Package ‘informR’

March 9, 2015
Version 1.0-5
Date 2015-03-09
Title Sequence Statistics for Relational Event Models
Author Christopher Steven Marcum <cmarcum@uci . edu>
Maintainer Christopher Steven Marcum <cmarcum@uci.edu>
Description Aids in creating sequence statistics for Butts's 'relevent' software.
License GPL (>=2)
Depends R (>=2.12), abind, relevent
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2015-03-09 20:38:36

R topics documented:

informR-package 2
atusB0INt L e 3
atus800rd L e 4
count.sform 5
gen.evl . . .o e e 6
gendd ... oL e e e 7
GEMANETCEPLS .« « . v v v v v et e e e e e e e e e e e e e e e e e 8
gen.sform oL e e 9
gen.sformlist 10
GELICZPOS « . v v v v e 12
glapply . . .o 13
glbsformlist oL e 14
regmatind oL 15
S2nms . . L L L 16
SA2sl . . o e 17
slbind 18
slbind.cond 19

2 informR-package

slbind.cov 20
SIArop . . . e e 22
Index 23
informR-package R Tools for Creating Sequence Statistics
Description

Tools for creating sequence statistics for Butts’s egocentric relational event model fitting software
in the library(relevent) R package.

Details
Package: informR
Type: Package
Version: 1.0
Date: 2011-04-17

License: GPL 2.0 or greater
LazylLoad: yes

Use this package to create variables and assemble statslists and eventlists from regular expressions
for egocentric relational event model fitting using Butts’s library(relevent) package.
Author(s)

Author and Maintainer:Christopher Steven Marcum <cmarcum@uci.edu>

See Also

rem

Examples

rawevents<-sample(rep(c("ran”,"eat”,"stay"”,"eat”,"ran"”, "play"),50))
actors<-rep(c("Jim","Bill", "Pete"),100)
evmat<-cbind(rawevents,actors)

eventlist<-gen.evl(evmat)

#See event-type alphabetic token codes
eventlist$event.key

alpha.ints<-gen.intercepts(eventlist,basecat="ran"

#Create some inertial s-form statistics and fit the models
beta.sforms<-gen.sformlist(eventlist,c("aa”,"bb","cc","dd"))

atus80int 3

#Combine s-form matrices with intercepts
beta.ints<-slbind(beta.sforms,alpha.ints,new.names=TRUE,event.key=eventlist$event.key)
fitalpha.rem<-rem(eventlist=eventlist$eventlist,statslist=alpha.ints,estimator="BPM")
fitbeta.rem<-rem(eventlist=eventlist$eventlist,statslist=beta.ints,estimator="BPM")
summary (fitalpha.rem)

summary (fitbeta.rem)

for(i in c(”aa”,”bb","cc”,”dd")) count.sform(eventlist,i)

atus80int Interval Events Subset of the American Time Use Survey

Description

Event histories from respondents over the age of 80 in the pooled 2003—2008 American Time Use
Survey.

Usage

data(atus80@int)

Format
A data frame with 124,704 observations on the following 4 variables:

Events Type of event. See details.

Time Cumulative time that an event occurred. See details.
TUCASEID Respondent unique identification number.

SEX Sex of respondent. 1=Males.

Details
Each general sequential activity spell in the American Time Use Survey for respondents aged 80
and over was split into “starting” and “stopping” events.

The timing variable marks the instantaneous “time” of event occurrence in minutes beginning at
time 0 and ending at time t (which is usually 1400). Because simultaneous events are not allowed
one thousandth of a minute is added to the starting time of each activity spell after the first spell.

Source
Bureau of Labor Statistics. The American Time Use Survey. Available online at: http://www.
bls.gov/tus/.

Examples

data(atus80@int)
#Types of Events
unique(atus8@int$Events)

http://www.bls.gov/tus/
http://www.bls.gov/tus/

4 atus80ord

atus80ord Ordinal Events Subset of the American Time Use Survey

Description

Event histories from respondents over the age of 80 in the pooled 2003—2008 American Time Use
Survey.

Usage

data(atus80@ord)

Format

A data frame with 62,352 observations on the following 3 variables.

Activities Type of activity spell. See details.
TUCASEID Respondent unique identification number.

SEX Sex of respondent. 1=Males.

Details

Each activity was recoded into a general activity class with 14 possible values (including “missing”
as NA).

Source

Bureau of Labor Statistics. The American Time Use Survey. Available online at: http://www.
bls.gov/tus/.

Examples

data(atus8@ord)
#Activity Spell Frequencies by Sex
table(atus80@ord$Activities,atus8@ord$SEX)

http://www.bls.gov/tus/
http://www.bls.gov/tus/

count.sform 5

count.sform Count Sform Instances

Description

Counts and prints instances of an sform in a statslist.

Usage

count.sform(evls, sform, new.name)

Arguments
evls An eventlist with eventlist attribute “char”, as well as element “event.key”.
sform An sform regular expression using the evls$event.key[, 1] uids.
new.name Logical. Should count.sform guess at a descriptive name for the sform?. Default
is TRUE.
Value
A list containing:
list A list of length length(evls$eventlist), each numeric element of which is a

count of the instances of the sform in the respective eventlist.

Author(s)

Christopher Steven Marcum

Examples

n on n on non

rawevents<-sample(rep(c("ran","eat”,"stay"”,"eat”,"ran","play”),100))
actors<-rep(c(”"Jim”,"Bill","Pete"),10)
eventlist<-cbind(rawevents,actors)

evls<-gen.evl(eventlist)

sform<-"ab"
count.sform(evls,sform)
count.sform(evls,sform)$Bill

#Compare with
count.sform(evls, sform,new.name=FALSE)

6 gen.evl

gen.evl Generate numeric categories of events.

Description

Generate numeric categories of events in an idXevent list.

Usage

gen.evl(eventlist, null.events=NULL)

Arguments
eventlist Either a two (2) or three (3) column matrix or data.frame. See Details.
null.events A character vector of event values that should be treated as O in the eventlist.
Default is NULL.
Details

For interval (or continuous) relational event models, eventlist must be a three column matrix
where the first column indexes the events, the second column indexes the temporal information of
when the event transpired, and the third column indexes an event history grouping factor (possibly,
for instance, the name(s) of the actor(s)). For each unique value of the grouping factor, the cor-
responding events must be given in ascending temporal order. For ordinal (or discrete) relational
event models, eventlist must be a two column matrix with the first column indexing the events
and the second column indexing the event history grouping factor.

Value

A list containing:

eventlist Vector of integers representing numeric codes for events. Has attr(, "char”),
which represents the character representation of those values.
event.key A key identifying the unique ids of each verbose event type.
null.events if(!is.null(null.events)), a vector of null events.
Author(s)

Christopher Steven Marcum

Examples

non

rawevents<-sample(rep(c(”ran"”,"eat”,"stay","eat”,"ran","play”),100))
actors<-rep(c(”"Jim","Bill", "Pete"),10)
eventlist<-chind(rawevents,actors)

evls<-gen.evl(eventlist)

evls$eventlist$Bill

evls$event.key

gen.id 7

#Compare with:
evls<-gen.evl(eventlist,null.events=c("ran”,"eat"))
evls$eventlist$Bill

evls$event.key

evls$null.events

gen.id Generate Unique Id’s for Events

Description
Internal function for generating unique single character id’s for each unique event in an eventlist.
May be useful for a user to call if, for some reason, event.key is lost from the eventlist.

Usage

gen.id(rawevents, print = TRUE)

Arguments
rawevents a character string of events
print logical, print the single character codes corresponding to the unique event values
to stdout. Defaults to TRUE.
Details

Currently, the rawevents string must not contain more than 52 unique event types (i.e., 2Xlength(a:z)

Value

A character string of single character identifiers for each unique event.

Author(s)

Christopher Steven Marcum

Examples

rawevents<-sample(rep(c("ran","eat”,"stay"”,"eat”,"ran","play”),5))
actors<-rep(c("Jim","Bill", "Pete"),10)

idevents<-gen.id(rawevents)

idevents

8 gen.intercepts

gen.intercepts Generate Baserate Statistics

Description
Generates baserate statistics in statslist form for direct input into rem() in Butts’s relevent R pack-
age.

Usage
gen.intercepts(evl, basecat=NULL, type=1, contr=TRUE)

Arguments
evl An eventlist. Possibly passed from gen.ev1()
basecat A string indicating which event to treat as the baseline group. Default is NULL,
which uses the first event in evl$event.key.
type An integer indicating the location of the statistics in the statslist. 1 for global, 2
for local. Default is global.
contr Logical. Should the routine use SAS-like contrasts to generate the statistics?
Defaults to true (which is faster than the alternative).
Value

A list containing:

list An i,j,k array consisting of the i’th event’s j by k identity contrast matrix.

Author(s)

Christopher Steven Marcum

See Also
slbind,gen.id

Examples

non non

rawevents<-sample(rep(c(”"ran"”,"eat”,"stay"”,"eat”,"ran","play”),5))
actors<-rep(c(”"Jim","Bill","Pete"),10)
eventlist<-gen.evl(cbind(rawevents,actors))
baserates<-gen.intercepts(eventlist)

baserates[[111[[1]11[1,,]

#Compare with:
baserates<-gen.intercepts(eventlist,contr=FALSE)

baserates[[1]1[[1]][1,,]

gen.sform 9

gen.sform Generates Sform Statistics from Event Sequences

Description

Internal function for generating sequence statistics based on limited regular expressions.

Usage

gen.sform(a, sform, olev = NULL)

Arguments
a A character vector of events, possibly passed from gen. id. Musthave attr(a, "a.uid").
sform A regular expression representing the sequence statistic, see details
olev a character vector, see details.

Details

This function is typically not called by the end user. Regular expressions must adhere to PERL
standards and, at this time, must make use of the alphabetic event.key values in an eventlist object.

The parameter olev is a placeholder for future functionality, however can currently be used to
truncate valid event types not found in the null.events values in an eventlist object. This parameter
will rarely ever be non-null.

Value

A list of 1length(a) containing single row matrices of sufficient statistics for matches/non-matches
of the S-form.

Note

Currently, a must consist of single character ids. This is not checked.

Author(s)

Christopher Steven Marcum

10 gen.sformlist

gen.sformlist Generate a list of S-form sequence statistics.

Description

Generates a list of S-form sequence statistics based on sform regular expressions. Output is not
used directly but is passed to other methods.

Usage
gen.sformlist(evl, sforms,cond=FALSE, interval=FALSE, warn=TRUE,...)

Arguments
evl An eventlist passed from gen.evl()
sforms A character string of S-form regular expressions representing the sequence statis-
tics.
cond Should the resulting statistics condition out the prefix? Defaults to FALSE.
interval When cond=TRUE, are elements of sforms paired as start-stop terms?. Defaults
to FALSE.
warn Should warnings be issued? Defaults to TRUE.
Additional arguments to pass to gen.sform
Details

Regular expressions must adhere to PERL standards and, at this time, must make use of the alpha-
betic evl$event.key values in an eventlist object. Two special regex operators are permitted in
S-form expressions: the “I” (OR operator) and the “+” (AND operator). In S-form expressions, the
OR operator is used to differentiate between two possible event paths and the AND operator is used
to indicate persistence of the last event.

Useful expressions include:

[,1] aa inertial term: S-form of the type “event a predicts event a”

[,2] ab basic digram transition term: S-form of the type “event a predicts event b”

[L3] a+b transition term with persistence: S-form of the type “some series of events a predicts event b”
[,4] abc basic trigram term: S-form of the of the type “event a followed by event b predicts event c¢”
[,5] aab tuples term: S-form of the of the type “event a followed by event a predicts event c”

[,6] (alb)c complex term with divergence: S-form of the of the type “event a OR event b predicts event c”

[,71 (alb+d)c complex term with divergence and persistence: S-form of the of the type “event a predicts event ¢ OR some

gen.sformlist 11

There may be more than one way to form an S-form expression. For example, aa is equivalent
to a+a; however, the former is preferred because the search methods used to update the sufficient
statistics matrix are much faster in that case. This is also important to note because the informR
package does not check for affine collinearity between the sufficient statistics (i.e., as would be the

non n on

case in gen.sformlist(evl, c("aa","a+a","aaa")).

To generate S-form statistics that condition out the prefix set cond=TRUE. This will result in statistics
of the form "(aa)b" or the likelihood of "b" given that "aa" occurred; thus, only the hazard of "b"
is affected. This is useful when only the suffix event is of interest. When elements of each S-
form are "paired," such as interval likelihood cases where each spell class can be characterized as
having “starting” and “stopping” elements, setting interval=TRUE will result in two statistics per
s-form: one that models the hazard of starting the suffix spell and one that models the duration of
the suffix spell. In the general case, this is equivalent to a model with terms for "(ab)c" and "(ab)cd",
respectively.
Value

A list containing idXevent, iXj matrices of sform sequence statistics.

Note

A notice will be issued if special regex characters are found in the sform vector.

Note

This routine will complain about poorly formed regular expressions.

Note

The cond parameter affects all S-forms in sform.

Note

Hln

S-form regular expressions that contain repitition or divergence ("+" or
when cond=TRUE. See the example for how to do this manually.

) flags are not allowed

Author(s)

Christopher Steven Marcum

See Also

gen.sform,sfl2sl,glb.sformlist

Examples

set.seed(57391)
rawevents<-sample(rep(c("ran”,"eat”,"stay"”,"eat”,"ran"”, "play"),50))
actors<-rep(c("Jim","Bill", "Pete"),100)
evmat<-cbind(rawevents,actors)

eventlist<-gen.evl(evmat)

12 get.regpos

#See event-type alphabetic token codes
eventlist$event.key

alpha.ints<-gen.intercepts(eventlist,basecat="ran")

#Create some inertial s-form statistics and fit the models
beta.sforms<-gen.sformlist(eventlist,c("aa”,"bb","cc"”,"dd"))

#Condition out the effects of the prefix:
gamma.sforms<-gen.sformlist(eventlist,c("aab","abb","acc"”,"add"),cond=TRUE)

#Manual example of the above
sforms1<-c("aab","abb", "acc”,"add")
sforms2<-sapply(sforms1, function(x) substr(x,1,nchar(x)-1))

sforms1.sf<-gen.sformlist(eventlist, sforms1)
sforms2.sf<-gen.sformlist(eventlist, sforms2)

for(i in 1:length(sforms1.sf)){
for(j in 1: dim(sforms1.sf[[111)L[3]11){
sforms1.sf[[i]11[,,jl<-abs(sforms1.sf[[i]1[,,jl-sforms2.sf[[i11[,,3])
}
3

#Note the difference:
gamma.sforms2<-gen.sformlist(eventlist,c(”aab"”,"abb","acc”,"add"))
gamma.sforms2[[1]][75:85,,1]

gamma.sforms[[1]]1[75:85,,1]

get.regpos Get Positions of Events Within Regular Expression Match

Description

A convenience function that obtains event positions from inside a regular expression match.

Usage

get.regpos(gregx)

Arguments

gregx A regular expression of type gregexpr()

Author(s)

Christopher Steven Marcum

glapply 13

See Also

gregexpr

glapply Group Level Apply

Description

Apply a function on a variable over levels of an grouping factor. A wrapper for split() and is
similar in functionality to by () but with more options for output.

Usage
glapply(x, id, FUN, regroup = TRUE, ...)
Arguments
X a string or numeric vector.
id grouping factor with length(x)
FUN Function to apply over x
regroup logical, if TRUE returns result in the same structure as x, otherwise, returns a
list of length unique(id).
Additional arguments passed to FUN
Author(s)

Christopher Steven Marcum

See Also

split,unsplit,lapply

Examples

data(Indometh)
glapply(Indometh$conc,Indometh$Subject, FUN=mean)
x<-rep(sample(1:10),2)

id<-rep(letters[1:5],4)

glapply(x, id,FUN=function(x)sum((x-mean(x))*2),regroup=FALSE)
glapply(x,id, FUN=function(x)sum((x-mean(x))*2), regroup=TRUE)
#Compare with output produced by by()

by(x,id, function(x)sum((x-mean(x))*2))

14 glb.sformlist

glb.sformlist Generate a list of global S-form sequence statistics.

Description
Generates a list of S-form sequence statistics constructed by pooling multiple sform regular expres-
sions into single statistics. Output is not used directly but is passed to other methods.

Usage

glb.sformlist(evl, sforms, new.names, dichot, cond=FALSE, interval=FALSE, warn=TRUE)

Arguments
evl An eventlist passed from gen.ev1()
sforms A list of character strings of S-form regular expressions grouped by a common
attribute. See details.
new.names A character string equal to the length of sforms ideally representing the common
attributes of each pooled set of sforms.
dichot Logical. Should the resulting statistics be dichotomized? Defaults to TRUE.
See details.
cond Logical. Should the prefix be dropped from the resulting statistics? Defaults to
FALSE.
interval Logical. Pass interval flag to gen.sformlits? Defaults to FALSE.
warn Logical. Should warnings be issued? Defaults to TRUE.
Details

As with gen.sformlist(), regular expressions in sforms must adhere to PERL standards and, at
this time, must make use of the alphabetic evl$event.key values in an eventlist object.

If dichot is set to FALSE then the components of the global sform that overlap will result in
statistics that have been multiplied by a scalar equal to the number of overlaps. For example, in a
situation where a global s-form is composed of the following terms: c("aab","aac"), any event
“a” that occurs in an eventlist will have a corresponding value of 2 in the respective “a” column of
the resulting statslist. In general, this is not the desired output and defaults to dichotomous statistics.

To generate S-form statistics that condition out the prefix set cond=TRUE. This will result in statistics
of the form "(aa)b" or the likelihood of "b" given that "aa" occurred; thus, only the hazard of "b"
is affected. This is useful when only the suffix event is of interest. When elements of each S-
form are "paired,” such as interval likelihood cases where each spell class can be characterized as
having “starting” and ““stopping” elements, setting interval=TRUE will result in two statistics per
s-form: one that models the hazard of starting the suffix spell and one that models the duration of
the suffix spell. In the general case, this is equivalent to a model with terms for "(ab)c" and "(ab)cd",
respectively.

The interval parameter is a placeholder for future functionality. It currently passes the flag to
gen.sformlist() and then fails to return what you think it should return.

regmat.ind 15

Value

A list containing idXevent, iXj matrices of sform sequence statistics.

Note

A notice will be issued if special regex characters are found in any sform vector.

Note

This routine will complain about poorly formed regular expressions.

Note

The cond parameter affects all S-forms in sform.

Note
S-form regular expressions that contain repitition or divergence ("+" or "|") flags are not allowed
when cond=TRUE. See the example in help("”gen.sformlist") for how to do this manually.
Author(s)

Christopher Steven Marcum

See Also

gen.sformgen.sformlist,sf12sl

Examples

example(gen.sformlist)

x<-list(c(”aa","bb","cc"y,c("ba","ca"))
tb1<-glb.sformlist(eventlist,sforms=x,new.names=c("inertia”,"afollows"))
rem(eventlist$eventlist,slbind(tb1,alpha.ints))

regmat.ind Regular Expresstion Matrix Index

Description
Internal function for generating a matrix of regular expression position matches, usually mapped to
a vector expansion of the input string.

Usage

regmat.ind(reg,evl,...)

16 sf2nms

Arguments
reg character, The regular expression.
evl eventlist, The eventlist on which regex in reg is to be performed.
additional parameters to pass to gregexpr().
Value

A three column matrix of integers.

Author(s)

Christopher Steven Marcum

sf2nms Translate S-form Regular Expressions

Description

Translates S-forms into verbose names by regex substitution using the event.key in an eventlist.

Usage

sf2nms(event.key, sform)

Arguments
event.key A two column matrix, possibly passed from evls$event.key
sform An S-form regular expression using the evls$event.key[, 1] uids.
Value

A list containing:

character A “translation” by substitution of the sform in unique id form to its event type
representation

Author(s)

Christopher Steven Marcum

Examples

non non

rawevents<-sample(rep(c("ran"”,"eat”,"stay"”,"eat”,"ran","play”),100))
actors<-rep(c("Jim","Bill","Pete"),10)
eventlist<-cbind(rawevents,actors)

evls<-gen.evl(eventlist)

sform<-"ab"
sf2nms(evls$event.key, sform)

sfi2s] 17

sfl2sl Convert an sformlist object to a statslist object

Description

Converts an sformlist object to a statslist object, which is compatible with rem() in Butts’s relevent
package.

Usage

sfl2sl(sformlist,exclude=NULL,eventlist=NULL)
sfl2statslist(sformlist, type=1)

Arguments
sformlist an object of class(sformlist)
exclude character vector, optional but useful if excluding events later. Must supply
eventlist if non-null.
eventlist optional, a two column matrix of events
type integer indicating global or local statslist position. Defaults to 1.
Details

sf12sl is an internal function used by gen.sformlist and should not normally be of any use to
users.

sfl2statslist, however, will nicely convert any object returned by gen.sformlist or glb.sformlist
into a statslist object. This is useful for constructing s-form models without intercepts passed from
gen.intercepts.

Author(s)

Christopher Steven Marcum

See Also

gen.sformlist, slbind

18 slbind

slbind Combine Statlist Arrays

Description

Combines statslist arrays using a wrapper for abind() in the abind package.

Usage

slbind(sformstats, statslist, type = 1, new.names=FALSE,...)

Arguments
sformstats An sformstats object, possibly passed from sf12sl
statslist A statslist object, possibly passed from gen.intercepts
type Indicates where the combining is going to occur in the output statslist. 1 for
global, 2 for local.
new.names Either logical or character string. Choose the ouput variable names. See details.
Additional arguments passed to sf2nms () if new.names=TRUE. See details
Details

The new.names parameter defaults to FALSE, which sets the variable names in the output to be
whatever was passed from the names of the kth elements of each ijk array in sformstats, as in
the default behavior in abind(). Setting new.names to TRUE tries to guess variable names using
sf2nms. If TRUE, then . . . must contain an event.key from the eventlist object that statslist was
built upon (e.g, event.key=eventlist$event.key). If new.names is passed as a character vector,
then its length must be equal to the number of the kth elements of each ijk array in sformstats.

In the case that new.names is TRUE, it is possible to retrieve the original variable names by:
names (dimnames (output[[x]1]1[[typel])), where output is the statslist generated by slbind(),
X is any index, and type is type as defined above.

Note

slbind can accept abind arguments.

Author(s)

Christopher Steven Marcum

See Also

sfl2sl,gen.intercepts,sf2nms

slbind.cond 19

Examples

rawevents<-sample(rep(c(”"ran”,"eat"”,"stay","eat”,"ran","play”),50))
actors<-rep(c("Jim”,"Bill"”, "Pete"),100)
evmat<-cbind(rawevents,actors)

eventlist<-gen.evl(evmat)

beta.ints<-gen.intercepts(eventlist)
beta.sforms<-gen.sformlist(eventlist,c("atb","bb"))
statslist<-slbind(beta.sforms,beta.ints)

statslist[[111C[[11101:3,,]

#Compare with:
statslist<-slbind(beta.sforms,beta.ints,new.names=TRUE,event.key=eventlist$event.key)
dimnames(statslist[[1]][[1]1])

slbind.cond Add ActorXEvent Conditional or Interaction Variables to a Statslist
Array

Description
Combines a single actor-level attribute with sufficient statistics from a statslist array using a wrapper
for abind() in the abind package.

Usage

slbind.cond(intvar, statslist, var.suffix, sl.ind=NULL,who.evs=NULL,type =1,...)

Arguments
intvar An actor-level numeric variable. See Details.
statslist A statslist object, possibly passed from gen.intercepts.
var.suffix A character string naming the new variable(s).
sl.ind A numeric vector containing the statslist column indices to be interacted with
intvar. Defaults to all columns. See Details.
who.evs If type=2, a numeric vector indexing where to apply the interaction. Optional.
type Indicates where the combining is going to occur in statslist. 1 for global, 2 for
local.
Additional methods passed to abind().
Details

For global statistics, length(intvar)==length(statslist) must be true. Because current func-
tionality allows for only single vectors, the user must iterate over all levels of factors with more than
two levels. Thus, this is truly a _single variable_ function and care must be taken.

The sl.ind parameter should be carefully specified as improper interactions can result in over-
identified or unidentifiable models.

Note

slbind.cond can accept abind arguments.

Author(s)

Christopher Steven Marcum

See Also

slbind, abind,slbind.cov

Examples

rawevents<-sample(rep(c("ran”,"eat”,"stay"”,"eat”,"ran"”, "play"),50))
actors<-rep(c("Jim","Bill", "Pete"),100)
evmat<-cbind(rawevents,actors)

eventlist<-gen.evl(evmat)

beta.ints<-gen.intercepts(eventlist)

statslist.new<-slbind.cond(intvar=c(1,0,0),beta.ints,var.suffix="Jim")
statslist.new[[1]11CC111[1,,]
statslist.new[[2]][[1]1(1,,]
statslist.new[[3]1JC[111[1,,]

slbind.cov

slbind.cov

Add Covariates to a Statslist Array

Description

Combines scalars and vectors to statslist arrays using a wrapper for abind() in the abind package.

Usage
slbind.cov(covar, statslist, type = 1,...)
Arguments
covar A list of lists containing the covariates, see details
statslist A statslist object, possibly passed from gen.intercepts
type Indicates where the combining is going to occur in statslist. 1 for global, 2 for

local.

Additional methods passed to abind().

slbind.cov 21

Details

The length AND actor-order of the covar list must equal that of the statslist. Currently, no check is
made to ensure that the actor-order is maintained, though an object length error will be returned in
many faulty cases. Also, note that the number of covariates in each element of covar (i.e., for each
actor) should be the same for proper model identification (also not currently checked).

Actor-level covariates are passed as single values and event-level covariates are passed as vectors.
That is, each sub-element (covariate) of the covar list must either be a scalar or a vector with length
equal to length(eventlist$eventlist$actor).

If names (covars$actor) (for any and each actor) is NULL, then slbind.cov () will generate names
using the make . names=TRUE parameter, as discussed in the ?abind documentation.

Note

slbind.cov can accept abind arguments.

Author(s)

Christopher Steven Marcum

See Also

slbind, abind, slbind.cond

Examples

rawevents<-sample(rep(c("ran","eat”,"stay"”,"eat”,"ran"”, "play"),50))
actors<-rep(c(”Jim”,"Bill", "Pete"),100)
evmat<-cbind(rawevents,actors)

eventlist<-gen.evl(evmat)

beta.ints<-gen.intercepts(eventlist)

##Make up some covariates

covar<-list()
covar$Bill$rate<-sort(rexp(length(eventlist$eventlist$Bill)))
covar$Bill$smokes<-1
covarJimrate<-sort(rexp(length(eventlist$eventlist$Jim)))
covarJimsmokes<-0
covar$Pete$rate<-sort(rexp(length(eventlist$eventlist$Pete)))
covar$Pete$smokes<-0

statslist.new<-slbind.cov(covar,beta.ints)
statslist.new[[1]11C[1]11C,1,]

22 sldrop

sldrop Drop S-form Statistics or Covariates from a Statslist Array

Description

Removes variables from a statslist.

Usage

sldrop(statslist, varname, type = 1)

Arguments
statslist A statslist object, possibly passed from gen.intercepts or other methods
varname A vector of variable names to remove from statslist. See details.
type Indicates where the combining is going to occur in statslist. 1 for global, 2 for
local.
Details

Removes the kth element(s) from the [i,j,k] statslist array based upon regex match of the k dim-
names(statslist[[x]][[type]D[[3]]-
Author(s)

Christopher Steven Marcum

See Also

slbind, slbind. cov, abind

Examples

#Take example from slbind.cov
example(slbind.cov)
statslist.new<-slbind.cov(covar,beta.ints)
statslist.new[[1]]CL[111C,1,]

#And removes the "smokes"” variable
dimnames(statslist.new[[1]11[[111)L[3]]
statslist.old<-sldrop(statslist.new, "smokes")
dimnames(statslist.old[[1JI1C[1]1)CL3]]

Index

+Topic datasets

atus80int, 3
atus80ord, 4

+Topic package

informR-package, 2

abind, 18, 20-22
atus80int, 3
atus80ord, 4

count.sform, 5

gen.baserates (gen.intercepts), 8
gen.evl, 6

gen.id, 7,8, 9
gen.intercepts, 8, 18-20, 22
gen.sform, 9, 10, 11, 15
gen.sformlist, 10, 15, 17
get.regpos, 12

glapply, 13

glb.sformlist, /1, 14

gregexpr, 13

informR (informR-package), 2
informR-package, 2

lapply, 13

regmat.ind, 15

rem,

2

sf2nms, 16, 18

sfl2sl, 11,15,17,18
sfl2statslist (sfl2sl), 17
sfsplit (get.regpos), 12
slbind, 8, 17, 18, 20-22
slbind.cond, 19, 2/
slbind.cov, 20, 20, 22
sldrop, 22

split, 13

unsplit, 13

23

	informR-package
	atus80int
	atus80ord
	count.sform
	gen.evl
	gen.id
	gen.intercepts
	gen.sform
	gen.sformlist
	get.regpos
	glapply
	glb.sformlist
	regmat.ind
	sf2nms
	sfl2sl
	slbind
	slbind.cond
	slbind.cov
	sldrop
	Index

