Package ‘influential’

June 26, 2020

Type Package

Title Identification and Classification of the Most Influential Nodes

Version 1.1.2

Author Adrian (Abbas) Salavaty [aut, cre], Mirana Ramialison [ths], Peter D. Currie [ths]
Maintainer Adrian Salavaty <abbas.salavaty@gmail.com>

Description Contains functions for the classification and ranking of top candidate features, reconstruc-
tion of networks from
adjacency matrices and data frames, analysis of the topology of the network
and calculation of centrality measures, and identification of the most
influential nodes. Also, a function is provided for running SIRIR model, which
is the combination of leave-one-out cross validation technique and the conven-
tional SIR model, on a network to unsupervisedly rank the true influence of vertices. Addition-
ally, some functions have been provided for the assessment
of dependence and correlation of two network centrality measures as well as
the conditional probability of deviation from their corresponding means in opposite direction.
Fred Viole and David Nawrocki (2013, ISBN:1490523995).
Csardi G, Nepusz T (2006). *"The igraph software package for complex network research." Inter-
Journal, Complex Systems, 1695.
Adopted algorithms and sources are referenced in function document.

Imports igraph, ranger, coop, reshape?2

Suggests Hmisc (>= 4.3-0), mgcv (>= 1.8-31), nortest (>= 1.0-4), NNS
(>=0.4.7.1), parallel, knitr, rmarkdown

Depends R (>=2.10)
URL http://github.com/asalavaty/influential

BugReports http://github.com/asalavaty/influential/issues
License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.1.0

VignetteBuilder knitr

http://github.com/asalavaty/influential
http://github.com/asalavaty/influential/issues

2 betweenness

NeedsCompilation no

Repository CRAN

Date/Publication 2020-06-26 14:50:06 UTC

R topics documented:
DEIWEENNESS v v e e e e e e e e e e e 2
centrality.measuresl e e e e e e e 4
clusterRank e 4
coexpression.adjacency Lo e e e e e 5
coexpression.data L.l e 6
collective.influence L 6
cond.prob.analysis L e e 7
degreeo e e 8
diff_data.assembly 9
double.cent.assess e 10
double.cent.assess.noRegression L. 11
EXIT . v v e e e e e 13
graph_from_adjacency_matrix 15
graph_from_data_frame 16
hubness.score 17
hoindex e 18
VI Lo 19
ivifromindiceso e 21
Ihoindex e 22
neighborhood.connectivity L 23
sif2igraph L L e e e 24
SIFIT . . o o o e 24
Spreading.SCoreo e e 26
Ve 27

Index 28

betweenness Vertex betweenness centrality
Description

This function and all of its descriptions have been obtained from the igraph package.

betweenness 3

Usage

betweenness(
graph,
v = V(graph),
directed = TRUE,
weights = NULL,
nobigint = TRUE,
normalized = FALSE

)
Arguments
graph The graph to analyze (an igraph graph).
v The vertices for which the vertex betweenness will be calculated.
directed Logical, whether directed paths should be considered while determining the
shortest paths.
weights Optional positive weight vector for calculating weighted betweenness. If the
graph has a weight edge attribute, then this is used by default. Weights are used
to calculate weighted shortest paths, so they are interpreted as distances.
nobigint Logical scalar, whether to use big integers during the calculation. This is only
required for lattice-like graphs that have very many shortest paths between a pair
of vertices. If TRUE (the default), then big integers are not used.
normalized Logical scalar, whether to normalize the betweenness scores. If TRUE, then the
results are normalized.
Value

A numeric vector with the betweenness score for each vertex in v.

See Also

betweenness for a complete description on this function

Other centrality functions: clusterRank(), collective.influence(), degree(), h_index(),
1lh_index (), neighborhood.connectivity()

Examples

MyData <- coexpression.data

My_graph <- graph_from_data_frame(MyData)

GraphVertices <- V(My_graph)

My_graph_betweenness <- betweenness(My_graph, v = GraphVertices,
directed = FALSE, normalized = FALSE)

4 clusterRank

centrality.measures Centrality measures dataset

Description

The centrality measures of a co-expression network of IncRNAs and mRNAs in lung adenocarci-
noma

Usage

centrality.measures

Format
A data frame with 794 rows and 6 variables:
\
DC Degree Centrality
CR ClusterRank
NC Neighborhood Connectivity
LH_index Local H-index
BC Betweenness Centrality

CI Collective Influence ...

Source

https://www.ncbi.nlm.nih.gov/pubmed/31211495/

clusterRank ClusterRank (CR)

Description

This function calculates the ClusterRank of input vertices and works with both directed and undi-
rected networks. This function and all of its descriptions have been adapted from the centiserve
package with some minor modifications. ClusterRank is a local ranking algorithm which takes into
account not only the number of neighbors and the neighbors’ influences, but also the clustering
coefficient.

Usage

clusterRank(graph, vids = V(graph), directed = FALSE, loops = TRUE)

https://www.ncbi.nlm.nih.gov/pubmed/31211495/

coexpression.adjacency 5

Arguments
graph The input graph as igraph object
vids Vertex sequence, the vertices for which the centrality values are returned. De-
fault is all vertices.
directed Logical scalar, whether to directed graph is analyzed. This argument is ignored
for undirected graphs.
loops Logical; whether the loop edges are also counted.
Value

A numeric vector contaning the ClusterRank centrality scores for the selected vertices.

See Also

Other centrality functions: betweenness(), collective.influence(), degree(), h_index(),
1lh_index(), neighborhood.connectivity()

Examples

MyData <- coexpression.data

My_graph <- graph_from_data_frame(MyData)

GraphVertices <- V(My_graph)

cr <- clusterRank(graph = My_graph, vids = GraphVertices, directed = FALSE, loops = TRUE)

coexpression.adjacency
Adjacency matrix

Description
The adjacency matrix of a co-expression network of IncRNAs and mRNAs in lung adenocarcinoma
that was generated using igraph functions

Usage

coexpression.adjacency

Format
A data frame with 794 rows and 794 variables:

IncRNA IncRNA symbol
IncRNA IncRNA symbol ...

Source

https://www.ncbi.nlm.nih.gov/pubmed/31211495/

https://www.ncbi.nlm.nih.gov/pubmed/31211495/

6 collective.influence

coexpression.data Co-expression dataset

Description

A co-expression dataset of IncRNAs and mRNAs in lung adenocarcinoma

Usage

coexpression.data

Format
A data frame with 2410 rows and 2 variables:

IncRNA IncRNA symbol

Coexpressed.Gene Co-expressed gene symbol ...

Source

https://www.ncbi.nlm.nih.gov/pubmed/31211495/

collective.influence Collective Influence (CI)

Description

This function calculates the collective influence of input vertices and works with both directed and

undirected networks. This function and its descriptions are obtained from https://github.com/ronammar/collective_influence
with minor modifications. Collective Influence as described by Morone & Makse (2015). In simple

terms, it is the product of the reduced degree (degree - 1) of a node and the total reduced degree of

all nodes at a distance d from the node.

Usage

collective.influence(graph, vertices = V(graph), mode = "all", d = 3)

Arguments
graph A graph (network) of the igraph class.
vertices A vector of desired vertices, which could be obtained by the V function.
mode The mode of collective influence depending on the directedness of the graph. If

the graph is undirected, the mode "all" should be specified. Otherwise, for the
calculation of collective influence based on incoming connections select "in"
and for the outgoing connections select "out". Also, if all of the connections are
desired, specify the "all" mode. Default mode is set to "all".

https://www.ncbi.nlm.nih.gov/pubmed/31211495/

cond.prob.analysis 7

d The distance, expressed in number of steps from a given node (default=3). Dis-
tance must be > 0. According to Morone & Makse (https://doi.org/10.1038/nature14604),
optimal results can be reached at d=3,4, but this depends on the size/"radius" of
the network. NOTE: the distance d is not inclusive. This means that nodes at a
distance of 3 from our node-of-interest do not include nodes at distances 1 and
2. Only 3.

Value
A vector of collective influence for each vertex of the graph corresponding to the order of vertices
output by V(graph).

See Also

Other centrality functions: betweenness(), clusterRank(), degree(), h_index(), 1h_index(),
neighborhood. connectivity()

Examples

MyData <- coexpression.data

My_graph <- graph_from_data_frame(MyData)

GraphVertices <- V(My_graph)

ci <- collective.influence(graph = My_graph, vertices = GraphVertices, mode = "all”, d=3)

cond.prob.analysis Conditional probability of deviation from means

Description

This function calculates the conditional probability of deviation of two centrality measures (or any
two other continuous variables) from their corresponding means in opposite directions.

Usage

cond.prob.analysis(data, nodes.colname, Desired.colname, Condition.colname)

Arguments

data A data frame containing the values of two continuous variables and the name of
observations (nodes).

nodes.colname The character format (quoted) name of the column containing the name of ob-
servations (nodes).

Desired.colname
The character format (quoted) name of the column containing the values of the
desired variable.

Condition.colname
The character format (quoted) name of the column containing the values of the
condition variable.

8 degree

Value

A list of two objects including the conditional probability of deviation of two centrality measures
(or any two other continuous variables) from their corresponding means in opposite directions based
on both the entire network and the split-half random sample of network nodes.

See Also

Other centrality association assessment functions: double.cent.assess.noRegression(), double.cent.assess()

Examples

MyData <- centrality.measures

My.conditional.prob <- cond.prob.analysis(data = MyData,
nodes.colname = rownames(MyData),
Desired.colname = "BC",
Condition.colname = "NC")

degree Degree of the vertices

Description

This function and all of its descriptions have been obtained from the igraph package.

Usage
degree(
graph,
v = V(graph),
mode = c("all”, "out", "in", "total"),
loops = TRUE,
normalized = FALSE
)
Arguments
graph The graph to analyze (an igraph graph).
v The ids of vertices of which the degree will be calculated.
mode Character string, “out” for out-degree, “in” for in-degree or “total” for the sum
of the two. For undirected graphs this argument is ignored. “all” is a synonym
of “total”.
loops Logical; whether the loop edges are also counted. If the graph has a weight edge
attribute, then this is used by default. Weights are used to calculate weighted
shortest paths, so they are interpreted as distances.
normalized Logical scalar, whether to normalize the degree. If TRUE then the result is

divided by n-1, where n is the number of vertices in the graph.

diff_data.assembly 9

Value

A numeric vector of the same length as argument v.

See Also

degree for a complete description on this function

Other centrality functions: betweenness(), clusterRank(), collective.influence(), h_index(),
1h_index (), neighborhood.connectivity()

Examples

MyData <- coexpression.data

My_graph <- graph_from_data_frame(MyData)

GraphVertices <- V(My_graph)

My_graph_degree <- degree(My_graph, v = GraphVertices, normalized = FALSE)

diff_data.assembly Assembling the differential/regression data

Description

This function assembles a dataframe required for running the ExXIR model. You may provide as
many differential/regression data as you wish. Also, the datasets should be filtered beforehand ac-
cording to your desired thresholds and, consequently, should only include the significant data. Each
dataset provided should be a dataframe with one or two columns. The first column should always
include differential/regression values and the second one (if provided) the significance values.

Usage
diff_data.assembly(...)

Arguments

Desired datasets/dataframes.

Value
A dataframe including the collective list of features in rows and all of the differential/regression
data and their statistical significance in columns with the same order provided by the user.

See Also

exir

10 double.cent.assess

Examples

Not run:

my.Diff_data <- diff_data.assembly(Differential_datal,
Differential_data2,
Regression_datal))

End(Not run)

double.cent.assess Assessment of innate features and associations of two network central-
ity measures (dependent and independent)

Description

This function assesses innate features and the association of two centrality measures (or any two
other continuous variables) from the aspect of distribution mode, dependence, linearity, monotonic-
ity, partial-moments based correlation, and conditional probability of deviating from corresponding
means in opposite direction. This function assumes one variable as dependent and the other as inde-
pendent for regression analyses. The non-linear nature of the association of two centrality measures
is evaluated based on generalized additive models (GAM). The monotonicity of the association
is evaluated based on comparing the squared coefficient of Spearman correlation and R-squared of
rank regression analysis. Also, the correlation between two variables is assessed via non-linear non-
parametric statistics (NNS). For the conditional probability assessment, the independent variable is
considered as the condition variable.

Usage

double.cent.assess(
data,
nodes.colname,
dependent.colname,
independent.colname,
plot = FALSE

Arguments

data A data frame containing the values of two continuous variables and the name of
observations (nodes).

nodes.colname The character format (quoted) name of the column containing the name of ob-
servations (nodes).

dependent.colname
The character format (quoted) name of the column containing the values of the
dependent variable.

independent.colname
The character format (quoted) name of the column containing the values of the
independent variable.

plot logical; FALSE (default) Plots quadrant means of NNS correlation analysis.

double.cent.assess.noRegression 11

Value

A list of 11 objects including:
- Summary of the basic statistics of two centrality measures (or any two other continuous variables).

- The results of normality assessment of two variable (p-value > 0.05 imply that the variable is
normally distributed).

- Description of the normality assessment of the dependent variable.
- Description of the normality assessment of the independent variable.
- Results of the generalized additive modeling (GAM) of the data.

- The association type based on simultaneous consideration of normality assessment, GAM Compu-
tation with smoothness estimation, Spearman correlation, and ranked regression analysis of splines.

- The Hoeffding’s D Statistic of dependence (ranging from -0.5 to 1).
- Description of the dependence significance.
- Correlation between variables based on the NNS method.

- The last two objects are the conditional probability of deviation of two centrality measures from
their corresponding means in opposite directions based on both the entire network and the split-half
random sample of network nodes.

See Also

ad. test for Anderson-Darling test for normality, gam for Generalized additive models with inte-
grated smoothness estimation, 1m for Fitting Linear Models, hoeffd for Matrix of Hoeffding’s D
Statistics, and NNS. dep for NNS Dependence

Other centrality association assessment functions: cond.prob.analysis(), double.cent.assess.noRegression()

Examples

Not run:

MyData <- centrality.measures

My.metrics.assessment <- double.cent.assess(data = MyData,
nodes.colname = rownames(MyData),
dependent.colname = "BC",
independent.colname = "NC")

End(Not run)

double.cent.assess.noRegression

Assessment of innate features and associations of two network central-
ity measures

12 double.cent.assess.noRegression

Description

This function assesses innate features and the association of two centrality measures (or any two
other continuous variables) from the aspect of distribution mode, dependence, linearity, partial-
moments based correlation, and conditional probability of deviating from corresponding means in
opposite direction (centrality?2 is used as the condition variable). This function doesn’t consider
which variable is dependent and which one is independent and no regression analysis is done. Also,
the correlation between two variables is assessed via non-linear non-parametric statistics (NNS).
For the conditional probability assessment, the centrality2 variable is considered as the condition
variable.

Usage

double.cent.assess.noRegression(
data,
nodes.colname,
centralityl.colname,
centrality2.colname

Arguments
data A data frame containing the values of two continuous variables and the name of
observations (nodes).

nodes.colname The character format (quoted) name of the column containing the name of ob-
servations (nodes).

centralityl.colname
The character format (quoted) name of the column containing the values of the
Centrality_1 variable.

centrality2.colname
The character format (quoted) name of the column containing the values of the
Centrality_2 variable.

Value

A list of nine objects including:
- Summary of the basic statistics of two centrality measures (or any two other continuous variables).

- The results of normality assessment of two variable (p-value > 0.05 imply that the variable is
normally distributed).

- Description of the normality assessment of the centrality] (first variable).

- Description of the normality assessment of the centrality2 (second variable).
- The Hoeffding’s D Statistic of dependence (ranging from -0.5 to 1).

- Description of the dependence significance.

- Correlation between variables based on the NNS method.

- The last two objects are the conditional probability of deviation of two centrality measures from
their corresponding means in opposite directions based on both the entire network and the split-half
random sample of network nodes.

exir 13

See Also

ad. test for Anderson-Darling test for normality, hoeffd for Matrix of Hoeffding’s D Statistics,
and NNS. dep for NNS Dependence

Other centrality association assessment functions: cond.prob.analysis(), double.cent.assess()

Examples

Not run:

MyData <- centrality.measures

My.metrics.assessment <- double.cent.assess.noRegression(data = MyData,
nodes.colname = rownames(MyData),

centralityl.colname = "BC",
centrality2.colname = "NC")
End(Not run)
exir Experimental data-based Integrated Ranking

Description

This function runs the Experimental data-based Integrated Ranking (ExIR) model for the classifica-
tion and ranking of top candidate features. The input data could come from any type of experiment
such as transcriptomics and proteomics.

Usage

exir(
Desired_list = NULL,
Diff_data,
Diff_value,
Regr_value = NULL,
Sig_value,
Exptl_data,
Condition_colname,
Normalize = FALSE,
r=20,
alpha = 0.05,
num_trees = 10000,
num_permutations = 100,
seed = 1234,
verbose = TRUE

14

Arguments

Desired_list

Diff_data

Diff_value

Regr_value

Sig_value

Exptl_data

exir

(Optional) A character vector of your desired features. This vector could be, for
instance, a list of features obtained from cluster analysis, time-course analysis,
or a list of dysregulated features with a specific sign.

A dataframe of all significant differential/regression data and their statistical
significance values (p-value/adjusted p-value). You may have selected a pro-
portion of the differential data as the significant ones according to your desired
thresholds. A function, named diff_data.assembly, has also been provided for
the convenient assembling of the Diff_data dataframe.

A numeric vector containing the column number(s) of the differential data in
the Diff_data dataframe. The differential data could result from any type of
differential data analysis. One example could be the fold changes (FCs) obtained
from differential expression analyses. The user may provide as many differential
data as he/she wish.

(Optional) A numeric vector containing the column number(s) of the regression
data in the Diff_data dataframe. The regression data could result from any type
of regression data analysis or other analyses such as time-course data analyses
that are based on regression models.

A numeric vector containing the column number(s) of the significance values
(p-value/adjusted p-value) of both differential and regression data (if provided).
Providing significance values for the regression data is optional.

A dataframe containing all of the experimental including a column for speci-
fying the conditions. The features/variables of the dataframe should be as the
columns and the samples should come in the rows. The condition column should
be of the character class. For example, if the study includes several replicates of
cancer and normal samples, the condition column should include "cancer" and
"normal" as the conditions of different samples. Also, the prior normalization of
the experimental data is highly recommended. Otherwise, the user may set the
Normalize argument to TRUE for a simple log2 transformation of the data. The
experimental data could come from a variety sources such as transcriptomics
and proteomics assays.

Condition_colname

Normalize

alpha

num_trees

A string or character vector specifying the name of the condition column of the
Exptl_data dataframe.

Logical; whether the experimental data should be normalized or not (default is
FALSE). If TRUE, the experimental data will be log2 transformed.

The threshold of Pearson correlation coefficient for the selection of correlated
features (default is 0).

The threshold of the statistical significance (p-value) used throughout the entir
model (default is 0.05)

Number of trees to be used for the random forest classification (supervised ma-
chine learning) Default is set to 10000.

num_permutations

Number of permutations to be used for computation of the statistical signifi-
cances (p-values) of the importance scores resulted from random forest classifi-
cation (default is 100).

graph_from_adjacency_matrix 15
seed The seed to be used for all of the random processes throughout the model (de-
fault is 1234).

verbose Logical; whether the accomplishment of different stages of the model should be
printed (default is TRUE).

Value

A list of one to four tables including:

- Driver table: Top candidate drivers

- DE-mediator table: Top candidate differentially expressed/abundant mediators

- nonDE-mediators table: Top candidate non-differentially expressed/abundant mediators
- Biomarker table: Top candidate biomarkers

The number of returned tables depends on the input data and specified arguments.

See Also

diff_data.assembly, ivi, pcor, prcomp, ranger, importance_pvalues

Other integrative ranking functions: hubness.score(), ivi.from.indices(), ivi(), spreading.score()

graph_from_adjacency_matrix
Creating igraph graphs from adjacency matrices

Description

This function and all of its descriptions have been obtained from the igraph package. For a complete
description if the function and its arguments try this: ?igraph::graph_from_adjacency_matrix

Usage
graph_from_adjacency_matrix(
adjmatrix,
mode = c("directed”, "undirected”, "max", "min", "upper”, "lower"”, "plus"),
weighted = NULL,
diag = TRUE,
add.colnames = NULL,
add.rownames = NA

16

Arguments

adjmatrix

mode

weighted

diag

add.colnames

add. rownames

Value

graph_from_data_frame

A square adjacency matrix. From igraph version 0.5.1 this can be a sparse matrix
created with the Matrix package.

Character scalar, specifies how igraph should interpret the supplied matrix. See
also the weighted argument, the interpretation depends on that too. Possible
values are: directed, undirected, upper, lower, max, min, plus.

This argument specifies whether to create a weighted graph from an adjacency
matrix. If it is NULL then an unweighted graph is created and the elements
of the adjacency matrix gives the number of edges between the vertices. If it
is a character constant then for every non-zero matrix entry an edge is created
and the value of the entry is added as an edge attribute named by the weighted
argument. If it is TRUE then a weighted graph is created and the name of the
edge attribute will be weight.

Logical scalar, whether to include the diagonal of the matrix in the calculation.
If this is FALSE then the diagonal is zerod out first.

Character scalar, whether to add the column names as vertex attributes. If it is
‘NULL’ (the default) then, if present, column names are added as vertex attribute
‘name’. If ‘NA’ then they will not be added. If a character constant, then it gives
the name of the vertex attribute to add.

Character scalar, whether to add the row names as vertex attributes. Possible
values the same as the previous argument. By default row names are not added.
If ‘add.rownames’ and ‘add.colnames’ specify the same vertex attribute, then
the former is ignored.

An igraph graph object.

See Also

graph_from_adjacency_matrix for a complete description on this function

Other network_reconstruction functions: graph_from_data_frame()

Examples

MyData <- coexpression.adjacency
My_graph <- graph_from_adjacency_matrix(MyData)

graph_from_data_frame Creating igraph graphs from data frames

Description

This function and all of its descriptions have been obtained from the igraph package. For a complete
description if the function and its arguments try this: ?igraph::graph_from_data_frame

hubness.score 17

Usage

graph_from_data_frame(d, directed = TRUE, vertices = NULL)

Arguments
d A data frame containing a symbolic edge list in the first two columns. Additional
columns are considered as edge attributes. Since version 0.7 this argument is
coerced to a data frame with as.data.frame.
directed Logical scalar, whether or not to create a directed graph.
vertices A data frame with vertex metadata, or NULL. Since version 0.7 of igraph this
argument is coerced to a data frame with as.data.frame, if not NULL.
Value
An igraph graph object.
See Also

graph_from_adjacency_matrix for a complete description on this function

Other network_reconstruction functions: graph_from_adjacency_matrix()

Examples

MyData <- coexpression.data
My_graph <- graph_from_data_frame(d=MyData)

hubness.score Hubness score

Description

This function calculates the Hubness score of the desired nodes from a graph. Hubness score reflects
the power of each node in its surrounding environment and is one of the major components of the
IVL

Usage

hubness.score(
graph,
vertices = V(graph),
directed = FALSE,
mode = "all”,
loops = TRUE,
scaled = TRUE

18

Arguments

graph
vertices

directed

mode

loops

scaled

Value

h_index

A graph (network) of the igraph class.
A vector of desired vertices, which could be obtained by the V function.

Logical scalar, whether to directed graph is analyzed. This argument is ignored
for undirected graphs.

The mode of Hubness score depending on the directedness of the graph. If
the graph is undirected, the mode "all" should be specified. Otherwise, for the
calculation of Hubness score based on incoming connections select "in" and for
the outgoing connections select "out". Also, if all of the connections are desired,
specify the "all" mode. Default mode is set to "all".

Logical; whether the loop edges are also counted.

Logical; whether the end result should be 1-100 range normalized or not (default
is TRUE).

A numeric vector with the Hubness scores.

See Also

spreading.score

Other integrative ranking functions: exir (), ivi.from.indices(), ivi(), spreading.score()

Examples

Not run:

MyData <- coexpression.data

My_graph <- graph_from_data_frame(MyData)

GraphVertices <- V(My_graph)

Hubness.score <- hubness.score(graph = My_graph, vertices = GraphVertices,

End(Not run)

directed = FALSE, mode = "all”,
loops = TRUE, scaled = TRUE)

h_index

H-index

Description

This function calculates the H-index of input vertices and works with both directed and undirected

networks.

Usage

h_index(graph, vertices = V(graph), mode = "all")

ivi 19

Arguments
graph A graph (network) of the igraph class.
vertices A vector of desired vertices, which could be obtained by the V function.
mode The mode of H-index depending on the directedness of the graph. If the graph
is undirected, the mode "all" should be specified. Otherwise, for the calculation
of H-index based on incoming connections select "in" and for the outgoing con-
nections select "out". Also, if all of the connections are desired, specify the "all"
mode. Default mode is set to "all".
Value

A vector including the H-index of each vertex inputted.

See Also
lh_index

Other centrality functions: betweenness(), clusterRank(), collective.influence(), degree(),
1lh_index(), neighborhood.connectivity()

Examples

Not run:

MyData <- coexpression.data

My_graph <- graph_from_data_frame(MyData)

GraphVertices <- V(My_graph)

h.index <- h_index(graph = My_graph, vertices = GraphVertices, mode = "all")

End(Not run)

ivi Integrated Value of Influence (IVI)

Description

This function calculates the IVI of the desired nodes from a graph.

Usage
ivi(
graph,
vertices = V(graph),
weights = NULL,
directed = FALSE,

mode = "all”,
loops = TRUE,
d = 3,

scaled = TRUE

20 ivi

Arguments

graph A graph (network) of the igraph class.

vertices A vector of desired vertices, which could be obtained by the V function.

weights Optional positive weight vector for calculating weighted betweenness centrality
of nodes as a requirement for calculation of IVI. If the graph has a weight edge
attribute, then this is used by default. Weights are used to calculate weighted
shortest paths, so they are interpreted as distances.

directed Logical scalar, whether to directed graph is analyzed. This argument is ignored
for undirected graphs.

mode The mode of IVI depending on the directedness of the graph. If the graph is
undirected, the mode "all" should be specified. Otherwise, for the calculation of
IVI based on incoming connections select "in" and for the outgoing connections
select "out". Also, if all of the connections are desired, specify the "all" mode.
Default mode is set to "all".

loops Logical; whether the loop edges are also counted.

d The distance, expressed in number of steps from a given node (default=3). Dis-
tance must be > 0. According to Morone & Makse (https://doi.org/10.1038/nature14604),
optimal results can be reached at d=3.4, but this depends on the size/"radius" of
the network. NOTE: the distance d is not inclusive. This means that nodes at a
distance of 3 from our node-of-interest do not include nodes at distances 1 and
2. Only 3.

scaled Logical; whether the end result should be 1-100 range normalized or not (default
is TRUE).

Value

A numeric vector with the IVI values based on the provided centrality measures.

See Also

ivi.from.indices, exir

Other integrative ranking functions: exir (), hubness.score(), ivi.from.indices(), spreading.score()

Examples

Not run:

MyData <- coexpression.data

My_graph <- graph_from_data_frame(MyData)

GraphVertices <- V(My_graph)

My.vertices.IVI <- ivi(graph = My_graph, vertices = GraphVertices,
weights = NULL, directed = FALSE, mode = "all",
loops = TRUE, d = 3, scaled = TRUE)

End(Not run)

ivi.from.indices 21

ivi.from.indices Integrated Value of Influence (1VI)

Description

This function calculates the IVI of the desired nodes from previously calculated centrality measures.
This function is not dependent to other packages and the required centrality measures, namely
degree centrality, ClusterRank, betweenness centrality, Collective Influence, local H-index, and
neighborhood connectivity could have been calculated by any means beforehand.

Usage
ivi.from.indices(DC, CR, LH_index, NC, BC, CI, scaled = TRUE)

Arguments
DC A vector containing the values of degree centrality of the desired vertices.
CR A vector containing the values of ClusterRank of the desired vertices.
LH_index A vector containing the values of local H-index of the desired vertices.
NC A vector containing the values of neighborhood connectivity of the desired ver-
tices.
BC A vector containing the values of betweenness centrality of the desired vertices.
CI A vector containing the values of Collective Influence of the desired vertices.
scaled Logical; whether the end result should be 1-100 range normalized or not (default
is TRUE).
Value

A numeric vector with the IVI values based on the provided centrality measures.

See Also
ivi, exir

Other integrative ranking functions: exir (), hubness.score(), ivi(), spreading.score()

Examples

MyData <- centrality.measures
My.vertices.IVI <- ivi.from.indices(DC = centrality.measures$DC,
CR = centrality.measures$CR,
NC = centrality.measures$NC,
LH_index = centrality.measures$LH_index,
BC = centrality.measures$BC,
CI = centrality.measures$CI)

22 1h_index

1lh_index local H-index (LH-index)

Description

This function calculates the local H-index of input vertices and works with both directed and undi-
rected networks.

Usage

lh_index(graph, vertices = V(graph), mode = "all")

Arguments
graph A graph (network) of the igraph class.
vertices A vector of desired vertices, which could be obtained by the V function.
mode The mode of local H-index depending on the directedness of the graph. If the
graph is undirected, the mode "all" should be specified. Otherwise, for the cal-
culation of local H-index based on incoming connections select "in" and for the
outgoing connections select "out". Also, if all of the connections are desired,
specify the "all" mode. Default mode is set to "all".
Value

A vector including the local H-index of each vertex inputted.

See Also

Other centrality functions: betweenness(), clusterRank(), collective.influence(), degree(),
h_index (), neighborhood.connectivity()

Examples

Not run:

MyData <- coexpression.data

My_graph <- graph_from_data_frame(MyData)

GraphVertices <- V(My_graph)

lh.index <- lh_index(graph = My_graph, vertices = GraphVertices, mode = "all")

End(Not run)

neighborhood.connectivity 23

neighborhood. connectivity
Neighborhood connectivity

Description
This function calculates the neighborhood connectivity of input vertices and works with both di-
rected and undirected networks.

Usage

neighborhood.connectivity(graph, vertices = V(graph), mode = "all")

Arguments
graph A graph (network) of the igraph class.
vertices A vector of desired vertices, which could be obtained by the V function.
mode The mode of neighborhood connectivity depending on the directedness of the
graph. If the graph is undirected, the mode "all" should be specified. Otherwise,
for the calculation of neighborhood connectivity based on incoming connections
select "in" and for the outgoing connections select "out". Also, if all of the
connections are desired, specify the "all" mode. Default mode is set to "all".
Value

A vector including the neighborhood connectivity score of each vertex inputted.

See Also

Other centrality functions: betweenness(), clusterRank(), collective.influence(), degree(),
h_index (), 1h_index()

Examples

MyData <- coexpression.data

My_graph <- graph_from_data_frame(MyData)

GraphVertices <- V(My_graph)

neighrhood.co <- neighborhood.connectivity(graph = My_graph,
vertices = GraphVertices,
mode = "all")

24 sirir

sif2igraph SIF to igraph

Description

This function imports and converts a SIF file from your local hard drive, cloud space, or internet
into a graph with an igraph class, which can then be used for the identification of most influential
nodes via the ivi function.

Usage

sif2igraph(Path, directed = FALSE)

Arguments
Path A string or character vector indicating the path to the desired SIF file. The SIF
file could be on your local hard drive, cloud space, or on the internet.
directed Logical scalar, whether or not to create a directed graph.
Value
An igraph graph object.
See Also

graph_from_data_frame

Examples

Not run:
MyGraph <- sif2igraph(Path = "/Users/User1/Desktop/mygraph.sif”, directed=FALSE)

End(Not run)

sirir SIR-based Influence Ranking

Description

This function is achieved by the integration susceptible-infected-recovered (SIR) model with the
leave-one-out cross validation technique and ranks network nodes based on their true universal
influence. One of the applications of this function is the assessment of performance of a novel
algorithm in identification of network influential nodes.

sirir

Usage

sirir(
graph,
vertices =
beta = 0.5,
gamma = 1,

25

V(graph),

no.sim = igraph::vcount(graph) * 100,

seed = 1234

Arguments

graph
vertices

beta

gamma

no.sim

seed

Value

A graph (network) of the igraph class.
A vector of desired vertices, which could be obtained by the V function.

Non-negative scalar. The rate of infection of an individual that is susceptible
and has a single infected neighbor. The infection rate of a susceptible individual
with n infected neighbors is n times beta. Formally this is the rate parameter of
an exponential distribution.

Positive scalar. The rate of recovery of an infected individual. Formally, this is
the rate parameter of an exponential distribution.

Integer scalar, the number of simulation runs to perform SIR model on for the
original network as well perturbed networks generated by leave-one-out tech-
nique. You may choose a different no.sim based on the available memory on
your system.

A single value, interpreted as an integer to be used for random number genera-
tion

A two-column dataframe; a column containing the difference values of the original and perturbed
networks and a column containing node influence rankings

See Also

sir for a complete description on SIR model.

Examples

set.seed(1234)

My_graph <- igraph::sample_gnp(n=50, p=0.05)
GraphVertices <- V(My_graph)
Influence.Ranks <- sirir(graph = My_graph, vertices = GraphVertices,

beta = 0.5, gamma = 1, no.sim = 10, seed = 1234)

26

spreading.score

spreading.score

Spreading score

Description

This function calculates the Spreading score of the desired nodes from a graph. Spreading score
reflects the spreading potential of each node within a network and is one of the major components

of the IVL

Usage

spreading.score(

graph,

vertices = V(graph),
weights = NULL,
directed = FALSE,

mode = "all”,
loops = TRUE,
d = 3,

scaled = TRUE

Arguments

graph
vertices

weights

directed

mode

loops

scaled

A graph (network) of the igraph class.
A vector of desired vertices, which could be obtained by the V function.

Optional positive weight vector for calculating weighted betweenness centrality
of nodes as a requirement for calculation of IVI. If the graph has a weight edge
attribute, then this is used by default. Weights are used to calculate weighted
shortest paths, so they are interpreted as distances.

Logical scalar, whether to directed graph is analyzed. This argument is ignored
for undirected graphs.

The mode of Spreading score depending on the directedness of the graph. If
the graph is undirected, the mode "all" should be specified. Otherwise, for the
calculation of Spreading score based on incoming connections select "in" and
for the outgoing connections select "out". Also, if all of the connections are
desired, specify the "all" mode. Default mode is set to "all".

Logical; whether the loop edges are also counted.

The distance, expressed in number of steps from a given node (default=3). Dis-

tance must be > 0. According to Morone & Makse (https://doi.org/10.1038/nature14604),
optimal results can be reached at d=3,4, but this depends on the size/"radius" of

the network. NOTE: the distance d is not inclusive. This means that nodes at a
distance of 3 from our node-of-interest do not include nodes at distances 1 and

2. Only 3.

Logical; whether the end result should be 1-100 range normalized or not (default
is TRUE).

\%

Value

A numeric vector with Spreading scores.

See Also

hubness.score

Other integrative ranking functions: exir(), hubness.score(), ivi.from.indices(), ivi()

Examples

Not run:

MyData <- coexpression.data

My_graph <- graph_from_data_frame(MyData)

GraphVertices <- V(My_graph)

Spreading.score <- spreading.score(graph = My_graph, vertices = GraphVertices,
weights = NULL, directed = FALSE, mode = "all”,
loops = TRUE, d = 3, scaled = TRUE)

End(Not run)

27

\% Vertices of an igraph graph

Description

This function and all of its descriptions have been obtained from the igraph package.

Usage

V(graph)

Arguments

graph The graph (an igraph graph)

Value

A vertex sequence containing all vertices, in the order of their numeric vertex ids.

See Also

V for a complete description on this function

Examples

MyData <- coexpression.data
My_graph <- graph_from_data_frame(MyData)
My_graph_vertices <- V(My_graph)

Index

*Topic IVI
ivi, 19
+Topic SIF.to.igraph
sif2igraph, 24
+Topic association_assessment
cond.prob.analysis, 7
double.cent.assess, 10
double.cent.assess.noRegression,
11
+Topic betweenness_centrality
betweenness, 2
xTopic clusterRank
clusterRank, 4
xTopic collective.influence
collective.influence, 6
+Topic conditional_probability
cond.prob.analysis, 7
*Topic datasets
centrality.measures, 4
coexpression.adjacency, 5
coexpression.data, 6
+Topic degree_centrality
degree, 8
+Topic dependence_assessment
double.cent.assess, 10
double.cent.assess.noRegression,
11
xTopic diff_data.assembly
diff_data.assembly, 9
*Topic exir
exir, 13
xTopic
graph_from_adjacencymatrices
graph_from_adjacency_matrix, 15
+Topic graph_from_dataframe
graph_from_data_frame, 16
+Topic graph_vertices
v, 27
*Topic h_index

28

h_index, 18

xTopic hubness.score
hubness.score, 17

«Topic integrated_value_of_influence
ivi, 19

*Topic ivi.from.indices
ivi.from.indices, 21

*Topic lh_index
lh_index, 22

xTopic neighborhood_connectivity
neighborhood.connectivity, 23

*Topic sirir
sirir, 24

*Topic spreading.score
spreading.score, 26

ad.test, /1,13

adjmatrix2graph
(graph_from_adjacency_matrix),
15

BC (betweenness), 2
betweenness, 2, 3,5,7,9, 19, 22, 23

centrality.measures, 4

CI (collective.influence), 6
clusterRank, 3,4, 7,9, 19,22, 23
coexpression.adjacency, 5
coexpression.data, 6
collective.influence, 3,5,6, 9, 19, 22, 23
cond.prob.analysis, 7,11, 13

CPA (cond.prob.analysis), 7

CR (clusterRank), 4

dataframe2graph
(graph_from_data_frame), 16

DC (degree), 8

DCA (double.cent.assess), 10

DCANR
(double.cent.assess.noRegression),
11

INDEX

DDA (diff_data.assembly), 9

degree, 3,5,7,8,9, 19,22, 23

diff_data.assembly, 9, 15

double.cent.assess, 8, 10, /3

double.cent.assess.noRegression, 8, 11
11

ExIR (exir), 13
exir, 9,13,18, 20, 21,27

gam, 11
graph_from_adjacency_matrix, 15, 16, 17
graph_from_data_frame, 16, 16, 24

h.index (h_index), 18

h_index, 3,5,7,9, 18, 22, 23
hoeffd, 11, 13
hubness.score, 15, 17, 20, 21, 27

importance_pvalues, 15

IVI (ivi), 19

ivi, 15,18,19, 21,27

IVI.FI (ivi.from.indices), 21
ivi.from.indices, /15, 18, 20, 21, 27

1h.index (1h_index), 22
lh_index, 3,5,7,9, 19, 22,23
Im, 11

NC (neighborhood. connectivity), 23

neighborhood.connectivity, 3,5, 7,9, 19
22,23

NNS.dep, 11, 13

pcor, 15
prcomp, 15

ranger, 15

sif2igraph, 24

sir, 25

SIRIR (sirir), 24

sirir, 24
spreading.score, 15, 18, 20, 21, 26

v, 27,27
vertices (V), 27

29

	betweenness
	centrality.measures
	clusterRank
	coexpression.adjacency
	coexpression.data
	collective.influence
	cond.prob.analysis
	degree
	diff_data.assembly
	double.cent.assess
	double.cent.assess.noRegression
	exir
	graph_from_adjacency_matrix
	graph_from_data_frame
	hubness.score
	h_index
	ivi
	ivi.from.indices
	lh_index
	neighborhood.connectivity
	sif2igraph
	sirir
	spreading.score
	V
	Index

