Package 'intcure'

May 18, 2020

Encoding UTF-8

Title Mixture Cure Models with Random Effects

Version 2.1

Description Mixture cure models with random effects to survival data as described in Peng and Taylor (2011) <doi:10.1002/sim.4098>.

Depends survival, R (>= 3.5.0)

Imports mvtnorm, cubature

License GPL-3

RoxygenNote 7.1.0

NeedsCompilation no

Author Yingwei Peng [aut, cre]

Maintainer Yingwei Peng <yingwei.peng@queensu.ca>

Repository CRAN

Date/Publication 2020-05-18 15:10:11 UTC

R topics documented:

intcure-package	
basesurvfun	
bmt	
bmtfit	4
coef.intcure	4
intcure	5
print.intcure	8
print.summary.intcure	8
simdata	9
summary.intcure	10

Index

intcure-package

Description

Fit random effects mixture cure models

Details

This package fits a mixture cure model with random effects in both latency and incidence parts of the model. The random effects in the two parts can be correlated.

Author(s)

Yingwei Peng

References

Peng, Y. and Taylor, J. M. G. Mixture cure model with random effects for the analysis of a multicentre tonsil cancer study. Statistics in Medicine, 30:211-223, 2011

basesurvfun Estimated baseline survival function

Description

Estimate the baseline survival probabilities at specified time points

Usage

```
basesurvfun(time, intcureobj)
```

Arguments

time	a vector of time points at which survival probabilities will be calculated
intcureobj	an object from intcure function

Details

The estimated baseline survival function should be a continuous function and will be smooth if the basedist = "exponential" or "Weibull"

Value

a vector of the same length as time containing the survival probabilities at time

bmt

Author(s)

Yingwei Peng

See Also

intcure

Examples

```
data(bmtfit)
# Estimated baseline survival at 1 year
basesurvfun(1, bmtfit)
plot(function(x)basesurvfun(x, intcureobj = bmtfit), from = 0, to = 6, type = "1")
```

bmt

Data from bone marrow transplant patients

Description

This data set is used in the examples of this package.

Usage

data(bmt)

Format

A data.frame object with columns:

time: Disease Free Survival Time (Time To Relapse, Death Or End Of Study).

cens: Relapse Indicator with 1-Relapsed, 0-Disease Free.

g: Disease Group with 1-ALL, 2-AML Low Risk, 3-AML High Risk.

FAB: 1-FAB Grade 4 Or 5 and AML, 0-Otherwise.

inst: Hospital with 1-The Ohio State University, 2-Alferd , 3-St. Vincent, 4-Hahnemann.

Source

Klein, J. P. & Moeschberger, M. L. Survival Analysis, Techniques for Censored and Truncated Data Spinger-Verlag, 2003

Examples

data(bmt)

bmtfit

Description

This is the result of the model fit intcure as shown below

Usage

data(bmtfit)

Format

A list of class intcure

Examples

```
# bmtfit = intcure(Surv(time, cens) ~ g + FAB + cluster(inst), ~ g + FAB,
# data = bmt, basedist = "weibull", sigma = c(-1, NA, NA),
# optimcfg = list(method = "BFGS", hessian = TRUE, maxit = 2000)).
data(bmtfit)
```

coef.intcure	Retrieve coefficients from a fitted mixture cure model with random ef-
	fects

Description

It collects all the estimates from a fitted mixture cure model with random effects and forms a long vector.

Usage

S3 method for class 'intcure'
coef(object, ...)

Arguments

object	an intcure object obtained from intcure
	inherited but not used here

Value

a vector consists of bt, gm, basepara and sigma

intcure

Author(s)

Yingwei Peng

See Also

intcure

Examples

data(bmtfit)
coef(bmtfit)

intcure

Mixture cure models with random effects

Description

Fit mixture cure models with random effects based on numerical integration.

Usage

```
intcure(
 formula = formula(data),
  cureform = NULL,
 data = sys.parent(),
  subset,
 na.action,
 bt = NULL,
  gm = NULL,
 basepara = NULL,
  sigma = c(0, 0, 0),
 optimcfg = list(ndeps = 0.001, maxit = 1000, reltol = 1e-05, method = "Nelder-Mead",
   hessian = FALSE),
 intcfg = list(eps = 1e-04, lower = c(-5, -5), upper = c(5, 5)),
 basedist = c("exponential", "weibull", "piecewise"),
  npiece = 3,
 piececut = NULL,
 piececuttype = c("quantile", "even"),
 model = FALSE,
 y = TRUE,
 x = FALSE,
 z = FALSE,
 funval = FALSE,
  debug = c("intcure", "integration", "optim")
)
```

Arguments

formula	a formula expression similar to the one used in survreg and coxph. The re- sponse is a survival object returned by the Surv() function. It is used to spec- ify the time (and censoring variable) variable and covariates in the model for uncured patients. A covariate that defines clusters in data will be in cluster function. See coxph() for details If random effects are specified in sigma and cluster is not specified, every subject forms its own cluster.	
cureform	a formula expression similar to formula except that it does not contain a re- sponse. It is used to specify the effects of covariates on the cure rate. A covariate that defines clusters in data will be in cluster function as in formula. However, currently it is not used in the function because we assume that both components in cure model use the same cluster structure If random effects are specified in sigma and cluster is not specified, every subject forms its own cluster.	
data, subset, na	.action	
	standard arguments for R model functions	
bt	a vector of initial value of beta in the latency model. It is optional. If survreg is used to get initial values, -survreg's bt/survreg's scale = bt	
gm	a vector of initial value of gamma in the incidence model. It is optional	
basepara	a vector of initial values of the parameters in the baseline distribution. They are the log rate if baseline = "exponential", log shape and log rate if base- line = "weibull", and log hazard if baseline = "piecewise". It is optional. If survreg is used to get initial values, then survreg's scale = 1/weibull shape and survreg's intercept = -log(weibull rate)/weibull shape if basedist = "weibull", and survreg's intercept = -log(rate) if basedist = "exponential". Inappropriate initial values can cause some problems in adaptIntegrate func- tion.	
sigma	a vector of 3 corresponding to log standard deviation of u and v, and a Fisher's z-transformed correlation coefficient of u and v. If any of the value is set to NA, the corresponding effects will not be present in the model	
optimcfg	a list of method, maxit, reltol, hessian, ndeps arguments for R function optim(). The default optimization method is Nelder-Mead.	
intcfg	a list of lower, upper, eps to be passed onto an R integration function. If one random effect is specified, the built-in R integration function integrate is used. If two random effects are specified, R function adaptIntegrate from package cubature is used to do the integration.	
basedist	type of baseline distribution. It can be one of "exponential", "weibull", or "piecewise", where "piecewise" stands for piecewise constant hazard distribution. The default is "exponential".	
npiece, piececut, piececuttype		
	arguments for baseline distribution when it is piecewise constant hazard distribution. They are respectively the number of pieces, the cut points to form the pieces and how the pieces are formed. piececut should only include the interior time points and the length of piececut should be equal to npiece -1. There are two ways to specify the piecewise constant hazard distribution: specify piececut or specify npiece and piececuttype. There are two possible	

intcure

	types for piececuttype: "quantile" and "even". "quantile" is the default if not specified.
model	if TRUE, output model matrix instead of fitting the model
y, x, z	if TRUE, output corresponding matrix in the model matrix
funval	a logical value. If TRUE, evaluate the likelihood function at initial values instead of fitting the model
debug	for debug purpose

Details

This package depends on cubature package for numerical integration and mvtnorm package. Better initial values for bt, gm and basepara obtained from a mixture cure model without random effects may help speed up the program or finding the best estimates.

Value

an object of class intcure is returned. It includes all the values returned from optim() in addition to the following values:

call	The call to intcure
basedist	The baseline distribution fitted
method	The optimization method used
n	Sample size

Author(s)

Yingwei Peng

References

Peng, Y. and Taylor, J. M. G. Mixture cure model with random effects for the analysis of a multicentre tonsil cancer study. Statistics in Medicine, 30:211-223, 2011

See Also

survreg, coxph, glm

Examples

```
data(simdata)
intcure(Surv(time, cens) ~ rx + cluster(id), ~ rx, data = simdata,
basedist = "weibull", sigma = c(-1, NA, NA), optimcfg = list(maxit = 1000))
```

print.intcure

Description

It prints the estimates of the parameters in the model and the maximum likelihood value.

Usage

```
## S3 method for class 'intcure'
print(x, ...)
```

Arguments

Х	an intcure object obtained from intcure
	other standard printing arguments

Value

It will return the object in x. This function is called for side effects

Author(s)

Yingwei Peng

See Also

intcure

Examples

data(bmtfit)
print(bmtfit)

print.summary.intcure Print method for summary of fitted mixture cure models with random effects

Description

It prints the estimates of the parameters, standard errors, z-values, p-values, and the maximum likelihood value from a fitted mixture cure model with random effects.

Usage

```
## S3 method for class 'summary.intcure'
print(x, ...)
```

simdata

Arguments

х	an summary.intcure object obtained from summary()
	other standard printing arguments

Value

It will return the object in x. This function is called for side effects

Author(s)

Yingwei Peng

See Also

intcure

Examples

data(bmtfit)
print(summary(bmtfit))

simdata

Simulated Data

Description

This is a simulated data set for a testing purpose

Usage

data(simdata)

Format

A data.frame object with columns:

time: Survival time

cens: Censoring indicator

rx: A binary treatment variable

id: Cluster indicator

Examples

data(simdata)

summary.intcure

Description

It calculates standard errors, z-values, and p-values of estimates from a fitted mixture cure model with random effects

Usage

S3 method for class 'intcure'
summary(object, ...)

Arguments

object	an intcure object obtained from intcure
	inherited but not used here

Value

An object of class summary.intcure is returned. It is a list that includes all the components of class intcure plus an additional component statistics, which is a list of following components:

bt	a matrix with column ${\tt Estimate}, {\tt Stderr}, {\tt zvalue}, {\tt and} {\tt pvalue}$ for the estimated value of beta in the latency model
gm	a matrix with column ${\tt Estimate}, {\tt Stderr}, {\tt zvalue}, {\tt and} {\tt pvalue}$ for the estimated value of gamma in the incidence model
basepara	a matrix with column ${\tt Estimate}, {\tt Stderr}, {\tt zvalue}, {\tt and} {\tt pvalue}$ for the estimated value of the parameters in the baseline distribution
sigma	a matrix with column ${\tt Estimate}$ and ${\tt Stderr}$ for the random effects in the model

Author(s)

Yingwei Peng

See Also

intcure

Examples

data(bmtfit)
summary(bmtfit)

Index

*Topic datasets
 bmt, 3
 bmtfit, 4
 simdata, 9
basesurvfun, 2
bmt, 3
bmtfit, 4
coef.intcure, 4
coxph, 7
glm, 7

intcure, *3*, *5*, *5*, *8*–*10* intcure-package, 2

print.intcure, 8
print.summary.intcure, 8

simdata, 9
summary.intcure, 10
survreg, 7