Package 'imputeFin'

July 11, 2020

Title Imputation of Financial Time Series with Missing Values and/or Outliers

Version 0.1.1 Date 2020-07-11

Description Missing values often occur in financial data due to a variety of reasons (errors in the collection process or in the processing stage, lack of asset liquidity, lack of reporting of funds, etc.). However, most data analysis methods expect complete data and cannot be employed with missing values. One convenient way to deal with this issue without having to redesign the data analysis method is to impute the missing values. This package provides an efficient way to impute the missing values based on modeling the time series with a random walk or an autoregressive (AR) model, convenient to model log-prices and log-volumes in financial data. In the current version, the imputation is univariate-based (so no asset correlation is used). In addition, outliers can be detected and removed.

The package is based on the paper:

J. Liu, S. Kumar, and D. P. Palomar (2019). Parameter Estimation of Heavy-Tailed AR Model With Missing Data Via Stochastic EM. IEEE Trans. on Signal Processing, vol. 67, no. 8, pp. 2159-2172. <doi:10.1109/TSP.2019.2899816>.

Maintainer Daniel P. Palomar <daniel.p.palomar@gmail.com>

```
URL https://CRAN.R-project.org/package=imputeFin,
    https://github.com/dppalomar/imputeFin,
    https://www.danielppalomar.com,
    https://doi.org/10.1109/TSP.2019.2899816
```

BugReports https://github.com/dppalomar/imputeFin/issues

License GPL-3 Encoding UTF-8 LazyData true RoxygenNote 7.1.1

Depends

2 imputeFin-package

Imports MASS, zoo

Suggests knitr, ggplot2, prettydoc, rmarkdown, R.rsp, testthat, xts

VignetteBuilder knitr, rmarkdown, R.rsp

NeedsCompilation no

Author Daniel P. Palomar [cre, aut], Junyan Liu [aut]

Repository CRAN

Date/Publication 2020-07-11 13:10:03 UTC

R topics documented:

imputeFin-package	2
fit_AR1_Gaussian	3
fit_AR1_t	6
impute_AR1_Gaussian	8
impute_AR1_t	10
plot_imputed	13
ts_AR1_Gaussian	14
ts_AR1_t	14
	16

imputeFin-package

imputeFin: Imputation of Financial Time Series with Missing Values.

Description

Index

Missing values often occur in financial data due to a variety of reasons (errors in the collection process or in the processing stage, lack of asset liquidity, lack of reporting of funds, etc.). However, most data analysis methods expect complete data and cannot be employed with missing values. One convenient way to deal with this issue without having to redesign the data analysis method is to impute the missing values. This package provides an efficient way to impute the missing values based on modeling the time series with a random walk or an autoregressive (AR) model, convenient to model log-prices and log-volumes in financial data. In the current version, the imputation is univariate-based (so no asset correlation is used). In addition, outliers can be detected and removed.

Functions

```
fit_AR1_Gaussian, impute_AR1_Gaussian, fit_AR1_t, impute_AR1_t, plot_imputed
```

Data

```
ts_AR1_Gaussian, ts_AR1_t
```

fit_AR1_Gaussian 3

Help

For a quick help see the README file: GitHub-README.

For more details see the vignette: CRAN-vignette.

Author(s)

Junyan LIU and Daniel P. Palomar

References

J. Liu, S. Kumar, and D. P. Palomar, "Parameter estimation of heavy-tailed AR model with missing data via stochastic EM," IEEE Trans. on Signal Processing, vol. 67, no. 8, pp. 2159-2172, 15 April, 2019. https://doi.org/10.1109/TSP.2019.2899816>

fit_AR1_Gaussian

Fit Gaussian AR(1) model to time series with missing values and/or outliers

Description

Estimate the parameters of a univariate Gaussian AR(1) model to fit the given time series with missing values and/or outliers. For multivariate time series, the function will perform a number of individual univariate fittings without attempting to model the correlations among the time series. If the time series does not contain missing values, the maximum likelihood (ML) estimation is done in one shot. With missing values, the iterative EM algorithm is employed for the estimation until converge is achieved.

Usage

```
fit_AR1_Gaussian(
   y,
   random_walk = FALSE,
   zero_mean = FALSE,
   remove_outliers = FALSE,
   outlier_prob_th = 0.001,
   verbose = TRUE,
   return_iterates = FALSE,
   return_condMeanCov = FALSE,
   tol = 1e-08,
   maxiter = 100
)
```

4 fit_AR1_Gaussian

Arguments

y Time series object coercible to either a numeric vector or numeric matrix (e.g.,

zoo or xts) with missing values denoted by NA.

random_walk Logical value indicating if the time series is assumed to be a random walk so

that phi1 = 1 (default is FALSE).

zero_mean Logical value indicating if the time series is assumed zero-mean so that phi0 =

0 (default is FALSE).

remove_outliers

Logical value indicating whether to detect and remove outliers.

outlier_prob_th

Threshold of probability of observation to declare an outlier (default is 1e-3).

verbose Logical value indicating whether to output messages (default is TRUE).

return_iterates

Logical value indicating if the iterates are to be returned (default is FALSE).

return_condMeanCov

Logical value indicating if the conditional mean and covariance matrix of the time series (excluding the leading and trailing missing values) given the ob-

served data are to be returned (default is FALSE).

tol Positive number denoting the relative tolerance used as stopping criterion (de-

fault is 1e-8).

maxiter Positive integer indicating the maximum number of iterations allowed (default

is 100).

Value

If the argument y is a univariate time series (i.e., coercible to a numeric vector), then this function will return a list with the following elements:

phi0 The estimate for phi0 (real number).

phi1 The estimate for phi1 (real number).

sigma2 The estimate for sigma^2 (positive number).

phi@_iterates Numeric vector with the estimates for phi@ at each iteration (returned only when

return_iterates = TRUE).

phi1_iterates Numeric vector with the estimates for phi1 at each iteration (returned only when

return_iterates = TRUE).

sigma2_iterates

Numeric vector with the estimates for sigma² at each iteration (returned only

when return_iterates = TRUE).

f_iterates Numeric vector with the objective values at each iteration (returned only when

return_iterates = TRUE).

cond_mean_y Numeric vector (of same length as argument y) with the conditional mean of

the time series (excluding the leading and trailing missing values) given the

observed data (returned only when return_condMeanCov = TRUE).

fit_AR1_Gaussian 5

cond_cov_y Numeric matrix (with number of columns/rows equal to the length of the ar-

gument y) with the conditional covariance matrix of the time series (excluding the leading and trailing missing values) given the observed data (returned only

when $return_condMeanCov = TRUE$).

index_outliers Indices of outliers detected/corrected.

If the argument y is a multivariate time series (i.e., with multiple columns and coercible to a numeric matrix), then this function will return a list with each element as in the case of univariate y corresponding to each of the columns (i.e., one list element per column of y), with the following additional elements that combine the estimated values in a convenient vector form:

phio_vct Numeric vector (with length equal to the number of columns of y) with the

estimates for phi0 for each of the univariate time series.

phi1_vct Numeric vector (with length equal to the number of columns of y) with the

estimates for phi1 for each of the univariate time series.

sigma2_vct Numeric vector (with length equal to the number of columns of y) with the

estimates for sigma2 for each of the univariate time series.

Author(s)

Junyan Liu and Daniel P. Palomar

References

R. J. Little and D. B. Rubin, Statistical Analysis with Missing Data, 2nd ed. Hoboken, N.J.: John Wiley & Sons, 2002.

J. Liu, S. Kumar, and D. P. Palomar, "Parameter estimation of heavy-tailed AR model with missing data via stochastic EM," IEEE Trans. on Signal Processing, vol. 67, no. 8, pp. 2159-2172, 15 April, 2019.

See Also

```
impute_AR1_Gaussian, fit_AR1_t
```

Examples

```
library(imputeFin)
data(ts_AR1_Gaussian)
y_missing <- ts_AR1_Gaussian$y_missing
fitted <- fit_AR1_Gaussian(y_missing)</pre>
```

fit_AR1_t

fit_AR1_t

Fit Student's t AR(1) model to time series with missing values and/or outliers

Description

Estimate the parameters of a univariate Student's t AR(1) model to fit the given time series with missing values and/or outliers. For multivariate time series, the function will perform a number of indidivual univariate fittings without attempting to model the correlations among the time series. If the time series does not contain missing values, the maximum likelihood (ML) estimation is done via the iterative EM algorithm until converge is achieved. With missing values, the stochastic EM algorithm is employed for the estimation (currently the maximum number of iterations will be executed without attempting to check early converge).

Usage

```
fit_AR1_t(
   y,
   random_walk = FALSE,
   zero_mean = FALSE,
   fast_and_heuristic = TRUE,
   remove_outliers = FALSE,
   outlier_prob_th = 0.001,
   verbose = TRUE,
   return_iterates = FALSE,
   return_condMean_Gaussian = FALSE,
   tol = 1e-08,
   maxiter = 100,
   n_chain = 10,
   n_thin = 1,
   K = 30
)
```

Arguments

y Time series object coercible to either a numeric vector or numeric matrix (e.g.,

zoo or xts) with missing values denoted by NA.

random_walk Logical value indicating if the time series is assumed to be a random walk so

that phi1 = 1 (default is FALSE).

zero_mean Logical value indicating if the time series is assumed zero-mean so that phi0 =

0 (default is FALSE).

fast_and_heuristic

Logical value indicating whether a heuristic but fast method is to be used to estimate the parameters of the Student's t AR(1) model (default is TRUE).

remove_outliers

Logical value indicating whether to detect and remove outliers.

fit_AR1_t

outlier_prob_th

Threshold of probability of observation to declare an outlier (default is 1e-3).

verbose Logical value indicating whether to output messages (default is TRUE).

return_iterates

Logical value indicating if the iterates are to be returned (default is FALSE).

return_condMean_Gaussian

Logical value indicating if the conditional mean and covariance matrix of the time series (excluding the leading and trailing missing values) given the ob-

served data are to be returned (default is FALSE).

tol Positive number denoting the relative tolerance used as stopping criterion (de-

fault is 1e-8).

maxiter Positive integer indicating the maximum number of iterations allowed (default

is 100).

n_chain Positive integer indicating the number of the parallel Markov chains in the

stochastic EM method (default is 10).

n_thin Positive integer indicating the sampling period of the Gibbs sampling in the

stochastic EM method (default is 1). Every n_thin-th samples is used. This is

aimed to reduce the dependence of the samples.

K Positive number controlling the values of the step sizes in the stochastic EM

method (default is 30).

Value

If the argument y is a univariate time series (i.e., coercible to a numeric vector), then this function will return a list with the following elements:

phi0 The estimate for phi0 (real number).

phi1 The estimate for phi1 (real number).

sigma2 The estimate for sigma^2 (positive number).

nu The estimate for nu (positive number).

phi@_iterates Numeric vector with the estimates for phi@ at each iteration (returned only when

return_iterates = TRUE).

phi1_iterates Numeric vector with the estimates for phi1 at each iteration (returned only when

return_iterates = TRUE).

sigma2_iterates

Numeric vector with the estimates for sigma^2 at each iteration (returned only

when return_iterates = TRUE).

return_iterates = TRUE).

f_iterates Numeric vector with the objective values at each iteration (returned only when

return_iterates = TRUE).

cond_mean_y_Gaussian

Numeric vector (of same length as argument y) with the conditional mean of the time series (excluding the missing values at the head and tail) given the observed data based on Gaussian AR(1) model (returned only when return_condMean_Gaussian

= TRUE).

index_miss Indices of missing values imputed. index_outliers Indices of outliers detected/corrected.

If the argument y is a multivariate time series (i.e., with multiple columns and coercible to a numeric matrix), then this function will return a list with each element as in the case of univariate y corresponding to each of the columns (i.e., one list element per column of y), with the following additional elements that combine the estimated values in a convenient vector form:

phi0_vct	Numeric vector (with length equal to the number of columns of y) with the estimates for phi0 for each of the univariate time series.
phi1_vct	Numeric vector (with length equal to the number of columns of y) with the estimates for phi1 for each of the univariate time series.
sigma2_vct	Numeric vector (with length equal to the number of columns of y) with the estimates for sigma2 for each of the univariate time series.
nu_vct	Numeric vector (with length equal to the number of columns of y) with the estimates for nu for each of the univariate time series.

Author(s)

Junyan Liu and Daniel P. Palomar

References

J. Liu, S. Kumar, and D. P. Palomar, "Parameter estimation of heavy-tailed AR model with missing data via stochastic EM," IEEE Trans. on Signal Processing, vol. 67, no. 8, pp. 2159-2172, 15 April, 2019.

See Also

```
impute_AR1_t, fit_AR1_Gaussian
```

Examples

```
library(imputeFin)
data(ts_AR1_t)
y_missing <- ts_AR1_t$y_missing
fitted <- fit_AR1_t(y_missing)</pre>
```

impute_AR1_Gaussian

Impute missing values of time series based on a Gaussian AR(1) model

Description

Impute inner missing values (excluding leading and trailing ones) of time series by drawing samples from the conditional distribution of the missing values given the observed data based on a Gaussian AR(1) model as estimated with the function fit_AR1_Gaussian. Outliers can be detected and removed.

Usage

```
impute_AR1_Gaussian(
  n_samples = 1,
  random_walk = FALSE,
  zero_mean = FALSE,
  remove_outliers = FALSE,
  outlier_prob_th = 0.001,
  verbose = TRUE,
  return_estimates = FALSE,
  tol = 1e-10,
 maxiter = 100
)
```

Arguments

У	Time series object coercible to either a numeric vector or numeric matrix (e.g.,
	zoo or vts) with missing values denoted by NA

.1.1

zoo or xts) with missing values denoted by NA.

n samples Positive integer indicating the number of imputations (default is 1).

Logical value indicating if the time series is assumed to be a random walk so random_walk

that phi1 = 1 (default is FALSE).

Logical value indicating if the time series is assumed zero-mean so that phi0 = zero_mean

0 (default is FALSE).

remove_outliers

Logical value indicating whether to detect and remove outliers.

outlier_prob_th

Threshold of probability of observation to declare an outlier (default is 1e-3).

verbose Logical value indicating whether to output messages (default is TRUE).

return_estimates

Logical value indicating if the estimates of the model parameters are to be re-

turned (default is FALSE).

tol Positive number denoting the relative tolerance used as stopping criterion (de-

fault is 1e-8).

Positive integer indicating the maximum number of iterations allowed (default maxiter

is 100).

Value

By default (i.e., for n_samples = 1 and return_estimates = FALSE), the function will return an imputed time series of the same class and dimensions as the argument y with one new attribute recording the locations of missing values (the function plot_imputed will make use of such information to indicate the imputed values), as well as locations of outliers removed.

If n_samples > 1, the function will return a list consisting of n_sample imputed time series with names: y_imputed.1, y_imputed.2, etc.

If return_estimates = TRUE, in addition to the imputed time series y_imputed, the function will return the estimated model parameters:

impute_AR1_t

phi0	The estimate for phi0 (numeric scalar or vector depending on the number of time series).
phi1	The estimate for phi1 (numeric scalar or vector depending on the number of time series).
sigma2	The estimate for sigma2 (numeric scalar or vector depending on the number of time series).

Author(s)

Junyan Liu and Daniel P. Palomar

References

R. J. Little and D. B. Rubin, Statistical Analysis with Missing Data, 2nd ed. Hoboken, N.J.: John Wiley & Sons, 2002.

J. Liu, S. Kumar, and D. P. Palomar, "Parameter estimation of heavy-tailed AR model with missing data via stochastic EM," IEEE Trans. on Signal Processing, vol. 67, no. 8, pp. 2159-2172, 15 April, 2019.

See Also

```
plot_imputed, fit_AR1_Gaussian, impute_AR1_t
```

Examples

```
library(imputeFin)
data(ts_AR1_Gaussian)
y_missing <- ts_AR1_Gaussian$y_missing
y_imputed <- impute_AR1_Gaussian(y_missing)
plot_imputed(y_imputed)</pre>
```

<pre>impute_AR1_t</pre>	Impute missing values of time series based on a Student's t AR(1)
	model

Description

Impute inner missing values (excluding leading and trailing ones) of time series by drawing samples from the conditional distribution of the missing values given the observed data based on a Student's t AR(1) model as estimated with the function fit_AR1_t. Outliers can be detected and removed.

impute_AR1_t

Usage

```
impute_AR1_t(
  у,
  n_samples = 1,
  random_walk = FALSE,
  zero_mean = FALSE,
  fast_and_heuristic = TRUE,
  remove_outliers = FALSE,
  outlier_prob_th = 0.001,
  verbose = TRUE,
  return_estimates = FALSE,
  tol = 1e-08,
 maxiter = 100,
 K = 30,
 n_burn = 100,
 n_{thin} = 50
)
```

Arguments

y Time series object coercible to either a numeric vector or numeric matrix (e.g.,

zoo or xts) with missing values denoted by NA.

n_samples Positive integer indicating the number of imputations (default is 1).

that phi1 = 1 (default is FALSE).

zero_mean Logical value indicating if the time series is assumed zero-mean so that phi0 =

0 (default is FALSE).

fast_and_heuristic

Logical value indicating whether a heuristic but fast method is to be used to estimate the parameters of the Student's t AR(1) model (default is TRUE).

remove_outliers

Logical value indicating whether to detect and remove outliers.

outlier_prob_th

Threshold of probability of observation to declare an outlier (default is 1e-3).

verbose Logical value indicating whether to output messages (default is TRUE).

return_estimates

Logical value indicating if the estimates of the model parameters are to be re-

turned (default is FALSE).

tol Positive number denoting the relative tolerance used as stopping criterion (de-

fault is 1e-8).

maxiter Positive integer indicating the maximum number of iterations allowed (default

is 100).

K Positive number controlling the values of the step sizes in the stochastic EM

method (default is 30).

impute_AR1_t

n_burn	Positive integer controlling the length of the burn-in period of the Gibb sampling (default is 100). The first (n_burn * n_thin) samples generated will be ignored.
n_thin	Positive integer indicating the sampling period of the Gibbs sampling in the stochastic EM method (default is 1). Every n_thin-th samples is used. This is aimed to reduce the dependence of the samples.

Value

By default (i.e., for n_samples = 1 and return_estimates = FALSE), the function will return an imputed time series of the same class and dimensions as the argument y with one new attribute recording the locations of missing values (the function plot_imputed will make use of such information to indicate the imputed values), as well as locations of outliers removed.

If n_samples > 1, the function will return a list consisting of n_sample imputed time series with names: y_imputed.1, y_imputed.2, etc.

If return_estimates = TRUE, in addition to the imputed time series y_imputed, the function will return the estimated model parameters:

phi0	The estimate for phi0 (numeric scalar or vector depending on the number of time series).
phi1	The estimate for phi1 (numeric scalar or vector depending on the number of time series).
sigma2	The estimate for sigma2 (numeric scalar or vector depending on the number of time series).
nu	The estimate for nu (numeric scalar or vector depending on the number of time series).

Author(s)

Junyan Liu and Daniel P. Palomar

References

J. Liu, S. Kumar, and D. P. Palomar, "Parameter estimation of heavy-tailed AR model with missing data via stochastic EM," IEEE Trans. on Signal Processing, vol. 67, no. 8, pp. 2159-2172, 15 April, 2019.

See Also

```
plot_imputed, fit_AR1_t, impute_AR1_Gaussian
```

Examples

```
library(imputeFin)
data(ts_AR1_t)
y_missing <- ts_AR1_t$y_missing
y_imputed <- impute_AR1_t(y_missing)
plot_imputed(y_imputed)</pre>
```

plot_imputed 13

Description

Plot single imputed time series (as returned by functions impute_AR1_Gaussian and impute_AR1_t), highlighting the imputed values in a different color.

Usage

```
plot_imputed(
   y_imputed,
   column = 1,
   title = "Imputed time series",
   color_imputed = "red",
   type = c("ggplot2", "simple")
)
```

Arguments

y_imputed Imputed time series (can be any object coercible to a numeric vector or a numeric matrix). If it has the attribute "index_miss" (as returned by any of the imputation functions impute_AR1_Gaussian and impute_AR1_t), then it will highlight the imputed values in a different color. column Positive integer indicating the column index to be plotted (only valid if the argument y_imputed is coercible to a matrix with more than one column). Default is 1. Title of the plot (default is "Imputed time series"). title Color for the imputed values (default is "red"). color_imputed Type of plot. Valid options: "ggplot2" and "simple". Default is "ggplot2" type (the package ggplot2 must be installed).

Author(s)

Daniel P. Palomar

Examples

```
library(imputeFin)
data(ts_AR1_t)
y_missing <- ts_AR1_t$y_missing
y_imputed <- impute_AR1_t(y_missing)
plot_imputed(y_missing, title = "Original time series with missing values")
plot_imputed(y_imputed)</pre>
```

ts_AR1_t

ts_AR1_Gaussian

Synthetic AR(1) Gaussian time series with missing values

Description

Synthetic AR(1) Gaussian time series with missing values for estimation and imputation testing purposes.

Usage

```
data(ts_AR1_Gaussian)
```

Format

List with the following elements:

y_missing 300 x 3 zoo object with three AR(1) Gaussian time series along the columns: the first column contains a time series with 10% consecutive missing values; the second column contains a time series with 10% missing values randomly distributed; and the third column contains the union of the previous missing values.

phi0 Value of phi0 used to generate the time series.

phi1 Value of phi1 used to generate the time series.

sigma2 Value of sigma2 used to generate the time series.

ts_AR1_t

Synthetic AR(1) Student's t time series with missing values

Description

Synthetic AR(1) Student's t time series with missing values for estimation and imputation testing purposes.

Usage

```
data(ts_AR1_t)
```

Format

List with the following elements:

y_missing 300 x 3 zoo object with three AR(1) Student's t time series along the columns: the first column contains a time series with 10% consecutive missing values; the second column contains a time series with 10% missing values randomly distributed; and the third column contains the union of the previous missing values.

phi0 Value of phi0 used to generate the time series.

 ts_AR1_t

phi1 Value of phi1 used to generate the time series.sigma2 Value of sigma2 used to generate the time series.nu Value of nu used to generate the time series.

Index

```
* dataset

ts_AR1_Gaussian, 14

ts_AR1_t, 14

fit_AR1_Gaussian, 2, 3, 8, 10

fit_AR1_t, 2, 5, 6, 10, 12

impute_AR1_Gaussian, 2, 5, 8, 12, 13

impute_AR1_t, 2, 8, 10, 10, 13

imputeFin-package, 2

plot_imputed, 2, 9, 10, 12, 13

ts_AR1_Gaussian, 2, 14

ts_AR1_t, 2, 14
```