use only a small subset
fd <- franke$ds1[1:5,]
nearest.neighbours(fdx, fdy)

on Determines if a point is on or left of the vector described by two other
points.

Description
A simple test function to determine the position of one (or more) points relative to a vector spanned
by two points.

Usage

on(x1, y1, x2, y2, x0, yo, eps = le-16)
left(x1, y1, x2, y2, x0, y0, eps = le-16)

Arguments
x1 x coordinate of first point determinig the vector.
y1 y coordinate of first point determinig the vector.
X2 x coordinate of second point determinig the vector.
y2 y coordinate of second point determinig the vector.
X0 vector of x coordinates to locate relative to the vector (xo — 1,y — Y1)
1 vector of x coordinates to locate relative to the vector (xo — 1,y — Y1)
eps tolerance for checking if g, yo is on or left of (2 — x1,y2 — y1), defaults to
10716,
Value

logical vector with the results of the test.

Author(s)

Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

20 on.convex.hull

See Also

in.convex.hull, on.convex.hull.

Examples

y <= x <- c(0,1)

should be TRUE
on(x[1]1,y[11,x[2],y[2],0.5,0.5)

note the default setting of eps leading to
on(x[1]1,y[1]1,x[2],y[2],0.5,0.50000000000000001)
also be TRUE

should be TRUE
left(x[1]1,y[1]1,x[2],y[2],0.5,0.6)

note the default setting of eps leading to
left(x[1],y[1]1,x[2],y[2],0.5,0.50000000000000001)
already resulting to FALSE

on.convex.hull Determines if points are on or in the convex hull of a triangulation
object

Description

Given a triangulation object tri.obj of n points in the plane, this subroutine returns a logical vector
indicating if the points (z;,y;) lay on or in the convex hull of tri.obj.

Usage

on.convex.hull(tri.obj, x, y, eps=1E-16)
in.convex.hull(tri.obj, x, y, eps=1E-16, strict=TRUE)

Arguments
tri.obj object of class triSht
X vector of z-coordinates of points to locate
y vector of y-coordinates of points to locate
eps accuracy for checking the condition
strict logical, default TRUE. It indicates if the convex hull is treated as an open (strict=TRUE)
or closed (strict=FALSE) set. (applies only to in.convex.hull)
Value

Logical vector.

outer.convhull 21

Author(s)
Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

See Also

trisht, print.triSht, plot.triSht, summary.triSht, triangles, convex.hull.

Examples

use a part of the quakes data set:

data(quakes)

quakes.part<-quakes[(quakes[,1]<=-10.78 & quakes[,1]>=-19.4 &
quakes[,2]<=182.29 & quakes[,2]>=165.77),]

g.tri<-tri.mesh(quakes.part$lon, quakes.part$lat, duplicate="remove")

on.convex.hull(q.tri,quakes.part$lon[1:20],quakes.part$lat[1:20])

Check with part of data set:

Note that points on the hull (see above) get marked FALSE below:

in.convex.hull(q.tri,quakes.part$lon[1:20],quakes.part$lat[1:20])

If points both on the hull and in the interior of the hull are meant

disable strict mode:

in.convex.hull(q.tri,quakes.part$lon[1:20],quakes.part$lat[1:20],strict=FALSE)

something completely outside:

in.convex.hull(q.tri,c(170,180),c(-20,-10))

outer.convhull Version of outer which operates only in a convex hull

Description

This version of outer evaluates FUN only on that part of the grid cz times cy that is enclosed within
the convex hull of the points (pzx, py).

This can be useful for spatial estimation if no extrapolation is wanted.

Usage
outer.convhull(cx,cy,px,py,FUN,duplicate="remove"”,...)
Arguments
cX x cordinates of grid
cy y cordinates of grid
pX vector of x coordinates of points
py vector of y coordinates of points
FUN function to be evaluated over the grid
duplicate indicates what to do with duplicate (pz;, py;) points, default "remove”.

additional arguments for FUN

22 plot.triSht

Value

Matrix with values of FUN (NAs if outside the convex hull).

Author(s)
Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

See Also

in.convex.hull

Examples

x<-runif(20)

y<-runif(20)

z<-runif(20)

z.1m<-1m(z~x+y)

f.pred<-function(x,y)
{predict(z.1lm,data.frame(x=as.vector(x),y=as.vector(y)))}

xg<-seq(0,1,0.05)

yg<-seq(0,1,0.05)

image(xg,yg,outer.convhull(xg,yg,x,y,f.pred))

points(x,y)

plot.triSht Plot a triangulation object

Description

plots the triangulation object "x"

Usage

S3 method for class 'triSht'

plot(x, add = FALSE, xlim = range(x$x),
ylim = range(x$y), do.points = TRUE, do.labels = FALSE, isometric = TRUE,
do.circumcircles = FALSE, segment.lty = "dashed”, circle.lty =

"dotted”, ...)
Arguments
X object of class "triSht”
add logical, if TRUE, add to a current plot.
do.points logical, indicates if points should be plotted. (default TRUE)
do.labels logical, indicates if points should be labelled. (default FALSE)
x1lim,ylim x/y ranges for plot

isometric generate an isometric plot (default TRUE)

plot.voronoi 23

do.circumcircles
logical, indicates if circumcircles should be plotted (default FALSE)

segment.lty line type for triangulation segments
circle.lty line type for circumcircles

additional plot parameters

Value

None

Author(s)
Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

See Also

trisht, print.triSht, summary.triSht

Examples

random points

plot(tri.mesh(rpois(100,lambda=20),rpois(100,lambda=20),duplicate="remove"))

use a part of the quakes data set:

data(quakes)

quakes.part<-quakes[(quakes[,1]1<=-10.78 & quakes[,1]>=-19.4 &
quakes[,2]<=182.29 & quakes[,2]>=165.77),]

quakes.tri<-tri.mesh(quakes.part$lon, quakes.part$lat, duplicate="remove")

plot(quakes.tri)

use the whole quakes data set

(will not work with standard memory settings, hence commented out)

plot(tri.mesh(quakes$lon, quakes$lat, duplicate="remove"), do.points=F)

plot.voronoi Plot a voronoi object

Description

Plots the mosaic "x". Dashed lines are used for outer tiles of the mosaic.

Usage

S3 method for class 'voronoi'
plot(x,add=FALSE,
xlim=c(min(xtrix)-
0.1*%diff (range(x$trisx)),
max (xtrix)+
0.1*xdiff(range(x$trisx))),
ylim=c(min(x$tris$y)-

24 plot.voronoi

0.1*xdiff (range(x$trisy)),
max(x$trigy)+
0.1xdiff(range(x$trisy))),
all=FALSE,
do.points=TRUE,
main="Voronoi mosaic”,
sub=deparse(substitute(x)),
isometric=TRUE,

.2
Arguments
X object of class "voronoi”
add logical, if TRUE, add to a current plot.
x1lim x plot ranges, by default modified to hide dummy points outside of the plot
ylim y plot ranges, by default modified to hide dummy points outside of the plot
all show all (including dummy points in the plot
do.points logical, indicates if points should be plotted.
main plot title
sub plot subtitle
isometric generate an isometric plot (default TRUE)
additional plot parameters
Value
None
Author(s)

Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

See Also

voronoi, print.voronoi, summary.voronoi, plot.voronoi.polygons

Examples

data(franke)

tr <- tri.mesh(franke$ds3)
vr <- voronoi.mosaic(tr)
plot(tr)

plot(vr,add=TRUE)

plot.voronoi.polygons 25

plot.voronoi.polygons plots an voronoi.polygons object

Description

plots an voronoi.polygons object

Usage
S3 method for class 'voronoi.polygons'
plot(x, which, color=TRUE, isometric=TRUE, ...)
Arguments
X object of class voronoi.polygons
which index vector selecting which polygons to plot
color logical, determines if plot should be colored, default: TRUE
isometric generate an isometric plot (default TRUE)

additional plot arguments

Author(s)

A. Gebhardt

See Also

voronoi.polygons

Examples

data(franke)

fd3 <- franke$ds3

fd3.vm <- voronoi.mosaic(fd3$x,fd3$y)
fd3.vp <- voronoi.polygons(fd3.vm)
plot(fd3.vp)
plot(fd3.vp,which=c(3,4,6,10))

26 print.summary.voronoi

print.summary.triSht Print a summary of a triangulation object

Description

Prints some information about tri.obj

Usage
S3 method for class 'summary.triSht'
print(x, ...)

Arguments

X object of class "summary.triSht", generated by summary.triSht.

additional paramters for print

Value

None

Note

This function is meant as replacement for the function of same name in package tripack.

The only difference is that no constraints are possible with triSht objects of package interp.

Author(s)
Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

See Also

triSht,tri.mesh, print.triSht, plot.triSht, summary.triSht.

print.summary.voronoi Print a summary of a voronoi object

Description

Prints some information about object x

Usage

S3 method for class 'summary.voronoi'
print(x, ...)

print.triSht

Arguments
X object of class "summary.voronoi”, generated by summary.voronoi.
additional paramters for print
Value
None
Note

27

This function is meant as replacement for the function of same name in package tripack and should

be fully backward compatible.

Author(s)
Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

See Also

voronoi,voronoi.mosaic, print.voronoi, plot.voronoi, summary.voronoi.

print.triSht Print a triangulation object

Description

prints a adjacency list of "x"

Usage
S3 method for class 'triSht'
print(x,...)
Arguments
X object of class "triSht”
additional paramters for print
Value

None

Author(s)
Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

See Also

trisht, plot.triSht, summary.triSht

28

summary.triSht

print.voronoi Print a voronoi object

Description

rints a summary of "x"
p ry

Usage
S3 method for class 'voronoi'
print(x,...)

Arguments

X object of class "voronoi”

additional paramters for print

Value

None

Author(s)

Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

See Also

voronoi, plot.voronoi, summary.voronoi

summary.triSht Return a summary of a triangulation object

Description

Returns some information (number of nodes, triangles, arcs) about object.

Usage
S3 method for class 'triSht'
summary(object,...)

Arguments
object object of class "triSht”

additional paramters for summary

summary.voronoi 29

Value

An object of class "summary.triSht"”, to be printed by print.summary.triSht.

It contains the number of nodes (n), of arcs (na), of boundary nodes (nb) and triangles (nt).

Note

This function is meant as replacement for the function of same name in package tripack.

The only difference is that no constraints are possible with triSht objects of package interp.

Author(s)
Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

See Also

trisSht, print.triSht, plot.triSht, print.summary.triSht.

summary.voronoi Return a summary of a voronoi object

Description

Returns some information about object

Usage
S3 method for class 'voronoi'
summary (object,...)

Arguments
object object of class "voronoi”

additional parameters for summary

Value

Object of class "summary.voronoi”.

It contains the number of nodes (nn) and dummy nodes (nd).

Note

This function is meant as replacement for the function of same name in package tripack and should
be fully backward compatible.

Author(s)
Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

30 tri.find

See Also

voronoi,voronoi.mosaic, print.voronoi, plot.voronoi, print.summary.voronoi.

tri.find Locate a point in a triangulation

Description

This subroutine locates a point P = (x, y) relative to a triangulation created by tri.mesh. If P is
contained in a triangle, the three vertex indexes are returned. Otherwise, the indexes of the rightmost
and leftmost visible boundary nodes are returned.

Usage
tri.find(tri.obj,x,y)

Arguments
tri.obj an triangulation object of class triSht
X x-coordinate of the point
y y-coordinate of the point

Value

A list with elements i11,12,13 containing nodal indexes, in counterclockwise order, of the vertices
of a triangle containing P = (z,y). bc contains the barycentric coordinates of P w.r.t. the found
triangle.

If P is not contained in the convex hull of the nodes this indices are 0 (bc is meaningless then).

Author(s)
Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

See Also

trisSht, print.triSht, plot.triSht, summary.triSht, triangles, convex.hull

Examples

data(franke)

tr<-tri.mesh(franke$ds3$x, franke$ds3sy)

plot(tr)

pnt<-list(x=0.3,y=0.4)

triangle.with.pnt<-tri.find(tr,pnt$x,pntsy)

attach(triangle.with.pnt)

lines(franke$ds3$x[c(i1,i2,i3,i1)], franke$ds3$y[c(il1,i2,i3,i1)],col="red")
points(pnt$x,pntsy)

tri.mesh 31

tri.mesh Delaunay triangulation

Description

This function generates a Delaunay triangulation of arbitrarily distributed points in the plane. The
resulting object can be printed or plotted, some additional functions can extract details from it like
the list of triangles, arcs or the convex hull.

Usage

tri.mesh(x, y = NULL, duplicate = "error")

Arguments
X vector containing x coordinates of the data. If y is missing x should be a list or
dataframe with two components x and y.
y vector containing y coordinates of the data. Can be omitted if x is a list with two
components x and y.
duplicate flag indicating how to handle duplicate elements. Possible values are:
e "error” — default,
e "strip” —remove all duplicate points,
* "remove” — leave one point of the duplicate points.
Details

This function creates a Delaunay triangulation of a set of arbitrarily distributed points in the plane
referred to as nodes.

The Delaunay triangulation is defined as a set of triangles with the following five properties:

1. The triangle vertices are nodes.

2. No triangle contains a node other than its vertices.
3. The interiors of the triangles are pairwise disjoint.
4.

The union of triangles is the convex hull of the set of nodes (the smallest convex set which
contains the nodes).

5. The interior of the circumcircle of each triangle contains no node.
The first four properties define a triangulation, and the last property results in a triangulation which
is as close as possible to equiangular in a certain sense and which is uniquely defined unless four or

more nodes lie on a common circle. This property makes the triangulation well-suited for solving
closest point problems and for triangle-based interpolation.

This triangulation is based on the s-hull algorithm by David Sinclair. It consist of two steps:

32 tri.mesh

1. Create an initial non-overlapping triangulation from the radially sorted nodes (w.r.t to an arbi-
trary first node). Starting from a first triangle built from the first node and its nearest neigbours
this is done by adding triangles from the next node (in the sense of distance to the first node)
to the hull of the actual triangulation visible from this node (sweep hull step).

2. Apply triange flipping to each pair of triangles sharing a border until condition 5 holds (Cline-
Renka test).

This algorithm has complexicity O(n x log(n)).

Value

an object of class "triSht", see triSht.

Note

This function is meant as a replacement for tri.mesh from package tripack. Please note that
the underlying algorithm changed from Renka’s method to Sinclair’s sweep hull method. Delau-
nay triangulations are unique if no four or more points exist which share the same circumcircle.
Otherwise several solutions are available and different algorithms will give different results. This
especially holds for regular grids, where in the case of rectangular gridded points each grid cell can
be triangulated in two different ways.

The arguments are backward compatible, but the returned object is not compatible with package
tripack (it provides a tri object type)! But you can apply methods with same names to the object
returned in package interp which is of type triSht, so you can reuse your old code but you cannot
reuse your old saved workspace.

Author(s)
Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

References

B. Delaunay, Sur la sphere vide. A la memoire de Georges Voronoi, Bulletin de 1’ Academie des
Sciences de I’'URSS. Classe des sciences mathematiques et na, 1934, no. 6, p. 793-800

D. A. Sinclair, S-Hull: A Fast Radial Sweep-Hull Routine for Delaunay Triangulation. https://arxiv.org/pdf/1604.01428.pdf,
2016.

See Also

trisSht, print.triSht, plot.triSht, summary.triSht, triangles, convex.hull, arcs.

Examples

use Frankes datasets:

data(franke)

tr1 <- tri.mesh(franke$ds3$x, franke$ds3s$y)
tri

tr2 <- tri.mesh(franke$ds2)

summary (tr2)

triangles 33

triangles Extract a list of triangles from a triangulation object

Description

This function extracts a list of triangles from an triangulation object created by tri.mesh.

Usage

triangles(tri.obj)

Arguments

tri.obj object of class triSht

Details

The vertices in the returned matrix (let’s denote it with retval) are ordered counterclockwise. The
columns trz and arcz, x = 1,2, 3 index the triangle and arc, respectively, which are opposite (not
shared by) node nodez, with triz = 0 if arcz indexes a boundary arc. Vertex indexes range from 1
to n, the number of nodes, triangle indexes from 0 to nt, and arc indexes from 1 to na = nt+n—1.

Value

A matrix with columns node1, node2, node3, representing the vertex nodal indexes, tri, tr2, tr3,
representing neighboring triangle indexes and arc1, arc2, arc3 reresenting arc indexes.

Each row represents one triangle.

Author(s)

Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

See Also

triSht, print.triSht, plot.triSht, summary.triSht, triangles

Examples

use the smallest Franke data set
data(franke)

fr3.tr<-tri.mesh(franke$ds3$x, franke$ds3s$y)
triangles(fr3.tr)

34

triSht

triSht

A triangulation object

Description

R object that represents the triangulation of a set of 2D points, generated by tri.mesh.

Arguments

n

X

y
nt
trlist

cclist

nchull
chull

narcs

arcs

call

Note

Number of nodes

x coordinates of the triangulation nodes

y coordinates of the triangulation nodes

number of triangles

Matrix of indices which defines the triangulation, each row corresponds to a
triangle.

Columns i1, 12, i3 of the row ¢ contain the node indices defining the ¢th triangle.
Columns j1, j2, j3 of the row ¢ contain the indices of neighbour triangles (or 0
if no neighbour available along the convex hull).

Columns k1, k2, k3 of the row ¢ contain the indices of the arcs of the ith triangle
as returned by the arcs function.

Matrix describing the circumcircles and triangles.

Columns x and y contain coordinates of the circumcircle centers, r is the cir-
cumcircle radius.

area is the triangle area and ratio is the ratio of the radius of the inscribed
circle to the circumcircle radius. It takes it maximum value 0.5 for an equilateral
triangle.

The radius of the inscribed circle can be get via r; = —7—.
number of points on the convex hull

A vector containing the indices of nodes forming the convec hull (in counter-
clockwise ordering).

number of arcs forming the triangulation

A matrix with node indices describing the arcs, contains two columns from and
to.

call, which generated this object

This object is not backward compatible with tri objects generated from package tripack but the
functions and methods are! So you have to regenerate these objects and then you can continue to
use the same calls as before.

The only difference is that no constraints to the triangulation are possible in package interp.

voronoi 35

Author(s)

Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

See Also

tri.mesh, print.triSht, plot.triSht, summary.triSht

voronoi Voronoi object

Description

A voronoi object is created with voronoi.mosaic

Arguments

X,y x and y coordinates of nodes of the voronoi mosaic. Each node is a circumcircle
center of some triangle from the Delaunay triangulation.

node logical vector, indicating real nodes of the voronoi mosaic. These nodes are the
centers of circumcircles of triangles with positive area of the delaunay triangu-
lation.
If node[1]=FALSE, (c[i],x[1]) belongs to a triangle with area 0.

n1,n2,n3 indices of neighbour nodes. Negative indices indicate dummy points as neigh-
bours.

tri triangulation object, see triSht.

area area of triangle i.

ratio aspect ratio (inscribed radius/circumradius) of triangle 1.

radius circumradius of triangle i.

dummy . x, dummy .y
x and y coordinates of dummy points. They are used for plotting of unbounded
tiles.

Note

This version of voronoi object is generated from the tri.mesh function from package interp.
That’s the only difference to voronoi objects generated with package tripack.

Author(s)

Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

See Also

voronoi.mosaic,plot.voronoi

36 voronoi.area

voronoi.area Calculate area of Voronoi polygons

Description

Computes the area of each Voronoi polygon. For some sites at the edge of the region, the Voronoi
polygon is not bounded, and so the area of those sites cannot be calculated, and hence will be NA.

Usage

voronoi.area(voronoi.obj)

Arguments

voronoi.obj object of class "voronoi”

Value

A vector of polygon areas.

Author(s)

S.J. Eglen

See Also

voronoi.mosaic,voronoi.polygons,

Examples

data(franke)

fd3 <- franke$ds3

fd3.vm <- voronoi.mosaic(fd3$x,fd3$y)
fd3.vm.areas <- voronoi.area(fd3.vm)
plot(fd3.vm)

text(fd3$x, fd3$y, round(fd3.vm.areas,5))

voronoi.findrejectsites 37

voronoi.findrejectsites
Find the Voronoi sites at the border of the region (to be rejected).

Description
Find the sites in the Voronoi tesselation that lie at the edge of the region. A site is at the edge if

any of the vertices of its Voronoi polygon lie outside the rectangle with corners (xmin,ymin) and
(Xmax,ymax).

Usage

voronoi.findrejectsites(voronoi.obj, xmin, xmax, ymin, ymax)

Arguments
voronoi.obj object of class "voronoi”
xmin minimum x-coordinate of sites in the region
Xmax maximum x-coordinate of sites in the region
ymin minimum y-coordinate of sites in the region
ymax maximum y-coordinate of sites in the region
Value

A logical vector of the same length as the number of sites. If the site is a reject, the corresponding
element of the vector is set to TRUE.

Author(s)

S. J. Eglen

See Also

voronoi.polygons

38 voronoi.mosaic

voronoi.mosaic Voronoi mosaic

Description

This function creates a Voronoi mosaic out of a given set of arbitraryly located points in the plane.
Each cell of a voronoi mosaic is associated with a data point and contains all points (z,y) closest
to this data point.

Usage
voronoi.mosaic(x, y = NULL, duplicate = "error")
Arguments
X vector containing x coordinates of the data. If y is missing x should be a list or
dataframe with two components x and y.
x can also be an object of class triSht generated by tri.mesh. In this case the
internal triangulation step can be skipped.
y vector containing y coordinates of the data. Can be omitted if x is a list with two
components x and y.
duplicate flag indicating how to handle duplicate elements. Possible values are:
e "error" — default,
e "strip” —remove all duplicate points,
* "remove"” —leave one point of the duplicate points.
Details

The function creates first a Delaunay triangulation (if not already given), extracts the circumcircle
centers of these triangles, and then connects these points according to the neighbourhood relations
between the triangles.

Value

An object of class voronoi.

Note

This function is meant as a replacement for voronoi.mosaic from package tripack. Please note
that the underlying triangulation uses a different algorithm, see tri.mesh. Contrary to tri.mesh
this should not affect the result for non unique triangulations e.g. on regular grids as the voronoi
mosaic in this case will still be unique.

The arguments are backward compatible, even the returned object should be compatible with func-
tions from package tripack.

voronoi.polygons 39

Author(s)
Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

References

G. Voronoi, Nouvelles applications des parametres continus a la theorie des formes quadratiques.
Deuxieme memoire. Recherches sur les parallelloedres primitifs, Journal fuer die reine und ange-
wandte Mathematik, 1908, vol 134, p. 198-287

See Also

voronoi,voronoi.mosaic, print.voronoi, plot.voronoi

Examples

data(franke)

fd <- franke$ds3

vr <- voronoi.mosaic(fdx, fdy)
summary (vr)

voronoi.polygons extract polygons from a voronoi mosaic

Description

This functions extracts polygons from a voronoi.mosaic object.

Usage

voronoi.polygons(voronoi.obj)

Arguments

voronoi.obj object of class voronoi.mosaic

Value

Returns an object of class voronoi.polygons with unamed list elements for each polygon. These
list elements are matrices with columns x and y. Unbounded polygons along the border are repre-
sented by NULL instead of a matrix.

Author(s)
Denis White

See Also

plot.voronoi.polygons,voronoi.mosaic

40 voronoi.polygons

Examples

data(franke)

fd3 <- franke$ds3

fd3.vm <- voronoi.mosaic(fd3$x,fd3s$y)
fd3.vp <- voronoi.polygons(fd3.vm)
fd3.vp

Index

«Topic aplot voronoi.mosaic, 38
circles, 5 voronoi.polygons, 39
+Topic datagen «Topic utilities
franke.data, 7 area, 4
+Topic dplot nearest.neighbours, 18
arcs, 3 on, 19
interp, 10
«Topic math arcs, 3,5, 32,34
interp, 10 area, 4, 4
«Topic models .
plocpoly 14 circles, 5
. ’ convex.hull, 6, 19, 21, 30, 32
xTopic package
Interp-package, 3 fastLm, 15, 16
+Topic regression franke (franke.data), 7
locpoly, 14 franke.data, 7
xTopic spatial
arcs, 3 identify.triSht, 9
area, 4 in.convex.hull, 20, 22
convex.hull, 6 in.convex.hull (on.convex.hull), 20
identify.triSht, 9 interp, 3,8, 10, 12, 14, 18
interpp, 12 interp-package, 3
on.convex.hull, 20 interpp, 12, 12
outer.convhull, 21
plot.triSht, 22 left (on), 19
plot.voronoi, 23 lines, 5

plot.voronoi.polygons, 25 locpoly, 3, 14, 16, 18

print.summary.triSht, 26

print.summary.voronoi, 26 nearest.neighbours, I8

print.triSht, 27 on, 19

print.voronoi, 28 on.convex.hull, 20, 20
summary.triSht, 28 outer, 10

summary .voronoi, 29 outer.convhull, 21

tri.find, 30

tri.mesh, 31 plot.triSht, 6,9, 21, 22, 26, 27, 29, 30, 32
triangles, 33 33,35

trisht, 34 plot.voronoi, 23, 27, 28, 30, 35, 39
voronoi, 35 plot.voronoi.polygons, 24, 25, 39
voronoi.area, 36 points, 5
voronoi.findrejectsites, 37 print.summary.triSht, 26, 29

41

42

print.summary.voronoi, 26, 30

print.triSht, 6,9, 21, 23, 26, 27, 29, 30, 32,
33,35

print.voronoi, 24, 27, 28, 30, 39

summary.triSht, 6, 9, 21, 23, 26, 27, 28, 30,
32, 33,35
summary.voronoi, 24, 27, 28, 29

tri, 32

tri.find, 30

tri.mesh, 3, 4, 26, 31, 32, 34, 35, 38

triangles, 4-6, 21, 30, 32, 33, 33

trisht, 3-6, 9, 20, 21, 23, 26, 27, 29, 30, 32
33,34, 35, 38

voronoi, 24, 27, 28, 30, 35, 38, 39
voronoi.area, 36
voronoi.findrejectsites, 37
voronoi.mosaic, 3, 27, 30, 35, 36, 38, 38, 39
voronoi.polygons, 25, 36, 37, 39

INDEX

	interp-package
	arcs
	area
	circles
	convex.hull
	franke.data
	identify.triSht
	interp
	interpp
	locpoly
	nearest.neighbours
	on
	on.convex.hull
	outer.convhull
	plot.triSht
	plot.voronoi
	plot.voronoi.polygons
	print.summary.triSht
	print.summary.voronoi
	print.triSht
	print.voronoi
	summary.triSht
	summary.voronoi
	tri.find
	tri.mesh
	triangles
	triSht
	voronoi
	voronoi.area
	voronoi.findrejectsites
	voronoi.mosaic
	voronoi.polygons
	Index

