Package ‘ideq’

December 19, 2019

Title Bayesian Dynamic Spatio-Temporal Models, Including the
Integrodifference Equation Model

Version 0.1.4

Description In contrast to other methods of modeling spatio-temporal data,
dynamic spatio-temporal models (DSTMs) directly model the dynamic
data-generating process.

'ideq' supports two main classes of DSTMs:

(1) empirical orthogonal function (EOF) models and

(2) integrodifference equation (IDE) models.

EOF models do not directly use any spatial information;

instead, they make use of observed relationships in the data

(the principal components) to model the underlying process.

In contrast, IDE models are based on diffusion dynamics and the process
evolution is governed by a (typically Gaussian) redistribution kernel.

Both types have a variety of options for specifying the model components,
including the process matrix, process error, and observation error.

The classic reference for DSTMs is

Noel Cressie and Christopher K. Wikle (2011, ISBN:978-0471692744).
For IDE models specifically, see

Christopher K. Wikle and Noel Cressie (1999, <https://www.jstor.org/stable/2673587>)
and

Christopher K. Wikle (2002, <do0i:10.1191/1471082x02st0360a>).

Depends R (>=3.5.0)

License GPL-2

Encoding UTF-8

LazyData true

RoxygenNote 7.0.2

LinkingTo Rcpp, ReppArmadillo, rgen

Imports Rcpp, matrixcalc, pdist, mvtnorm

BugReports https://github.com/eastonhuch/ideq/issues
NeedsCompilation yes

Author Easton Huch [aut, cre],
Robert Richardson [ths]

https://github.com/eastonhuch/ideq/issues

2 dstm_eof

Maintainer Easton Huch <easton.huch@gmail.com>
Repository CRAN
Date/Publication 2019-12-19 22:20:02 UTC

R topics documented:

dstm_eofo e 2
dstm_ide L e 4
ide_locations e 7
ide_spatially_varying L 8
ide_standard L 9
predict.dstm 9
print.dstm L 10
summary. dstmo L e e e e e 11

Index 12

dstm_eof Dynamic spatio-temporal model with EOFs
Description

Fits a dynamic spatio-temporal model using empirical orthogonal functions (EOFs). The model
does not require the spatial locations because the process model is based on the principal compo-
nents of the data matrix. Three broad model types are supported:

1. RW: A random walk model for which the process matrix is the identity.

2. AR: An auto-regressive model for which the process matrix is diagonal and its elements are
estimated.

3. Dense: A model in which the process matrix is a dense, estimated matrix.

For each broad model type, users can specify a variety of options including the size of the state
space, the form of the process error, and whether to sample the observation error. Users can specify
prior distributions for all sampled quantities using the ‘params‘ argument.

Each model type mentioned above is a dynamic linear model (DLM), and the state vectors can
be estimated using the forward filtering backward sampling algorithm. The other parameters are
estimated with conditionally conjugate updates.

Usage
dstm_eof(
Y}
proc_model = "Dense”,
P = 4L,
proc_error = "IW",

n_samples = 1L,
sample_sigma2 = TRUE,

dstm_eof 3

verbose = FALSE,
params = NULL

)
Arguments

Y (numeric matrix) S by T data matrix containing the response variable at S spatial
locations and T time points. The t-th column (NOT row) corresponds to the t-th
observation vector.

proc_model (character string) Process model: one of "RW" (identity process matrix), "AR"
(diagonal process matrix), or "Dense" (dense process matrix).

P (integer) Number of EOFs or, in other words, the state space size.

proc_error (character string) Process error: "IW" (inverse-Wishart) or "Discount” (discount
factor).

n_samples (numeric scalar) Number of samples to draw

sample_sigma2 (logical) Whether to sample the variance of the iid observation error.

verbose (logical) Whether to print additional information; e.g., iteration in sampling al-
gorithm.
params (list) List of hyperparameter values; see details.
Details

This section explains how to specify custom hyperparameters using the ‘params‘ argument. For
each distribution referenced below, we use the scale parameterization found on the distribution’s
Wikipedia page. You may specify the following as named elements of the ‘params® list:

m_0: (numeric vector) The prior mean of the state vector at time zero (6).
C_0: (numeric matrix) The prior variance-covariance matrix of the state vector at time zero (6g).

alpha_sigma?2, beta_sigma?2: (numeric scalars) The inverse-Gamma parameters (scale parameteri-
zation) of the prior distribution on the observation error (c?).

sigma2: (numeric scalar) The value to use for the observation error (02) if ‘sample_sigma2‘ =
FALSE.

mu_G: (numeric matrix) The prior mean for the process matrix G. If ‘proc_model‘ = "AR", then
‘mu_G* must be a diagonal matrix. If “proc_model‘ = "Dense", then ‘mu_G* has no constraints.

Sigma_G: (numeric matrix) The prior variance-covariance matrix for the process matrix. If proc_model
= "AR", then Sigma_G should be P by P and is the variance-covariance matrix for diag(G). If
proc_model = "Dense", then Sigma_G should be PA2 by PA2 and is the variance-covariance matrix
for vec(G).

alpha_lambda, beta_lambda: (numeric scalars) The inverse-Gamma parameters (scale parameteri-
zation) of the prior distribution on A = (1 —) /0, where ¢ is the discount factor.

scale_W: (numeric matrix) The scale matrix for the inverse-Wishart prior distribution on the variance-
covariance matrix of the process error (‘"W).

df_W: (numeric scalar) The degees of freedom for the inverse-Wishart prior distribution on the
variance-covariance matrix of the process error (‘W°).

4 dstm_ide

References

Cressie, N., and Wikle, C. K. (2011), Statistics for spatio-temporal data, John Wiley and Sons, New
York, ISBN:978-0471692744.

Fruhwirth-Schnatter, S. (1994), “Data Augmentation and Dynamic Linear Models,” Journal of Time
Series Analysis, 15, 183-202, <doi:10.1111/j.1467-9892.1994.tb00184.x>.

Petris, G., Petrone, S., and Campagnoli, P. (2009), Dynamic Linear Models with R, useR!, Springer-
Verlag, New York, ISBN:978-0387772370, <doi:10.1007/b135794>.

See Also
[dstm_ide]

Examples

Load example data
data("ide_standard”)

Illustrate methods

rw_model <- dstm_eof (ide_standard, proc_model="RW", verbose=TRUE)
summary (rw_model)

predict(rw_model)

Other model types
dstm_eof (ide_standard, proc_model="AR") # Diagonal process matrix
dstm_eof (ide_standard, proc_model="Dense") # Dense process matrix

Specify hyperparameters
P <-4
dstm_eof (ide_standard, P=P,
params=list(m_0=rep(1, P), C_0=diag(@0.01, P),
scale_W=diag(P), df_W=100))

dstm_ide Integrodifference equation (IDE) model

Description

dstm_ide fits a type of dynamic spatio-temporal model called an integrodifference equation (IDE)
model. It estimates a redistribution kernel—a probability distribution controlling diffusion across
time and space. Currently, only Gaussian redistribution kernels are supported.

The process model is decomposed with an orthonormal basis function expansion (a Fourier series).
It can then be estimated as a special case of a dynamic linear model (DLM), using the forward
filtering backward sampling algorithm to estimate the state vector. The kernel parameters are esti-
mated with a random walk Metropolis-Hastings update. The other parameters are estimated with
conditionally conjugate updates.

dstm_ide

Usage

dstm_ide(
Y,
locs = NULL,

knot_locs = NULL,
proc_error = "IW",

J =1L,

n_samples = 1L,

sample_sigma2

= TRUE,

verbose = FALSE,

params = NULL

Arguments

Y

locs

knot_locs

proc_error

n_samples
sample_sigma2

verbose

params

Details

(numeric matrix) S by T data matrix containing response variable at S spatial
locations and T time points. The t-th column (NOT row) corresponds to the t-th
observation vector.

(numeric matrix) S by 2 matrix containing the spatial locations of the observed
data. The rows of ‘locs‘ correspond with the rows of “Y*.

(integer or numeric matrix) Knot locations for the spatially varying IDE model.
The kernel parameters are estimated at these locations and then mapped to the
spatial locations of the observed data via process convolution. If an integer is
provided, then the knots are located on an equally spaced grid with dimension
(‘knot_locs®, ‘knot_locs‘). If a matrix is provided, then each row of the matrix
corresponds to a knot location. If NULL, then the standard (spatially constant)
IDE is fit.

(character string) Process error: "IW" (inverse-Wishart) or "Discount” (discount
factor). "IW" is recommended because it is more computationally stable.

(integer) Extent of the Fourier approximation. The size of the state space is
@* T+ M2,

(integer) Number of posterior samples to draw.
(logical) Whether to sample the variance of the iid observation error.

(logical) Whether to print additional information; e.g., iteration in sampling al-
gorithm.

(list) List of hyperparameter values; see details.

This section explains how to specify custom hyperparameters using the ‘params‘ argument. For
each distribution referenced below, we use the scale parameterization found on the distribution’s
Wikipedia page. You may specify the following as named elements of the ‘params® list:

m_0: (numeric vector) The prior mean of the state vector at time zero (6p).

C_0: (numeric matrix) The prior variance-covariance matrix of the state vector at time zero (6).

6 dstm_ide

alpha_sigma2, beta_sigma2: (numeric scalars) The inverse-Gamma parameters (scale parameteri-
zation) of the prior distribution on the observation error (02).

sigma2: (numeric scalar) The value to use for the observation error (0?) if ‘sample_sigma2‘ =
FALSE.

alpha_lambda, beta_lambda: (numeric scalars) The inverse-Gamma parameters (scale parameteri-
zation) of the prior distribution on A = (1 —) /0, where ¢ is the discount factor.

scale_W: (numeric matrix) The scale matrix for the inverse-Wishart prior distribution on the variance-
covariance matrix of the process error (‘W°).

df_W: (numeric scalar) The degees of freedom for the inverse-Wishart prior distribution on the
variance-covariance matrix of the process error (‘W°).

L: (numeric scalar) The period of the Fourier series approximation. The spatial locations and knot
locations are rescaled to range from -‘L‘/4 to ‘L‘/4 because the Fourier decomposition assumes
that the spatial surface is periodic. Regardless of the value of ‘L‘, kernel parameter estimates are
back-transformed to the original scale.

smoothing: (numeric scalar) Controls the degree of smoothing in the process convolution for models
with spatially varying kernel parameters. The values in the process convolution matrix are propor-
tional to exp(d/‘smoothing ‘) where d is the distance between spatial locations before rescaling with
L

mean_mu_kernel: (numeric vector) The mean of the normal prior distribution on ‘mu_kernel‘, the
mean of the redistribution kernel. In the spatially varying case, the prior distribution for ‘mu_kernel*
is assumed to be the same at every knot location.

var_mu_kernel: (numeric matrix) The variance of the normal prior distribution on ‘mu_kernel‘, the
mean of the redistribution kernel.

scale_Sigma_kernel: (numeric matrix) The scale matrix for the inverse-Wishart prior distribution
on ‘Sigma_kernel‘, the variance-covariance matrix of the redistribution kernel.

df_Sigma_kernel: (numeric scalar) The degrees of freedom for the inverse-Wishart prior distribu-
tion on ‘Sigma_kernel, the variance-covariance matrix of the redistribution kernel.

proposal_factor_mu: (numeric scalar) Controls the variance of the proposal distribution for ‘mu_kernel‘.
The proposals have a variance of ‘proposal_factor_mu‘*2 * ‘var_mu_kernel‘. ‘proposal_factor_mu*
must generally be set lower for spatially varying models.

proposal_factor_Sigma: (numeric scalar) Controls the variance of the proposal distribution for
‘Sigma_kernel‘. As is the case with ‘proposal_factor_mu‘, a higher value corresponds to a higher
variance. The degrees of freedom for the proposal distribution for ‘Sigma_kernel‘ is ncol(‘locs®)
+ ‘df_Sigma_kernel‘ / ‘proposal_factor_Sigma‘. ‘proposal_factor_Sigma‘ must generally be set
lower for spatially varying models.

kernel_samples_per_iter: (numeric scalar) Number of times to update the kernel parameters per
iteration of the sampling loop.

References

Cressie, N., and Wikle, C. K. (2011), Statistics for spatio-temporal data, John Wiley and Sons, New
York, ISBN:978-0471692744.

Fruhwirth-Schnatter, S. (1994), “Data Augmentation and Dynamic Linear Models,” Journal of Time
Series Analysis, 15, 183-202, <doi:10.1111/j.1467-9892.1994.tb00184.x>.

ide_locations 7

Petris, G., Petrone, S., and Campagnoli, P. (2009), Dynamic Linear Models with R, useR!, Springer-
Verlag, New York, ISBN:978-0387772370, <doi:10.1007/b135794>.

Wikle, C. K., and Cressie, N. (1999), “A dimension-reduced approach to space-time Kalman filter-
ing,” Biometrika, 86, 815-829, <https://www.jstor.org/stable/2673587>.

Wikle, C. K. (2002), “A kernel-based spectral model for non-Gaussian spatio-temporal processes,”
Statistical Modelling, 2, 299-314, <do0i:10.1191/1471082x02st0360a>.

See Also

[dstm_eof]

Examples

Load example data
data("ide_standard”, "ide_spatially_varying”, "ide_locations")

Basic IDE model with one kernel

mod <- dstm_ide(ide_standard, ide_locations)
predict(mod)

summary (mod)

IDE model with spatially varying kernel
dstm_ide(ide_spatially_varying, ide_locations, knot_locs=4)

Fix sigma2
dstm_ide(ide_standard, ide_locations,
sample_sigma2=FALSE, params=list(sigma2=1))

Set proposal scaling factors, number of kernel updates per iteration,
and prior distribution on kernel parameters
dstm_ide(ide_standard, ide_locations,
params=list(proposal_factor_mu=2, proposal_factor_Sigma=3,
kernel_updates_per_iter=2,
scale_Sigma_kernel=diag(2), df_Sigma_kernel=100,
mean_mu_kernel=c(0.2, 0.4), var_mu_kernel=diag(2)))

Set priors on state vector, process error, and observation error
J<-1
P <= (2%xJ + 1)*2
dstm_ide(ide_standard, ide_locations,
params=list(m_0=rep(1, P), C_0=diag(0.01, P),
alpha_sigma2=20, beta_sigma2=20,
scale_W=diag(P), df_W=100))

ide_locations Spatial locations for IDE data sets

8 ide_spatially_varying

Description
A matrix containing the 400 two-dimensional spatial locations of the following data sets: ‘ide_standard*
and ‘ide_spatially_varying‘. The rows of these two data sets correspond with the rows of ‘ide_locations®.
Usage

ide_locations

Format

A numeric matrix with 400 rows and 2 columns

Source

Generated as part of Easton Huch’s MS project at BYU

See Also

[ide_standard]/[ide_spatially_varying], the data sets that correspond to these spatial locations

ide_spatially_varying Simulated data from a spatially varying IDE model

Description
A matrix containing simulated data points on a 20 X 20 grid at 20 time points. The rows correspond
to the 400 spatial locations, and the columns, to the 20 time points.

Usage

ide_spatially_varying

Format

A numeric matrix with 400 rows and 20 columns

Source

Randomly generated as part of Easton Huch’s MS project at BYU

See Also

[ide_locations] for a matrix containing the spatial locations corresponding to the rows of ‘ide_spatially_varying*
and [ide_standard] for a similar data set generated from a standard ide model

ide_standard 9

ide_standard Simulated data from a standard IDE model

Description

A matrix containing simulated data points on a 20 X 20 grid at 20 time points. The rows correspond
to the 400 spatial locations, and the columns, to the 20 time points.

Usage

ide_standard

Format

A numeric matrix with 400 rows and 20 columns

Source

Randomly generated as part of Easton Huch’s MS project at BYU

See Also

[ide_locations] for a matrix containing the spatial locations corresponding to the rows of ‘ide_standard*
and [ide_spatially_varying] for a similar data set generated from a spatially varying ide model

predict.dstm Predict Method for DSTM Fits

Description

Generates samples from the posterior predictive distribution at future time points for (1) the obser-
vation vector and (2) the state vector.

Usage

S3 method for class 'dstm'
predict(
object,
K=1,
only_K = FALSE,
return_ys = TRUE,
return_thetas = FALSE,
burnin = NULL,

10

Arguments

object
K

only_K

return_ys

return_thetas

burnin

Details

print.dstm

A ‘dstm°‘ object

(integer scalar) The number of future time periods for which to generate predic-
tions

(logical scalar) Whether to return predictions for time period T+K only (as op-
posed to T+1, T+2, ..., T+K)

(logical scalar) Whether to return samples from the posterior predictive distri-
bution of the observation vector (ys)

(logical scalar) Whether to return samples from the posterior predictive distri-
bution of the state vector (thetas)

(integer scalar) The number of samples to discard as burn-in. If object$burnin
exists, this argument will override it.

Arguments passed to other methods (necessary for S3 generic compatibility)

The posterior predictive samples are returned in a matrix or 3-D array, depending on whether sam-
ples from multiple time points are requested. The dimensions are always in the following order:

1. The index of the value within the state or observation vector.

2. The time period

3. The sample number

Examples

data("ide_standard”, "ide_locations")

IDE example

mod_ide <- dstm_ide(ide_standard, ide_locations)

predict(mod_ide)

predict(mod_ide, K=4, return_thetas=TRUE)

EOF example

mod_eof <- dstm_eof (ide_standard, n_samples=2)
predict(mod_eof, K=2, only_K=TRUE, burnin=1)

print.dstm

Print Method for DSTM Fits

Description

Prints a summary for a ‘dstm* object by calling summary.dstm().

Usage

S3 method for class 'dstm'

print(x, x_name

= deparse(substitute(x)), ...)

summary.dstm 11

Arguments

X A ‘dstm°‘ object

X_name (optional) Object name to display

Arguments passed to other methods (necessary for S3 generic compatibility)

See Also

[summary.dstm()]

summary.dstm Summary Method for DSTM Fits

Description

Prints summary information for ‘dstm* objects.

Usage

S3 method for class 'dstm'

summary (object, object_name = deparse(substitute(object)), ...)
Arguments

object A ‘dstm‘ object

object_name The name to be printed in the summary (if desired)

Arguments passed to other methods (necessary for S3 generic compatibility)

See Also

[print.summary()]

Examples

Load example data

data("ide_standard”, "ide_locations")

mod_ide <- dstm_ide(ide_standard, ide_locations)
summary (mod_ide)

Index

+Topic datasets
ide_locations, 7
ide_spatially_varying, 8
ide_standard, 9

dstm_eof, 2
dstm_ide, 4

ide_locations, 7
ide_spatially_varying, 8
ide_standard, 9

predict.dstm, 9
print.dstm, 10

summary.dstm, 11

12

	dstm_eof
	dstm_ide
	ide_locations
	ide_spatially_varying
	ide_standard
	predict.dstm
	print.dstm
	summary.dstm
	Index

