
Package ‘inline’
May 18, 2018

Version 0.3.15

Date 2018-05-18

Title Functions to Inline C, C++, Fortran Function Calls from R

Author Oleg Sklyar, Duncan Murdoch, Mike Smith, Dirk Eddelbuettel,
Romain Francois, Karline Soetaert

Maintainer Dirk Eddelbuettel <edd@debian.org>

Depends R (>= 2.4.0)

Imports methods

Suggests Rcpp (>= 0.11.0)

Description Functionality to dynamically define R functions and S4 methods
with 'inlined' C, C++ or Fortran code supporting the .C and .Call calling
conventions.

License LGPL

Copyright Oleg Sklyar, 2005-2010 and other authors per their commits

LazyLoad yes

BugReports https://github.com/eddelbuettel/inline/issues

NeedsCompilation no

Repository CRAN

Date/Publication 2018-05-18 12:40:51 UTC

R topics documented:
inline-package . 2
cfunction . 2
cxxfunction . 7
getDynLib-methods . 9
package.skeleton-methods . 9
plugins . 10
utilities . 11

Index 14

1

https://github.com/eddelbuettel/inline/issues

2 cfunction

inline-package Functions to Inline C, C++, Fortran Function Calls from R

Description

Functionality to dynamically define R functions and S4 methods with ’inlined’ C, C++ or Fortran
code supporting the .C and .Call calling conventions.

Maintainer

Dirk Eddelbuettel <edd@debian.org>

Author(s)

Oleg Sklyar, Duncan Murdoch, Mike Smith, Dirk Eddelbuettel, Romain Francois, Karline Soetaert

See Also

cfunction, cxxfunction

cfunction Inline C, C++, Fortran function calls from R

Description

Functionality to dynamically define R functions and S4 methods with in-lined C, C++ or Fortran
code supporting .C and .Call calling conventions.

Usage

cfunction(sig=character(), body=character(), includes=character(),
otherdefs=character(),

language=c("C++", "C", "Fortran", "F95", "ObjectiveC", "ObjectiveC++"),
verbose=FALSE,
convention=c(".Call", ".C", ".Fortran"),
Rcpp=FALSE,
cppargs=character(), cxxargs=character(), libargs=character(),
dim=NULL, implicit=NULL, module=NULL)

S4 methods for signatures
f='character', sig='list', body='list'
f='character', sig='character', body='character'

setCMethod(f, sig, body, ...)

Further arguments:

cfunction 3

setCMethod(f, sig, body, includes="", otherdefs="", cpp=TRUE,
verbose=FALSE, where=topenv(.GlobalEnv), ...)

Arguments

f A single character value if sig and body are character vectors or a character
vector of the same length and the length of sig or body with the name(s) of
methods to create.

sig A match of formal argument names for the function with the character-string
names of corresponding classes. Alternatively, a list of such character vectors.

body A character vector with C, C++ or Fortran code omitting function declaration
(only the body, i.e. in case of C starting after the function opening curly bracket
and ending before the closing curly bracket, brackets excluded). In case of
setCMethod with signature list – a list of such character vectors.

includes A character vector of additional includes and preprocessor statements etc that
will be put between the R includes and the user function(s).

otherdefs A characted vector with the code for any further definitions of functions, classes,
types, forward declarations, namespace usage clauses etc which is inserted be-
tween the includes and the declarations of the functions defined in sig.

language A character value that specifies the source language of the inline code. The
possible values for language include all those supported by R CMD SHLIB on
any platform, which are currently C, C++, Fortran, F95, ObjectiveC and Objec-
tiveC++; they may not all be supported on your platform. One can specify the
language either in full as above, or using any of the following case insensitive
shortened forms: c, cpp, c++, f, f95, objc, objcpp, objc++.
Defaults to C++.

verbose If TRUE prints the compilation output, the source code of the resulting program
and the definitions of all declared methods. If FALSE, the function is silent, but it
prints compiler warning and error messages and the source code if compilation
fails.

convention Which calling convention to use? See the Details section.

Rcpp If TRUE adds inclusion of Rcpp.h to includes, also queries the Rcpp package
about the location of header and library files and sets environment variables
PKG_CXXFLAGS and PKG_LIBS accordingly so that the R / C++ interface provided
by the Rcpp package can be used. Default value is FALSE.

cppargs Optional character vector of tokens to be passed to the compiler via the PKG_CPPFLAGS
environment variable. Elements should be fully formed as for example c("-I/usr/local/lib/foo", "-DDEBUG")
and are passed along verbatim.

cxxargs Optional character vector of tokens to be passed to the compiler via the PKG_CXXFLAGS
environment variable. Elements should be fully formed as for example c("-I/usr/local/lib/foo", "-DDEBUG")
and are passed along verbatim.

libargs Optional character vector of tokens to be passed to the compiler via the PKG_LIBS
environment variable. Elements should be fully formed as for example c("-L/usr/local/lib/foo -lfoo", "--lpthread")
and are passed along verbatim.

dim Optional character vector defining the dimensionality of the function arguments.
Of same length as sig. Fortran or F95 only.

4 cfunction

implicit A character vector defining the implicit declaration in Fortran or F95; the de-
fault is to use the implicit typing rules for Fortran, which is integer for names
starting with the letters I through N, and real for names beginning with any
other letter. As R passes double precision, this is not the best choice. Safest is to
choose implicit = "none" which will require all names in the subroutine to
be explicitly declared.

module Name(s) of any modules to be used in the Fortran or F95 subroutine.

... Reserved.

Details

To declare multiple functions in the same library one can use setCMethod supplying lists of signa-
tures and implementations. In this case, provide as many method names in f as you define methods.
Avoid clashes when selecting names of the methods to declare, i.e. if you provide the same name
several times you must ensure that signatures are different but can share the same generic!

The source code in the body should not include the header or "front-matter" of the function or the
close, e.g. in C or C++ it must start after the C-function opening curly bracket and end before the
C-function closing curly bracket, brackets should not be included. The header will be automatically
generated from the R-signature argument. Arguments will will carry the same name as used in
the signature, so avoid variable names that are not legal in the target language (e.g. names with
dots).

C/C++: If convention == ".Call" (the default), the .Call mechanism is used and its result is
returned directly as the result of the call of the generated function. As the last line of the generated
C/C++ code a return R_NilValue; is added in this case and a warning is generated in case the
user has forgotten to provide a return value. To suppress the warning and still return NULL, add
return R_NilValue; explicitly.

Special care is needed with types, memory allocation and protection – exactly the same as if the
code was not inline: see the Writing R Extension manual for information on .Call.

If convention == ".C" or convention == ".Fortran", the .C or .Fortran mechanism respec-
tively is used, and the return value is a list containing all arguments.

Attached R includes include R.h for ".C", and additionally Rdefines.h and R_ext\Error.h for
".Call".

Value

If sig is a single character vector, cfunction returns a single function; if it is a list, it returns a
list of functions.

setCMethod declares new methods with given names and signatures and returns invisible NULL.

Author(s)

Oleg Sklyar, Duncan Murdoch, Mike Smith, Dirk Eddelbuettel

See Also

Foreign Function Interface

cfunction 5

Examples

x <- as.numeric(1:10)
n <- as.integer(10)

Not run:
A simple Fortran example - n and x: assumed-size vector
code <- "

integer i
do 1 i=1, n(1)

1 x(i) = x(i)**3
"
cubefn <- cfunction(signature(n="integer", x="numeric"), code, convention=".Fortran")
print(cubefn)

cubefn(n, x)$x

Same Fortran example - now n is one number
code2 <- "

integer i
do 1 i=1, n

1 x(i) = x(i)**3
"
cubefn2 <- cfunction(signature(n="integer", x="numeric"), implicit = "none",

dim = c("", "(*)"), code2, convention=".Fortran")

cubefn2(n, x)$x

Same in F95, now x is fixed-size vector (length = n)
code3 <- "x = x*x*x"
cubefn3 <- cfunction(sig = signature(n="integer", x="numeric"), implicit = "none",

dim = c("", "(n)"), code3, language="F95")
cubefn3(20, 1:20)
print(cubefn3)

Same example in C
code4 <- "

int i;
for (i = 0; i < *n; i++)

x[i] = x[i]*x[i]*x[i];
"
cubefn4 <- cfunction(signature(n="integer", x="numeric"), code4, language = "C", convention = ".C")
cubefn4(20, 1:20)

End(Not run)

use of a module in F95
modct <- "module modcts
double precision, parameter :: pi = 3.14159265358979
double precision, parameter :: e = 2.71828182845905
end"

6 cfunction

getconstants <- "x(1) = pi
x(2) = e"

cgetcts <- cfunction(getconstants, module = "modcts", implicit = "none",
includes = modct, sig = c(x = "double"), dim = c("(2)"), language = "F95")

cgetcts(x = 1:2)
print(cgetcts)

Use of .C convention with C code
Defining two functions, one of which calls the other
sigSq <- signature(n="integer", x="numeric")
codeSq <- "

for (int i=0; i < *n; i++) {
x[i] = x[i]*x[i];

}"
sigQd <- signature(n="integer", x="numeric")
codeQd <- "

squarefn(n, x);
squarefn(n, x);

"

fns <- cfunction(list(squarefn=sigSq, quadfn=sigQd),
list(codeSq, codeQd),
convention=".C")

squarefn <- fns[["squarefn"]]
quadfn <- fns[["quadfn"]]

squarefn(n, x)$x
quadfn(n, x)$x

Alternative declaration using 'setCMethod'
setCMethod(c("squarefn", "quadfn"), list(sigSq, sigQd),

list(codeSq, codeQd), convention=".C")

squarefn(n, x)$x
quadfn(n, x)$x

Use of .Call convention with C code
Multyplying each image in a stack with a 2D Gaussian at a given position
code <- "

SEXP res;
int nprotect = 0, nx, ny, nz, x, y;
PROTECT(res = Rf_duplicate(a)); nprotect++;
nx = INTEGER(GET_DIM(a))[0];
ny = INTEGER(GET_DIM(a))[1];
nz = INTEGER(GET_DIM(a))[2];
double sigma2 = REAL(s)[0] * REAL(s)[0], d2 ;
double cx = REAL(centre)[0], cy = REAL(centre)[1], *data, *rdata;
for (int im = 0; im < nz; im++) {
data = &(REAL(a)[im*nx*ny]); rdata = &(REAL(res)[im*nx*ny]);

cxxfunction 7

for (x = 0; x < nx; x++)
for (y = 0; y < ny; y++) {

d2 = (x-cx)*(x-cx) + (y-cy)*(y-cy);
rdata[x + y*nx] = data[x + y*nx] * exp(-d2/sigma2);

}
}
UNPROTECT(nprotect);
return res;

"
funx <- cfunction(signature(a="array", s="numeric", centre="numeric"), code)

x <- array(runif(50*50), c(50,50,1))
res <- funx(a=x, s=10, centre=c(25,15))
if (interactive()) image(res[,,1])

Same but done by registering an S4 method
setCMethod("funy", signature(a="array", s="numeric", centre="numeric"), code, verbose=TRUE)

res <- funy(x, 10, c(35,35))
if (interactive()) { x11(); image(res[,,1]) }

cxxfunction inline C++ function

Description

Functionality to dynamically define an R function with inlined C++ code using the .Call calling
convention.

The rcpp() wrapper sets the plugin to the “Rcpp” value suitable for using Rcpp.

Usage

cxxfunction(sig = character(), body = character(),
plugin = "default", includes = "",
settings = getPlugin(plugin), ..., verbose = FALSE)
rcpp(..., plugin="Rcpp")

Arguments

sig Signature of the function. A named character vector
body A character vector with C++ code to include in the body of the compiled C++

function
plugin Name of the plugin to use. See getPlugin for details about plugins.
includes User includes, inserted after the includes provided by the plugin.
settings Result of the call to the plugin
... Further arguments to the plugin
verbose verbose output

8 cxxfunction

Value

A function

See Also

cfunction

Examples

Not run:

default plugin
fx <- cxxfunction(signature(x = "integer", y = "numeric") , '
return ScalarReal(INTEGER(x)[0] * REAL(y)[0]) ;
')
fx(2L, 5)

Rcpp plugin
if(require(Rcpp)){

fx <- cxxfunction(signature(x = "integer", y = "numeric") , '
return wrap(as<int>(x) * as<double>(y)) ;
', plugin = "Rcpp")
fx(2L, 5)

equivalent shorter form using rcpp()
fx <- rcpp(signature(x = "integer", y = "numeric"),

' return wrap(as<int>(x) * as<double>(y)) ; ')

}

RcppArmadillo plugin
if(require(RcppArmadillo)){

fx <- cxxfunction(signature(x = "integer", y = "numeric") , '
int dim = as<int>(x) ;
arma::mat z = as<double>(y) * arma::eye<arma::mat>(dim, dim) ;
return wrap(arma::accu(z)) ;
', plugin = "RcppArmadillo")
fx(2L, 5)

}

End(Not run)

getDynLib-methods 9

getDynLib-methods Retrieve the dynamic library (or DLL) associated with a package of a
function generated by cfunction

Description

The getDynLib function retrieves the dynamic library (or DLL) associated with a package or with
a function generated by cfunction

Methods

signature(x = "CFunc") Retrieves the dynamic library associated with the function generated
by cfunction. The library is dynamically loaded if necessary.

signature(x = "CFuncList") Retrieves the dynamic library associated with a set of functions
generated by cfunction. The library is dynamically loaded if necessary.

signature(x = "character") Retrieves the dynamic library of the given name. This typically
refers to package names, but can be any name of the list returned by getLoadedDLLs

See Also

getLoadedDLLs, dyn.load

Examples

Not run:
getDynLib("base")

f <- cfunction(signature() , "return R_NilValue ;")
getDynLib(f)

End(Not run)

package.skeleton-methods

Generate the skeleton of a package

Description

Generate the skeleton of a package

10 plugins

Methods

signature(name = "ANY", list = "ANY") Standard method. See package.skeleton

signature(name = "character", list = "CFunc") Method for a single generated by cfunction
or cxxfunction

signature(name = "character", list = "CFuncList") Method for a set functions generated
by cfunction or cxxfunction

Examples

Not run:

fx <- cxxfunction(signature(x = "integer", y = "numeric") , '
return ScalarReal(INTEGER(x)[0] * REAL(y)[0]) ;
')
package.skeleton("foo", fx)

functions <- cxxfunction(
list(
ff = signature(),
gg = signature(x = "integer", y = "numeric")
),
c("return R_NilValue ;", "return ScalarReal(INTEGER(x)[0] * REAL(y)[0]) ;")
)
package.skeleton("foobar", functions)

End(Not run)

plugins Plugin system for cxxfunction

Description

cxxfunction uses a plugin system to assembly the code that it compiles. These functions allow to
register and get plugins by their name.

Usage

getPlugin(name, ...)
registerPlugin(name, plugin)

Arguments

name name of the plugin.

... Further argments to pass to the plugin.

plugin plugin function.

utilities 11

Details

plugins are functions that return a list with :

includes mandatory. it is included at the top of the compiled file by cxxfunction

body optional. a function that takes one argument (the body of the c++ function) and returned
a modified version of the body. The "Rcpp" plugin uses this to surround the code with the
BEGIN_RCPP and END_RCPP macros

LinkingTo optional. character vector containing the list of packages that the code needs to link to.
This adds the include path of the given packages. The "Rcpp" and "RcppArmadillo" plugins
use this.

env optional. named list of environment variables. For example, the "Rcpp" plugin uses this to add
Rcpp user library to the PKG_LIBS environment variable.

plugins can be manually registered using the registerPlugin function. Alternatively, a package
may supply an inline plugin implicitely by defining a function called inlineCxxPlugin, which
does not necessarily need to be exported from the namespace of the package.

Known packages implementing this scheme include Rcpp and RcppArmadillo.

Value

getPlugin retrieves the plugin and invokes it with the . . . arguments

registerPlugin does not return anything.

See Also

cxxfunction

Examples

Not run:
getPlugin("Rcpp")

End(Not run)

utilities printing, reading and writing CFunc objects

Description

writeDynLib saves the DLL and the CFunc or CFuncList object as generated by cfunction; readDynLib
loads it.

The print and code methods respectively print the entire object or the code parts.

Usage

writeDynLib(x, file)
readDynLib(file)

12 utilities

Arguments

x A CFunc or CFuncList object as created by cfunction to be saved.

file base name of the file to write the object to or to read from. Two files will be
saved, one for the shared object or DLL (extension so or DLL) and one that holds
the CFunc or CFuncList specification, without the function address (extension
CFunc).

Details

Both the CFunc or CFuncList object and the shared object or DLL are saved, in two files; the first
has extension CFunc; the second so or DLL, depending on the operating system used.

When reading, both files are loaded, and the compiled function address added to the object.

Value

Function readDynLib returns a CFunc or CFuncList object.

Methods

• Method print(x, ...) prints the entire object x

signature(x = "CFunc") Prints the CFunc object generated by cfunction, including the
code that generated it.

signature(x = "CFuncList") Print all CFunc objects generated by cfunction, including
the code that generated them.

• Method code(x, linenumbers = TRUE, ...) prints the code only

signature(x) The CFunc or CFuncList object as generated by cfunction.
linenumbers If TRUE all code lines will be numbered.

Note

• The code of a CFunc or CFuncList object x can be extracted (rather than printed), using:
x@code.

• To write the code to a file (here called "fn"), without the new-line character "\n":
write (strsplit(x, "\n")[[1]], file = "fn")

Author(s)

Karline Soetaert

See Also

getDynLib

utilities 13

Examples

x <- as.numeric(1:10)
n <- as.integer(10)

code <- "
integer i
do 1 i=1, n(1)

1 x(i) = x(i)**3
"
cubefn <- cfunction(signature(n="integer", x="numeric"), code, convention=".Fortran")
code(cubefn)

cubefn(n, x)$x

Not run:
fname <- tempfile()
writeDynLib(cubefn, file = fname)
load and assign different name to object
cfn <- readDynLib(fname)
print(cfn)
cfn(2, 1:2)

End(Not run)

Index

∗Topic file
cfunction, 2
utilities, 11

∗Topic interface
cxxfunction, 7
plugins, 10

∗Topic methods
getDynLib-methods, 9
package.skeleton-methods, 9

∗Topic package
inline-package, 2

∗Topic programming
cxxfunction, 7
plugins, 10

.C, 4

.Call, 4, 7

.Fortran, 4

cfunction, 2, 2, 8–12
code (utilities), 11
code,CFunc-method (utilities), 11
code,CFuncList-method (utilities), 11
code,character-method (utilities), 11
code-methods (utilities), 11
cxxfunction, 2, 7, 10, 11

dyn.load, 9

Foreign, 4
function, 4

getDynLib, 12
getDynLib (getDynLib-methods), 9
getDynLib,CFunc-method

(getDynLib-methods), 9
getDynLib,CFuncList-method

(getDynLib-methods), 9
getDynLib,character-method

(getDynLib-methods), 9
getDynLib-methods, 9

getLoadedDLLs, 9
getPlugin, 7
getPlugin (plugins), 10

inline (inline-package), 2
inline-package, 2

package.skeleton, 10
package.skeleton,ANY,ANY-method

(package.skeleton-methods), 9
package.skeleton,character,CFunc-method

(package.skeleton-methods), 9
package.skeleton,character,CFuncList-method

(package.skeleton-methods), 9
package.skeleton-methods, 9
plugins, 10
print,CFunc-method (utilities), 11
print,CFuncList-method (utilities), 11

rcpp (cxxfunction), 7
readDynLib (utilities), 11
registerPlugin (plugins), 10

setCMethod (cfunction), 2

utilities, 11

writeDynLib (utilities), 11

14

	inline-package
	cfunction
	cxxfunction
	getDynLib-methods
	package.skeleton-methods
	plugins
	utilities
	Index

