Package 'imsig'

July 10, 2018

Type Package
Title Immune Cell Gene Signatures for Profiling the Microenvironment of Solid Tumours
Version 1.0.0
Author Ajit Johnson Nirmal
Maintainer Ajit Johnson Nirmal
Description Estimate the relative abundance of tissue- infiltrating immune subpopulations abundances using gene expression data.
License GPL-3
<pre>URL https://github.com/ajitjohnson/imsig/</pre>
BugReports https://github.com/ajitjohnson/imsig/issues
Encoding UTF-8
LazyData true
Imports HiClimR (>= 1.2), RColorBrewer (>= 1.1), igraph (>= 1.2), ggplot2 (>= 2.2), gridExtra (>= 2.3), survival (>= 2.4)
RoxygenNote 6.0.1
Suggests testthat
NeedsCompilation no
Repository CRAN
Date/Publication 2018-07-10 20:50:03 UTC

R topics documented:

orr_matrix	2
xample_cli	3
xample_data	3
eature_select	4
ene_stat	4
nsig	5
nsig_survival	6

12

plot_abundance	7
plot_network	8
plot_survival	9
pp_exp	10
pp_sig	10
sig	11

Index

corr_matrix Correlation matrix

Description

Creates a correlation matrix of ImSig signature genes.

Usage

corr_matrix(exp, r)

Arguments

exp	Dataframe of transcriptomic data (natural scale) containing genes as rows and samples as columns. Note: Gene names should be set as row names and duplicates are not allowed. Missing values are not allowed within the expression matrix. Check example-head(example_data): example_data.
r	Use a value between 0 and 1. Default is 0.6. This is a user defined correlation cut-off to perform feature selection (feature_select). Feature selection aids to enrich the prediction of relative abundance of immune cells by filtering off poorly correlated ImSig genes. To get an idea of what cut-off to use check the results of (gene_stat) and choose a cut-off that displays high median correlation and maintains a high proportion of genes after feature selection.

Value

Gene-gene correlation matrix of ImSig genes.

example_cli

Description

An example clinical data file. Minimum required informations are the sample name (same as that of the expression matrix), event (dead or alive) and time to event (days, months or years).

Usage

example_cli

Format

dataframe

example_data

Example transcriptomics data

Description

Example expression data matrix. The data is preffered to be in natural scale with genes as rows and samples as columns.Note: Gene names should be set as row names and duplicates are not allowed. Missing values are not allowed within the expression matrix. Check example-head(example_data)

Usage

example_data

Format

dataframe

feature_select

Description

ImSig genes were designed to be co-expressed in tissue transcriptomic data. However, depending on the dataset some of the genes may not co-express with the dominant module. In order to remove such deviant genes, a feature selection can be carried out based on correlation. This function removes genes that exhibit a poor correlation (less than the defined r value) with the dominant ImSig module. This step of feature selection is recommended to enrich the prediction of relative abundance of immune cells.

Usage

feature_select(exp, r = 0.6)

Arguments

exp	Dataframe of transcriptomic data (natural scale) containing genes as rows and samples as columns. Note: Gene names should be set as row names and duplicates are not allowed. Missing values are not allowed within the expression matrix. Check example-head(example_data): example_data.
r	Use a value between 0 and 1. Default is 0.6. This is a user defined correla- tion cut-off to perform feature selection. To get an idea of what cut-off to use check the results of (gene_stat) and choose a cut-off that displays high median correlation and maintains a high proportion of genes after feature selection.

Value

Returns a list of 'feature selected' genes based on the set r value.

Examples

```
feature_select (exp = example_data, r = 0.7)
```

gene_stat

General stastitics of ImSig analysis

Description

[Total genes in ImSig]: The total number of genes in ImSig list. [No. of ImSig genes in user dataset]: The number of ImSig genes found in user's dataset. Like all signatures, ImSig works best when this overlap is high, preferably over 75

imsig

Usage

gene_stat(exp, r = 0.6)

Arguments

exp	Dataframe of transcriptomic data (natural scale) containing genes as rows and samples as columns. Note: Gene names should be set as row names and duplicates are not allowed. Missing values are not allowed within the expression matrix. Check example-head(example_data): example_data.
r	Use a value between 0 and 1. Default is 0.6. This is a user defined correlation cut-off to perform feature selection (feature_select). Feature selection aids to enrich the prediction of relative abundance of immune cells by filtering off poorly correlated ImSig genes. To get an idea of what cut-off to use check the results of (gene_stat) and choose a cut-off that displays high median correlation and maintains a high proportion of genes after feature selection.

Value

Dataframe of general statistics of ImSig analysis.

See Also

feature_select

Examples

gene_stat (exp = example_data, r = 0.7)

imsig	Estimate the relative abundance of tissue-infiltrating immune subpop-
	ulations abundances using gene expression data

Description

Estimates the relative abundance of immune cells across patients/samples.

Usage

imsig(exp, r = 0.6)

Arguments

exp

Dataframe of transcriptomic data (natural scale) containing genes as rows and samples as columns. Note: Gene names should be set as row names and duplicates are not allowed. Missing values are not allowed within the expression matrix. Check example-head(example_data): example_data.

r Use a value between 0 and 1. Default is 0.6. This is a user defined correlation cut-off to perform feature selection (feature_select). Feature selection aids to enrich the prediction of relative abundance of immune cells by filtering off poorly correlated ImSig genes. To get an idea of what cut-off to use check the results of (gene_stat) and choose a cut-off that displays high median correlation and maintains a high proportion of genes after feature selection.

Value

Relative abundance of immune cells across samples. Returns a dataframe.

See Also

feature_select, example_data

Examples

```
cell_abundance = imsig (exp = example_data, r = 0.7)
head(cell_abundance)
```

imsig_survival	Survival analysis based on relative abundance of immune infiltration
	estimated by ImSig

Description

Patients are split into two groups based on their immune cell abundance (median aundance value) and a regular survival analysi is carried out.

Usage

```
imsig_survival(exp, cli, time = "time", status = "status", r = 0.6)
```

Arguments

exp	Dataframe of transcriptomic data (natural scale) containing genes as rows and samples as columns. Note: Gene names should be set as row names and duplicates are not allowed. Missing values are not allowed within the expression matrix. Check example-head(example_data): example_data.
cli	Clinical metadata containting the event data (dead or alive) and time to event data. Samples names should be in rownames and same as that in the expression file. Check head() of example_cli for an example clinical data.
time	Column name of time-to-event parameter.
status	Column name of event (dead or alive) parameter.

plot_abundance

r

Use a value between 0 and 1. Default is 0.6. This is a user defined correlation cut-off to perform feature selection (feature_select). Feature selection aids to enrich the prediction of relative abundance of immune cells by filtering off poorly correlated ImSig genes. To get an idea of what cut-off to use check the results of (gene_stat) and choose a cut-off that displays high median correlation and maintains a high proportion of genes after feature selection.

Value

Hazard Ratio

See Also

feature_select, example_data, example_cli

Examples

survival = imsig_survival (exp = example_data)
head(survival)

plot_abundance Plot relative abundance of immune cells

Description

Barplots of relative abundance of immune cells across samples. The order of the samples are the same as that of imsig.

Usage

plot_abundance(exp, r = 0.6)

Arguments

exp	Dataframe of transcriptomic data (natural scale) containing genes as rows and samples as columns. Note: Gene names should be set as row names and duplicates are not allowed. Missing values are not allowed within the expression matrix. Check example-head(example_data): example_data.
r	Use a value between 0 and 1. Default is 0.6. This is a user defined correlation cut-off to perform feature selection (feature_select). Feature selection aids to enrich the prediction of relative abundance of immune cells by filtering off

to enrich the prediction of relative abundance of immune cells by filtering off poorly correlated ImSig genes. To get an idea of what cut-off to use check the results of (gene_stat) and choose a cut-off that displays high median correlation and maintains a high proportion of genes after feature selection.

Value

ggplot

See Also

feature_select, example_data

Examples

```
plot_abundance (exp = example_data, r = 0.7)
```

plot_network

Network graph of ImSig genes

Description

A Network visualization displays undirected graph structures and highlights the relationships between entities. The nodes are ImSig genes and the edges represent the correlation between them. The nodes are coloured based on cell type. Try using a correlation cut-off of '0' to get a complete picture.

Usage

```
plot_network(exp, r = 0.6, pt.cex = 2, cex = 1, inset = 0,
    x.intersp = 2, vertex.size = 3, vertex.label = NA,
    layout = layout_with_fr)
```

Arguments

exp	Dataframe of transcriptomic data (natural scale) containing genes as rows and samples as columns. Note: Gene names should be set as row names and duplicates are not allowed. Missing values are not allowed within the expression matrix. Check example-head(example_data): example_data.
r	Use a value between 0 and 1. Default is 0.6. This is a user defined correlation cut-off to perform feature selection (feature_select). Feature selection aids to enrich the prediction of relative abundance of immune cells by filtering off poorly correlated ImSig genes. To get an idea of what cut-off to use check the results of (gene_stat) and choose a cut-off that displays high median correlation and maintains a high proportion of genes after feature selection.
pt.cex	expansion factor(s) for the points.
cex	character expansion factor relative to current par("cex"). Used for text, and provides the default for pt.cex.
inset	inset distance(s) from the margins as a fraction of the plot region when legend is placed by keyword.
x.intersp	character interspacing factor for horizontal (x) spacing.

plot_survival

vertex.size	Node size of network graph
vertex.label	Add gene names to the network graph. Default set to NA.
layout	Layout algorithm to be used for building network. Default set to force-directed layout algorithm by Fruchterman and Reingold. Read documentation of 'igraph' for other available algorithms.

Value

Network graph

See Also

feature_select

Examples

plot_network (exp = example_data, r = 0.7)

plot_survival

Forest plot of survial analysis by ImSig

Description

Patients are split into two groups based on their immune cell abundance (median aundance value) and a regular survival analysi is carried out. Raw values can be obtained from imsig_survival.

Usage

```
plot_survival(exp, cli, time = "time", status = "status", r = 0.6)
```

Arguments

exp	Dataframe of transcriptomic data (natural scale) containing genes as rows and samples as columns. Note: Gene names should be set as row names and duplicates are not allowed. Missing values are not allowed within the expression matrix. Check example- head(example_data): example_data.
cli	Clinical metadata containting the event data (dead or alive) and time to event data. Samples names should be in rownames and same as that in the expression file. Check head() of example_cli for an example clinical data.
time	Column name of time-to-event parameter.
status	Column name of event (dead or alive) parameter.
r	Use a value between 0 and 1. Default is 0.6. This is a user defined correlation cut-off to perform feature selection (feature_select). Feature selection aids to enrich the prediction of relative abundance of immune cells by filtering off poorly correlated ImSig genes. To get an idea of what cut-off to use check the results of (gene_stat) and choose a cut-off that displays high median correlation and maintains a high proportion of genes after feature selection.

Value

Forest plot

See Also

feature_select, example_data, example_cli

Examples

```
plot_survival (exp = example_data, r = 0.7, cli = example_cli, time = 'time', status= 'status')
```

pp_exp

Pre-processing expression matrix

Description

Subsets the user's dataset based on the genes that are common to the users dataset and ImSig.

Usage

pp_exp(exp)

Arguments

exp Dataframe of transcriptomic data (natural scale) containing genes as rows and samples as columns. Note: Gene names should be set as row names and duplicates are not allowed. Missing values are not allowed within the expression matrix. Check example- head(example_data): example_data.

Value

Expression dataframe

pp_sig	Pre-processing ImSig file	
--------	---------------------------	--

Description

Subsets ImSig genes based on the genes that are common to the users dataset and ImSig

Usage

pp_sig(exp)

Arguments

exp	Dataframe of transcriptomic data (natural scale) containing genes as rows and
	samples as columns. Note: Gene names should be set as row names and du-
	plicates are not allowed. Missing values are not allowed within the expression
	matrix. Check example- head(example_data): example_data.

Value

ImSig dataframe

sig ImSig genes

Description

ImSig signature genes and the cell type they represent

Usage

sig

Format

dataframe

Index

*Topic datasets example_cli, 3 $example_data, 3$ sig, 11 corr_matrix, 2 example_cli, 3, 6, 7, 9, 10 example_data, 2, 3, 4–11 feature_select, 2, 4, 5-10 gene_stat, 2, 4, 4, 5–9 imsig, 5, 7 imsig_survival, 6, 9 plot_abundance, 7 plot_network, 8 $\texttt{plot_survival}, 9$ pp_exp, 10 $\texttt{pp_sig}, 10$

sig, 11