Package 'idm’

August 30, 2018

Type Package
Title Incremental Decomposition Methods
Version 1.8.2
Date 2018-08-30
Author Alfonso Iodice D' Enza [aut], Angelos Markos [aut, cre], Davide Buttarazzi [ctb]
Maintainer Angelos Markos amarkos@gmail.com
Depends R (>=2.10), ggplot2, animation, dummies
Imports corpcor, ca, ggrepel
Suggests caret
SystemRequirements ImageMagick (http://imagemagick.org) or GraphicsMagick (http://www.graphicsmagick.org)
Description Incremental Multiple Correspondence Analysis and Principal Component Analysis.
License GPL (>=2)
NeedsCompilation no
Repository CRAN
Date/Publication 2018-08-30 08:10:15 UTC

R topics documented:

idm-package 2
add_es 2
do_es 5
enron 6
i_mca 6
i_pca 9
plot.i_mca 11
plot.i_pca 13
tweet 14
update.i_mca 15
update.i_pca 17
women 18

Description

Incremental Multiple Correspondence Analysis and Principal Component Analysis

Details

Package: idm
Type: Package
Version: 1.8.2
Date: 2018-08-30
License: GPL (>=2)

Author(s)

Alfonso Iodice D' Enza [aut], Angelos Markos [aut, cre], Davide Buttarazzi [ctb]

References

Hall, P., Marshall, D., \& Martin, R. (2002). Adding and subtracting eigenspaces with eigenvalue decomposition and singular value decomposition. Image and Vision Computing, 20(13), 1009-1016.

Iodice D’ Enza, A., \& Markos, A. (2015). Low-dimensional tracking of association structures in categorical data, Statistics and Computing, 25(5), 1009-1022.

Iodice D’Enza, A., Markos, A., \& Buttarazzi, D. (2018). The idm Package: Incremental Decomposition Methods in R. Journal of Statistical Software, Code Snippets, 86(4), 1-24. DOI: 10.18637/jss.v086.c04.

Ross, D. A., Lim, J., Lin, R. S., \& Yang, M. H. (2008). Incremental learning for robust visual tracking. International Journal of Computer Vision, 77(1-3), 125-141.

```
add_es
```

Adds two eigenspaces using block-wise incremental SVD (with or without mean update)

Description

This function implements two procedures for updating existing decomposition. When method="esm" it adds two eigenspaces using the incremental method of Hall, Marshall \& Martin (2002). The results correspond to the eigenspace of the mean-centered and concatenated data. When method = "isvd" it adds the eigenspace of an incoming data block to an existing eigenspace using the block-wise incremental singular value decomposition (SVD) method described by Zha \& Simon (1999), Levy and Lindenbaum (2000), Brand (2002) and Baker (2012). New data blocks are added row-wise. The procedure can optionally keep track of the data mean using the orgn argument, as described in Ross et al. (2008) and Iodice D'Enza \& Markos (2015).

Usage

add_es(eg, eg2, current_rank, ff = 0, method = c("esm", "isvd"))

Arguments

eg A list describing the eigenspace of a data matrix, with components u Left eigenvectors
\checkmark Right eigenvectors
m Number of cases
d Eigenvalues
orgn Data mean
method refers to the procedure being implemented: "esm" refers to the eigenspace merge (Hall et al., 2002); "isvd" refers to the incremental SVD method, with or without keeping track of the data mean.
eg2 (*)A list describing the eigenspace of a data matrix, with components
u Left eigenvectors
\checkmark Right eigenvectors
m Number of cases
d Eigenvalues
orgn Data mean
current_rank Rank of approximation; if empty, the full rank is used
ff $\quad(* *)$ Number between 0 and 1 indicating the forgetting factor used to downweight the contribution of earlier data blocks to the current solution. When $\mathrm{ff}=0$ (default) no forgetting occurs (*) for method = "esm" only; (**) for method = "isvd" only.

Value

A list describing the SVD of a data matrix, with components
d Singular values
$\checkmark \quad$ Right singular vectors
m
Number of cases
orgn Data mean; returned only if orgn is given as input

References

Zha, H., \& Simon, H. D. (1999). On updating problems in latent semantic indexing. SIAM Journal on Scientific Computing, 21(2), 782-791.

Levy, A., \& Lindenbaum, M. (2000). Sequential Karhunen-Loeve basis extraction and its application to images. IEEE Transactions on Image Processing, 9(8), 1371-1374.

Brand, M. (2002). Incremental singular value decomposition of uncertain data with missing values. In Computer Vision-ECCV 2002 (pp. 707-720). Springer Berlin Heidelberg.

Ross, D. A., Lim, J., Lin, R. S., \& Yang, M. H. (2008). Incremental learning for robust visual tracking. International Journal of Computer Vision, 77(1-3), 125-141.

Baker, C. G., Gallivan, K. A., \& Van Dooren, P. (2012). Low-rank incremental methods for computing dominant singular subspaces. Linear Algebra and its Applications, 436(8), 2866-2888.

Iodice D' Enza, A., \& Markos, A. (2015). Low-dimensional tracking of association structures in categorical data, Statistics and Computing, 25(5), 1009-1022. Iodice D’Enza, A., Markos, A., \& Buttarazzi, D. (2018). The idm Package: Incremental Decomposition Methods in R. Journal of Statistical Software, Code Snippets, 86(4), 1-24. DOI: 10.18637/jss.v086.c04.

See Also

```
do_es, i_pca, i_mca, update.i_pca, update.i_mca
```


Examples

```
## Example 1 - eigenspace merge (Hall et al., 2002)
#Iris species
data("iris", package = "datasets")
X = iris[,-5]
#obtain two eigenspaces
eg = do_es(X[1:50, ])
eg2 = do_es(X[c(51:150), ])
#add the two eigenspaces keeping track of the data mean
eg12 = add_es(method = "esm", eg, eg2)
#equivalent to the SVD of the mean-centered data (svd(scale(X, center = TRUE,scale = FALSE)))
## Example 2 - block-wise incremental SVD with mean update, full rank (Ross et al., 2008)
data("iris", package = "datasets")
# obtain the eigenspace of the first 50 Iris species
X = iris[,-5]
eg = do_es(X[1:50, ])
#update the eigenspace of the remaining species to
eg_new = add_es(method = "isvd", eg, data.matrix(X[c(51:150), ]))
```

```
\#equivalent to the SVD of the mean-centered data (svd(scale(X, center = TRUE, scale \(=\) FALSE)))
\#\#Example 3 - incremental SVD with mean update, 2d approximation (Ross et al., 2008)
data("iris", package = "datasets")
\# obtain the eigenspace of the first 50 Iris species
X = iris[,-5]
eg = do_es(X[1:50, ])
\#update the eigenspace of the remaining species to
eg = add_es(method = "isvd", eg, data.matrix (X[c(51:150), ]),current_rank = 2)
\#similar to PCA on the covariance matrix of X (SVD of the mean-centered data)
```

do_es Computes the eigenspace of a data matrix

Description

This function computes the eigenspace of a mean-centered data matrix

Usage

```
do_es(data)
```


Arguments

data a matrix or data frame

Value

A list describing the eigenspace of a data matrix, with components

u	Left eigenvectors
v	Right eigenvectors
m	Number of cases
d	Eigenvalues
orgn	Data mean
smfq	\ldots

See Also

add_es, update.i_pca, i_pca

Examples

```
#Iris species
data("iris", package = "datasets")
eg = do_es(iris[,-5])
#corresponds to the SVD of the centered data matrix
```

```
enron enron data set
```


Description

The data set is a subset of the Enron e-mail corpus from the UCI Machine Learning Repository (Lichman, 2013). The original data is a collection of 39,861 email messages with roughly 6 million tokens and a 28,102 term vocabulary. The subset is a binary (presence/absence) data set containing the 80 most frequent words which appear in the original corpus.

Usage

data("enron")

Format

A binary data frame with 39,861 observations (e-mail messages) on 80 variables (words).

References

Lichman, M. (2013). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.

Examples

data(enron)

Description

This function computes the Multiple Correspondence Analysis (MCA) solution on the indicator matrix using two incremental methods described in Iodice D'Enza \& Markos (2015)

Usage

i_mca(data1, data2, method=c("exact","live"), current_rank, nchunk = 2, $\mathrm{ff}=0$, disk $=$ FALSE)

Arguments

data1	Matrix or data frame of starting data or full data if data2 = NULL data2 Method
String specifying the type of implementation: "exact" or "live". "exact" refers to the case when all the data is available from the start and dimension reduction is based on the method of Hall et al. (2002). "live" refers to the case when new data comes in as data flows and dimension reduction is based on the method of Ross et al. (2008). The main difference between the two approaches lies in the calculation of the column margins of the input matrix. For the "exact" approach, the analysis is based on the "global" margins, that is, the margins of the whole indicator matrix, which is available in advance. For the "live" approach, the whole matrix is unknown and the global margins are approximated by the "local" margins, that is, the average margins of the data analysed insofar. A detailed description of the two implementations is provided in Iodice D' Enza \& Markos (2015).	
current_rank	Rank of approximation or number of components to compute; if empty, the full rank is used
nchunk	Number of incoming data chunks (equal splits of 'data2', default $=2$) or a Vector with the row size of each incoming data chunk
ff	Number between 0 and 1 indicating the "forgetting factor" used to down-weight the contribution of earlier data blocks to the current solution. When ff $=0$ (default) no forgetting occurs; applicable only when method ="live"
disk \quadLogical indicating whether then output is saved to hard disk	

Value

rowpcoord	Row principal coordinates
colpcoord	Column principal coordinates
rowcoord	Row standard coordinates
colcoord	Column standard coordinates
sv	Singular values
inertia.e	Percentages of explained inertia
levelnames	Column labels
rowctr	Row contributions
colctr	Column contributions
rowcor	Row squared correlations
colcor	Column squared correlations
rowmass	Row masses
colmass	Column masses
nchunk	A copy of nchunk in the return object
disk	A copy of disk in the return object
ff	A copy of ff in the return object

allrowcoord	A list containing the row principal coordinates produced after each data chunk is analyzed; returned only when disk = FALSE
allcolcoord	A list containing the column principal coordinates on the principal components produced after each data chunk is analyzed; returned only when disk = FALSE
allrowctr	A list containing the row contributions after each data chunk is analyzed; re- turned only when disk = FALSE
allcolctr	A list containing the column contributions after each data chunk is analyzed; returned only when disk = FALSE
allrowcor	A list containing the row squared correlations produced after each data chunk is analyzed; returned only when disk = FALSE
allcolcor	A list containing the column squared correlations produced after each data chunk is analyzed; returned only when disk = FALSE

References

Hall, P., Marshall, D., \& Martin, R. (2002). Adding and subtracting eigenspaces with eigenvalue decomposition and singular value decomposition. Image and Vision Computing, 20(13), 1009-1016.

Iodice D' Enza, A., \& Markos, A. (2015). Low-dimensional tracking of association structures in categorical data, Statistics and Computing, 25(5), 1009-1022.

Iodice D’Enza, A., Markos, A., \& Buttarazzi, D. (2018). The idm Package: Incremental Decomposition Methods in R. Journal of Statistical Software, Code Snippets, 86(4), 1-24. DOI: 10.18637/jss.v086.c04.

Ross, D. A., Lim, J., Lin, R. S., \& Yang, M. H. (2008). Incremental learning for robust visual tracking. International Journal of Computer Vision, 77(1-3), 125-141.

See Also

update.i_mca, i_pca, update.i_pca, add_es

Examples

```
##Example 1 - Exact case
data("women", package = "idm")
nc = 5 # number of chunks
res_iMCAh = i_mca(data1 = women[1:300,1:7], data2 = women[301:2107,1:7]
,method = "exact", nchunk = nc)
#static MCA plot of attributes on axes 2 and 3
plot(x = res_iMCAh, dim = c(2,3), what = c(FALSE,TRUE), animation = FALSE)
#\donttest is used here because the code calls the saveLatex function of the animation package
#which requires ImageMagick or GraphicsMagick and
#Adobe Acrobat Reader to be installed in your system
#Creates animated plot in PDF for objects and variables
plot(res_iMCAh, animation = TRUE, frames = 10, movie_format = 'pdf')
```

```
##Example 2 - Live case
data("tweet", package = "idm")
nc = 5
#provide attributes with custom labels
labels = c("HLTN", "ICN", "MRT", "BWN", "SWD", "HYT", "CH", "-", "-/+", "+", "++", "Low", "Med","High")
#mimics the 'live' MCA implementation
res_iMCAl = i_mca(data1 = tweet[1:100,], data2 = tweet[101:1000,],
method="live", nchunk = nc, current_rank = 2)
#\donttest is used here because the code calls the saveLatex function of the animation package
#which requires ImageMagick or GraphicsMagick and
#Adobe Acrobat Reader to be installed in your system
#See help(im.convert) for details on the configuration of ImageMagick or GraphicsMagick.
#Creates animated plot in PDF for observations and variables
plot(res_iMCAl, labels = labels, animation = TRUE, frames = 10, movie_format = 'pdf')
```

i_pca Incremental Principal Component Analysis (PCA)

Description

This function computes the Principal Component Analysis (PCA) solution on the covariance matrix using the incremental method of Hall, Marshall \& Martin (2002).

Usage

i_pca(data1, data2, current_rank, nchunk = 2, disk = FALSE)

Arguments

data1	Matrix or data frame of starting data, or full data if data2 = NULL
data2	Matrix or data frame of incoming data; omitted when full data is given in data1
current_rank	Rank of approximation or number of components to compute; if empty, the full rank is used
nchunk	Number of incoming data chunks (equal splits of 'data2', default $=$ 2) or a Vector with the row size of each incoming data chunk
disk	Logical indicating whether then output is saved to hard disk

Value

rowpcoord Row scores on the principal components
colpcoord Variable loadings

eg	A list describing the eigenspace of a data matrix, with components u Left eigenvectors v Right eigenvectors m Number of cases d Eigenvalues orgn Data mean
sv	
inertia_e	Singular values
levelnames	Percentage of explained variance
rowctr	Row contributions
colctr	Column contributions
rowcor	Row squared correlations
colcor	Column squared correlations
nchunk	A copy of nchunk in the return object
disk	A copy of disk in the return object
allrowcoord	A list containing the row scores on the principal components produced after each data chunk is analyzed; returned only when disk = FALSE
allcolcoord	A list containing the variable loadings on the principal components produced after each data chunk is analyzed; returned only when disk = FALSE
allrowctr	A list containing the row contributions after each data chunk is analyzed; re- turned only when disk = FALSE
allcolctr	A list containing the column contributions after each data chunk is analyzed; returned only when disk = FALSE
allrowcor	A list containing the row squared correlations produced after each data chunk is analyzed; returned only when disk = FALSE
A list containing the column squared correlations produced after each data chunk	
is analyzed; returned only when disk = FALSE	

References

Hall, P., Marshall, D., \& Martin, R. (2002). Adding and subtracting eigenspaces with eigenvalue decomposition and singular value decomposition. Image and Vision Computing, 20(13), 1009-1016.

Iodice D’ Enza, A., \& Markos, A. (2015). Low-dimensional tracking of association structures in categorical data, Statistics and Computing, 25(5), 1009-1022.

Iodice D’Enza, A., Markos, A., \& Buttarazzi, D. (2018). The idm Package: Incremental Decomposition Methods in R. Journal of Statistical Software, Code Snippets, 86(4), 1-24. DOI: 10.18637/jss.v086.c04.

See Also

update.i_pca, i_mca, update.i_mca, add_es

Examples

```
data("segmentationData", package = "caret")
#center and standardize variables, keep 58 continuous attributes
HCS = data.frame(scale(segmentationData[,-c(1:3)]))
#abbreviate variable names for plotting
names(HCS) = abbreviate(names(HCS), minlength = 5)
#split the data into starting data and incoming data
data1 = HCS[1:150, ]
data2 = HCS[151:2019, ]
#Incremental PCA on the HCS data set: the incoming data is
#splitted into twenty chunks; the first 5 components/dimensions
#are computed in each update
res_iPCA = i_pca(data1, data2, current_rank = 5, nchunk = 20)
#Static plots
plot(res_iPCA, animation = FALSE)
#\donttest is used here because the code calls the saveLatex function of the animation package
#which requires ImageMagick or GraphicsMagick and
#Adobe Acrobat Reader to be installed in your system
#See help(im.convert) for details on the configuration of ImageMagick or GraphicsMagick.
#Creates animated plot in PDF for objects and variables
plot(res_iPCA, animation = TRUE, frames = 10, movie_format = 'pdf')
#Daily Closing Prices of Major European Stock Indices, 1991-1998
data("EuStockMarkets", package = "datasets")
res_iPCA = i_pca(data1 = EuStockMarkets[1:50,], data2 = EuStockMarkets[51:1860,], nchunk = 5)
#\donttest is used here because the code calls the saveLatex function of the animation package
#which requires ImageMagick or GraphicsMagick and
#Adobe Acrobat Reader to be installed in your system
#See help(im.convert) for details on the configuration of ImageMagick or GraphicsMagick.
#Creates animated plot in PDF movies for objects and variables
plot(res_iPCA, animation = TRUE, frames = 10, movie_format = 'pdf')
```


Description

Graphical display of Multiple Correspondence Analysis results in two dimensions

Usage

\#\# S3 method for class 'i_mca'
plot $(x, \operatorname{dims}=c(1,2)$, what $=c($ TRUE, TRUE $)$,
contrib = "none", dataname $=$ NULL, labels $=$ NULL, animation $=$ TRUE,
frames = 10, zoom = TRUE, movie_format = "gif", binary = FALSE, ...)

Arguments

x	
dims	Multiple correspondence analysis object returned by i_mca Numerical vector of length 2 indicating the dimensions to plot on horizontal and vertical axes respectively; default is first dimension horizontal and second dimension vertical
what	Vector of two logicals specifying the contents of the plot(s). First entry indi- cates if the rows (observations) are displayed in principal coordinates and the second entry if the variable categories are displayed in principal coordinates (default = c(TRUE, TRUE) and shows two separate plots and a joint plot if animation = FALSE and two separate plots if animation = TRUE)
vector of two character strings specifying if attribute contributions should be	
represented by different label size. Available options are	
"none" (contributions are not indicated in the plot)	
"cor" (relative contributions are indicated by label size)	

Details

The function plot.i_mca makes a two-dimensional map of the object created by i_mca with respect to two selected dimensions. In this map both the row and column points are scaled to have inertias (weighted variances) equal to the principal inertia (eigenvalue or squared singular value) along the principal axes, that is both rows and columns are in pricipal coordinates.

References

Greenacre, M.J. (1993) Correspondence Analysis in Practice. London: Academic Press.
Greenacre, M.J. (1993) Biplots in Correspondence Analysis, Journal of Applied Statistics, 20, 251269.

ImageMagick: http://www.imagemagick.org; GraphicsMagick: http://www.graphicsmagick. org

See Also

```
plot.i_pca
```


Examples

```
data("women", package = "idm")
res_iMCAl = i_mca(data1 = women[1:50, 1:4], data2 = women[51:300, 1:4],
method = "live", nchunk = 4)
#static plot, final solution
plot(res_iMCAl, contrib = "ctr", animation = FALSE)
#\donttest is used here because the code calls the saveLatex function of the animation package
#which requires ImageMagick or GraphicsMagick and
#Adobe Acrobat Reader to be installed in your system
#See help(im.convert) for details on the configuration of ImageMagick or GraphicsMagick.
#Creates animated plots in PDF for objects and variables
plot(res_iMCAl, contrib = "ctr", animation = TRUE, frames = 10, movie_format = 'pdf')
```

```
plot.i_pca
```

Plotting 2D maps in Principal Component Analysis

Description

Graphical display of Principal Component Analysis results in two dimensions

Usage

```
## S3 method for class 'i_pca'
```

plot $(x, \operatorname{dims}=c(1,2)$, what $=c($ TRUE, TRUE $)$,
dataname $=$ NULL, labels $=$ NULL, animation $=$ TRUE, frames $=10$,
zoom = TRUE, movie_format = "gif", ...)

Arguments

x	Principal component analysis object returned by i_pca dims Numerical vector of length 2 indicating the dimensions to plot on horizontal and vertical axes respectively; default is first dimension horizontal and second dimension vertical
what	Vector of two logicals specifying the contents of the plot(s). First entry indicates if the scatterplot of observations is displayed and the second entry if the correla- tion circle of the variable loadings is displayed (default $=c(T R U E, T R U E) ~ a n d ~$ shows both plots)
dataname	String prefix used for custom naming of output files; default is the name of the output object
labels	String vector of variable labels

animation	Logical indicating whether animated GIF or PDF files are created and saved to the hard drive or a static plot is created (default = TRUE)
frames	Number of animation frames shown per iteration (default = 10); applicable only when animation = TRUE
zoom	Logical indicating whether axes limits change during the animation creating a zooming effect; applicable only when animation = TRUE
movie_format	Specifies if the animated plot is saved in the working directory either in default = "gif" or "pdf" format
\ldots	Further arguments passed to plot and points

Details

The function plot.i_pca makes a two-dimensional map of the object created by i_pca with respect to two selected dimensions.

References

ImageMagick: http://www.imagemagick.org; GraphicsMagick: http://www.graphicsmagick. org

See Also

```
plot.i_mca
```


Examples

```
data("iris", package = "datasets")
#standardize variables
X = scale(iris[,-5])
res_iPCA = i_pca(data1 = X[1:50,-5], data2 = X[51:150,-5], nchunk = c(50,50))
#static plot, final solution
plot(res_iPCA, animation = FALSE)
##\donttest is used here because the code calls the saveLatex function of the animation package
#which requires ImageMagick or GraphicsMagick and
#Adobe Acrobat Reader to be installed in your system
#See help(im.convert) for details on the configuration of ImageMagick or GraphicsMagick.
#Creates animated plots in PDF for objects and variables
plot(res_iPCA, animation = TRUE, frames = 10, movie_format = 'pdf')
```

tweet twitter data set

Description

The data set refers to a small corpus of messages or tweets mentioning seven major hotel brands. It was gathered by continuously querying and archiving the Twitter Streaming API service, using the twitteR package in R. A total of 7,296 tweets were extracted within a time period of 6 days, from June 23th to June 28th 2013. Only tweets in the English language were considered. A sentiment polarity variable was calculated, indicating the sentiment value of each message and a third variable, user visibility or popularity, as measured by the number of followers each user had, was also included in the dataset

Usage

```
data("tweet")
```


Format

A data frame with the following variables:
Brand The hotel brand mentioned in the tweet: 1=Hilton, 2=Intercontinental, 3=Marriott,
4=Bestwestern, 5=Starwood, 6=Hyatt, 7=Choice
Sentiment Sentiment for each tweet: 1=negative (-), 2=mixed ($+/-$), 3=positive (+),
4=very positive (++)
UserVis User popularity/visibility in Twitter: 1=low, 2=medium, 3=high

References

Iodice D' Enza, A., \& Markos, A. (2015). Low-dimensional tracking of association structures in categorical data, Statistics and Computing, 25(5), 1009-1022.

Iodice D’Enza, A., Markos, A., \& Buttarazzi, D. (2018). The idm Package: Incremental Decomposition Methods in R. Journal of Statistical Software, Code Snippets, 86(4), 1-24. DOI: 10.18637/jss.v086.c04.

Examples

> data(tweet)

Description

This function updates the Multiple Correspondence Analysis (MCA) solution on the indicator matrix using the incremental method of Ross, Lim, Lin, \& Yang (2008)

Usage

\#\# S3 method for class 'i_mca'
update (object, incdata, current_rank, ff $=0, \ldots$)

Arguments

object object of class 'i_mca'
incdata Matrix of incoming data
current_rank Rank of approximation or number of components to compute; if empty, the full rank is used
ff Number between 0 and 1 indicating the "forgetting factor" used to down-weight the contribution of earlier data blocks to the current solution. When ff $=0$ (default) no forgetting occurs
... Further arguments passed to update

Value

rowpcoord	Row principal coordinates
colpcoord	Column principal coordinates
rowcoord	Row standard coordinates
colcoord	Column standard coordinates
sv	Singular values
inertia.e	Percentages of explained inertia
levelnames	Attribute names
rowctr	Row contributions
colctr	Column contributions
rowcor	Row squared correlations
colcor	Column squared correlations
rowmass	Row masses
colmass	Column masses
indmat	Indicator matrix
m	Number of cases processed up to this point
$f f$	A copy of ff in the return object

References

Iodice D’Enza, A., Markos, A., \& Buttarazzi, D. (2018). The idm Package: Incremental Decomposition Methods in R. Journal of Statistical Software, Code Snippets, 86(4), 1-24. DOI: 10.18637/jss.v086.c04.

Ross, D. A., Lim, J., Lin, R. S., \& Yang, M. H. (2008). Incremental learning for robust visual tracking. International Journal of Computer Vision, 77(1-3), 125-141.

See Also

add_es, i_mca, plot.i_mca

Examples

```
    data(women, package = "idm")
    dat = women[,c(1:4)]
    res_MCA = i_mca(dat[1:300,])
    aa = seq(from = 301, to = nrow(women), by = 200)
    aa[length(aa)] = nrow(dat)+1
    for (k in c(1:(length(aa)-1)))
    {
        res_MCA = update(res_MCA,dat[c((aa[k]):(aa[k+1]-1)),])
    }
    plot(res_MCA, what = c(FALSE, TRUE), animation = FALSE)
```

update.i_pca Updates a Principal Component Analysis solution

Description

This function updates the Principal Component Analysis (PCA) solution on the covariance matrix using the incremental method of Hall, Marshall \& Martin (2002)

Usage

\#\# S3 method for class 'i_pca'
update(object, incdata, current_rank, ...)

Arguments

object	object of class 'i_pca'
incdata	matrix of incoming data
current_rank	Rank of approximation or number of components to compute; if empty, the full rank is used
\ldots	Further arguments passed to update

Value

rowpcoord Row scores on the principal components
colpcoord Variable loadings
eg A list describing the eigenspace of a data matrix, with components
u Left eigenvectors
\checkmark Right eigenvectors
m Number of cases
d Eigenvalues
orgn Data mean
inertia.e Percentages of explained variance

sv	Singular values
levelnames	Variable names
rowcor	Row squared correlations
rowctr	Row contributions
colcor	Column squared correlations
colctr	Column contributions

References

Hall, P., Marshall, D., \& Martin, R. (2002). Adding and subtracting eigenspaces with eigenvalue decomposition and singular value decomposition. Image and Vision Computing, 20(13), 1009-1016.

Iodice D’ Enza, A., \& Markos, A. (2015). Low-dimensional tracking of association structures in categorical data, Statistics and Computing, 25(5), 1009-1022.

Iodice D’Enza, A., Markos, A., \& Buttarazzi, D. (2018). The idm Package: Incremental Decomposition Methods in R. Journal of Statistical Software, Code Snippets, 86(4), 1-24. DOI: 10.18637/jss.v086.c04.

See Also

update.i_mca, i_pca, i_mca, add_es

Examples

```
data(segmentationData, package = "caret")
HCS = data.frame(scale(segmentationData[,-c(1:3)]))
names(HCS) = abbreviate(names(HCS), minlength = 5)
res_PCA = i_pca(HCS[1:200, ])
aa = seq(from = 201, to = nrow(HCS), by = 200)
aa[length(aa)] = nrow(HCS)+1
for (k in c(1:(length(aa)-1))){
    res_PCA = update(res_PCA, HCS[c((aa[k]):(aa[k+1]-1)),])
    }
#Static plot
plot(res_PCA, animation = FALSE)
```

```
women women data set
```


Description

The data are from the third Family and Changing Gender Roles survey conducted in 2002. The questions retained are those related to working women in Spain and the effect on the family. A total of 2,107 respondents answered eight questions on a 5 -point Likert scale, as well as four demographic variables (gender, martial status, education and age). There are no cases with missing data.

Usage

data("women")

Format

A data frame with the following variables:
A "a working mother can establish a warm relationship with her child" $1=$ strongly agree, $2=$ agree, $3=$ neither agree or disagree, $4=$ disagree, $5=$ strongly disagree
B "a pre-school child suffers if his or her mother works"
1=strongly agree, 2=agree, 3=neither agree or disagree, 4=disagree, 5=strongly disagree
C "when a woman works the family life suffers"
1=strongly agree, 2=agree, 3=neither agree or disagree, 4=disagree, 5=strongly disagree
D "what women really want is a home and kids"
1=strongly agree, 2=agree, 3=neither agree or disagree, 4=disagree, 5=strongly agree
E "running a household is just as satisfying as a paid job"
$1=$ strongly agree, 2=agree, $3=$ neither agree or disagree, 4=disagree, 5=strongly disagree
F "work is best for a woman's independence"
$1=$ strongly agree, $2=$ agree, $3=$ neither agree or disagree, 4=disagree, 5=strongly disagree
G "a man's job is to work; a woman's job is the household" 1=strongly agree, 2=agree, 3=neither agree or disagree, 4=disagree, 5=strongly disagree
H "working women should get paid maternity leave" $1=$ strongly agree, $2=$ agree, $3=$ neither agree or disagree, $4=$ disagree, $5=$ strongly disagree
g gender: 1=male, $2=$ female
m marital status: 1=married/living as married, $2=$ widowed, $3=$ divorced, $4=$ separated, but married, 5=single, never married
e education: 1=no formal education, $2=$ lowest education, $3=$ above lowest education, $4=$ highest secondary completed, $5=$ above higher secondary level, below full university, $6=$ university degree completed
a age: $1=16-25$ years, $2=26-35,3=36-45,4=46-55,5=56-65,6=66$ and older

Source

http://www.econ.upf.edu/~michael/women_Spain2002_original.xls

References

Greenacre, M. J. (2010). Biplots in practice. Fundacion BBVA.

Examples

data(women)

Index

```
*Topic datasets
        enron,6
        tweet, 14
        women, 18
*Topic package
    idm-package, 2
add_es, 2, 5, 8, 10, 16, 18
do_es, 4, 5
enron, }
i_mca, 4, 6, 10, 12, 16, 18
i_pca, 4, 5, 8, 9, 13, 18
idm(idm-package),2
idm-package, 2
plot, 12, 14
plot.i_mca, 11, 14,16
plot.i_pca, 13,13
points, 12, 14
tweet,14
update, 16, 17
update.i_mca, 4, 8, 10, 15,18
update.i_pca, 4, 5, 8, 10,17
women, }1
```

