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Abstract

The hyper2 package presented a new formulation of the hyperdirichlet package, offer-
ing speed advantages and the ability to deal with higher-dimensional datasets. However,
hyper2 was based on likelihood methods and as originally uploaded did not have the abil-
ity to integrate over the unit-sum simplex. This functionality has now been incorporated
into the package which is documented here, by reproducing earlier analysis.
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1. Introduction

The hyper2 package (Hankin 2017) presented a new formulation of the hyperdirichlet distribu-
tion (Hankin 2010) which offered speed advantages over the original hyperdirichlet package,
and the ability to deal with higher-dimensional datasets. However, hyper2 was based on
likelihood methods and as originally uploaded did not have the ability to integrate over the
unit-sum simplex. This functionality has now been incorporated into the package which is
documented here, by reproducing earlier analysis.

2. Chess

Consider Table 1 in which matches between three chess players are tabulated; this dataset
was analysed by Hankin (2010).

C
p301 p362 p223

(p1 + p2)
35 (p2 + p3)

35 (p1 + p3)
18

(the symbol ‘C’ consistently stands for an undetermined constant). This likelihood function
is provided in the hyper2 package as the chess dataset:

> data(chess)

> chess

Topalov^30 * (Topalov + Anand)^-35 * (Topalov + Karpov)^-18 * Anand^36

* (Anand + Karpov)^-35 * Karpov^22

We can calculate the normalizing constant:
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Topalov Anand Karpov total

22 13 - 35
- 23 12 35
8 - 10 18

30 36 22 88

Table 1: Results of 88 chess matches (dataset chess in the aylmer package) between three
Grandmasters; entries show number of games won up to 2001 (draws are discarded). Topalov
beats Anand 22-13; Anand beats Karpov 23-12; and Karpov beats Topalov 10-8

> B(chess)

[1] 1.442828e-28

comparing well with the value given by the hyperdirichlet package of 1.47 × 10−28. Hankin
(2010) went on to calculate the p-value for H0: p =

(

1

3
, 1
3
, 1
3

)

as 0.395, a calculation which may
be performed in the hyper2 package as follows:

> f <- function(p){loglik(chess,indep(p)) > loglik(chess,c(1,1)/3)}

> probability(chess, disallowed=f,tol=0.01)

[1] 0.3785911

Again comparing well with the older result (smaller values of tol give closer agreement at
the expense of increased computation time). Finally, we can calculate the probability that
Topalov is a better player than Anand:

> T.lt.A <- function(p){p[1]<p[2]}

> probability(chess, disallowed=T.lt.A,tol=0.001)

[1] 0.7127539

again showing reasonable agreement with the 2010 value of 0.701.

3. Verification

In a breathtaking display of arrogance and/or incompetence, Hankin (2010) did not actually
provide any evidence that the integration suite of hyperdirichlet was accurate. Here I com-
pensate for that inexcusable lapse by comparing numerical results with analytical formulae.
Consider the standard Dirichlet distribution:

pα1−1

1 . . . pαk−1

k

B (α1, . . . , αk)
(1)

where it is understood that the pi > 0 and
∑

pi = 1; here B = Γ
∑

αi∏
Γαi

is the normalization
constant. We can verify that hyper2::B() is operating as expected for the case α1 = 1, α2 =
2, α3 = 3, α4 = 4:
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> prod(gamma(1:4))/gamma(sum(1:4))

[1] 3.306878e-05

> B(dirichlet(alpha=1:4))

[1] 3.306878e-05

Further, consider a Dirichlet distribution with α1 = α2 = α3 = α4 = 3. Then, by symmetry,
the probability that p1 < p2 should be exactly 1

2
:

> f <- function(p){p[1]<p[2]}

> H <- dirichlet(alpha=rep(2,4))

> probability(H,f,tol=0.1)

[1] 0.5045785

Further, P(p1 < p2 < p3) should be exactly 1

6
:

> g <- function(p){(p[1]<p[2]) & (p[2]<p[3])}

> 1-probability(H,disallowed=g,tol=0.1)

[1] 0.1644873

4. More results: icons dataset

Consider the icons dataset, shown in table 2, and the following hypotheses, again following
Hankin (2010), and reproduced here for convenience.

> data("oneill") # load the dataset

> icons

NB^32 * (NB + L + THC + OA)^-20 * (NB + L + THC + WAIS)^-15 * (NB + L +

OA + WAIS)^-9 * (NB + PB + THC + OA)^-18 * (NB + PB + THC + WAIS)^-18 *

(NB + PB + OA + WAIS)^-8 * L^24 * (L + PB + THC + OA)^-11 * (L + PB +

THC + WAIS)^-16 * (L + PB + OA + WAIS)^-18 * PB^30 * THC^24 * OA^14 *

WAIS^9

> maxp(icons)

NB L PB THC OA WAIS

0.25230411 0.17364433 0.22458188 0.17011281 0.11068604 0.06867083

For reference, the other hypotheses were:
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icon

NB L PB THC OA WAIS total

5 3 - 4 - 3 15
3 - 5 8 - 2 18
- 4 9 2 - 1 16
1 3 - 3 4 - 11
4 - 5 6 3 - 18
- 4 3 1 3 - 11
5 1 - - 1 2 9
5 - 1 - 1 1 8
- 9 7 - 2 0 18

23 24 30 24 14 9 124

Table 2: Experimental results from O’Neill (2007) (dataset icons in the package): respon-
dents’ choice of ‘most concerning’ icon of those presented. Thus the first row shows results
from respondents presented with icons NB, L, THC, and WAIS; of the 15 respondents, 5
chose NB as the most concerning (see text for a key to the acronyms). Note the “0” in row 9,
column 6: this option was available to the 18 respondents of that row, but none of them
actually chose WAIS

❼ H1: p1 >
1

6

❼ H2: p1 > max {p2, . . . p6}

❼ H3: p5 + p6 >
1

3

❼ H4: max {p5, p6} > min {p1, p2, p3, p4}

> f1 <- function(p){p[1] > 1/6}

> f2 <- function(p){p[1] > max(fillup(p)[-1])}

> f3 <- function(p){sum(fillup(p)[5:6]) > 1/3}

> f4 <- function(p){max(fillup(p)[1:2]) > min(fillup(p)[3:6])}

Here I will analyse just the first hypothesis, that is H1: p1 6
1

6
using the integration facilities of

the hyper2 package, and compare with previous results. Here we perform a Bayesian analysis,
made possible by the efficient coding of hyper2:

> probability(icons, disallowed=function(p){p[1] > 1/6}, tol=0.1)

[1] 0.01501733

See how the disallowed region is the expected bit of the parameter space. Thus the probability
that the pi are unexpected (that is, p1 < 1/6) is about 1.5% or conversely, P (H1) ≃ 0.985.
The likelihood ratio reported was about 2.608, which would correspond to a p-value of about

> pchisq(2*2.608,df=1,lower.tail=FALSE)

[1] 0.02237997
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or just over 2% under an asympotic distribution; thus this frequentist technique gives com-
parable strength of evidence for H1 to the Bayesian approach.

5. Incomplete survey data

This section performs the analysis originally presented in Altham and Hankin (2010). The
data, given here in table 4 arises from 69 medical malpractice claims, and are the two surgeons’
answers to the question: was there a communication breakdown in the hand-off between
physicians caring for the patient?

Reviewer 1 Reviewer 2
Yes No Missing Total

Yes 26 1 2 29
No 5 18 9 32
Missing 4 4 0 8

Total 35 23 11 69

Table 3: Two surgeon reviews of malpractice claims data

Reviewer 1 Reviewer 2
Yes No Missing Total

Yes y11 y10 z1+ y1+ + z1+
No y01 y00 z0+ y0+ + z0+
Missing u+1 u+0 0 u++

Total y+1 + u+1 y+0 + u+0 z++ n

Table 4: Notation for the data

We may implement an appropriate likelihood function as follows:

> H <- hyper2(d=4)

> pnames(H) <- c("t00","t10", "t01", "t11")

> H["t00"] <- 18

> H["t10"] <- 01

> H["t01"] <- 05

> H["t11"] <- 26

> H[c("t11","t10")] <- 2

> H[c("t01","t00")] <- 9

> H[c("t11","t01")] <- 4

> H[c("t10","t00")] <- 4

> H

t00^18 * (t00 + t10)^4 * (t00 + t01)^9 * t10 * (t10 + t11)^2 * t01^5 *

(t01 + t11)^4 * t11^26



6 Integration in the hyper2 package

(object H is provided as handover in the package). Then we may estimate the probability
that reviewer 2 is more likely to give a ‘yes’ than reviewer 1 as follows:

> free <- maxp(H,give=TRUE)

> m <- fillup(free$par)

> names(m) <- pnames(H)

> m

t00 t10 t01 t11

0.41954894 0.01798719 0.11127554 0.45118833

> free$value

[1] -64.14538

Then the constrained optimization:

> obj <- function(p){-loglik(H,p)} # objective func

> gr <- function(p){-gradient(H,p)} # gradient, needed for speed

> UI <- rbind(diag(3),-1) # UI and CI specify constraints

> CI <- c(rep(0,3),-1) # p_i >= 0 and sum p_i <= 1

We will test HA: p2 < p3 using the method of support.

> ml_HA <- constrOptim(theta=c(0.1,0.2,0.1), f = obj,grad=gr,

+ ui = rbind(UI,c(0,1,-1)), # p2 > p3

+ ci = c(CI,0))

> ml_HA$value

[1] 66.14453

Thus the support for HA is

> ml_HA$value - free$value

[1] 130.2899

thus agreeing almost exactly with Altham and Hankin (2010).
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