tidyHtmlTable
acts as a wrapper function for the htmlTable
function allowing columns to be mapped from the input data to specific htmlTable parameters in a manner similar to ggplot2.
We’ll begin by turning the mtcars
data into a tidy dataset. The pivot_longer
function is called to collect 3 performance metrics into a pair of key and value columns.
library(magrittr)
library(tidyr)
library(dplyr)
library(htmlTable)
library(tibble)
td <- mtcars %>%
as_tibble(rownames = "rnames") %>%
pivot_longer(names_to = "per_metric",
cols = c(hp, mpg, qsec))
Now we will compute 4 summary statistics for each of the 3 performance metrics. This will be further grouped by number of cylinders and gears.
tidy_summary <- td %>%
group_by(cyl, gear, per_metric) %>%
summarise(Mean = round(mean(value), 1),
SD = round(sd(value), 1),
Min = round(min(value), 1),
Max = round(max(value), 1),
.groups = 'drop') %>%
pivot_longer(names_to = "summary_stat",
cols = c(Mean, SD, Min, Max)) %>%
ungroup() %>%
mutate(gear = paste(gear, "Gears"),
cyl = paste(cyl, "Cylinders"))
At this point, we are ready to implement the htmlTable
function. Essentially, this constructs an html table using arguments similar to the htmlTable
function. However, whereas htmlTable
required the user to manually arrange the data and specify the column groups, headers, row names, row-groups, etc., each of these components of the table is mapped to a column within the input data.
tidy_summary %>%
arrange(per_metric, summary_stat) %>%
addHtmlTableStyle(align = "r") %>%
tidyHtmlTable(header = gear,
cgroup = cyl,
rnames = summary_stat,
rgroup = per_metric)
4 Cylinders | 6 Cylinders | 8 Cylinders | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
3 Gears | 4 Gears | 5 Gears | 3 Gears | 4 Gears | 5 Gears | 3 Gears | 5 Gears | |||
hp | ||||||||||
Max | 97 | 109 | 113 | 110 | 123 | 175 | 245 | 335 | ||
Mean | 97 | 76 | 102 | 107.5 | 116.5 | 175 | 194.2 | 299.5 | ||
Min | 97 | 52 | 91 | 105 | 110 | 175 | 150 | 264 | ||
SD | 20.1 | 15.6 | 3.5 | 7.5 | 33.4 | 50.2 | ||||
mpg | ||||||||||
Max | 21.5 | 33.9 | 30.4 | 21.4 | 21 | 19.7 | 19.2 | 15.8 | ||
Mean | 21.5 | 26.9 | 28.2 | 19.8 | 19.8 | 19.7 | 15.1 | 15.4 | ||
Min | 21.5 | 21.4 | 26 | 18.1 | 17.8 | 19.7 | 10.4 | 15 | ||
SD | 4.8 | 3.1 | 2.3 | 1.6 | 2.8 | 0.6 | ||||
qsec | ||||||||||
Max | 20 | 22.9 | 16.9 | 20.2 | 18.9 | 15.5 | 18 | 14.6 | ||
Mean | 20 | 19.6 | 16.8 | 19.8 | 17.7 | 15.5 | 17.1 | 14.6 | ||
Min | 20 | 18.5 | 16.7 | 19.4 | 16.5 | 15.5 | 15.4 | 14.5 | ||
SD | 1.5 | 0.1 | 0.6 | 1.1 | 0.8 | 0.1 |
tidy_summary %>%
arrange(cyl, gear) %>%
addHtmlTableStyle(align = "r") %>%
tidyHtmlTable(header = summary_stat,
cgroup = per_metric,
rnames = gear,
rgroup = cyl)
hp | mpg | qsec | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Max | Mean | Min | SD | Max | Mean | Min | SD | Max | Mean | Min | SD | |||
4 Cylinders | ||||||||||||||
3 Gears | 97 | 97 | 97 | 21.5 | 21.5 | 21.5 | 20 | 20 | 20 | |||||
4 Gears | 109 | 76 | 52 | 20.1 | 33.9 | 26.9 | 21.4 | 4.8 | 22.9 | 19.6 | 18.5 | 1.5 | ||
5 Gears | 113 | 102 | 91 | 15.6 | 30.4 | 28.2 | 26 | 3.1 | 16.9 | 16.8 | 16.7 | 0.1 | ||
6 Cylinders | ||||||||||||||
3 Gears | 110 | 107.5 | 105 | 3.5 | 21.4 | 19.8 | 18.1 | 2.3 | 20.2 | 19.8 | 19.4 | 0.6 | ||
4 Gears | 123 | 116.5 | 110 | 7.5 | 21 | 19.8 | 17.8 | 1.6 | 18.9 | 17.7 | 16.5 | 1.1 | ||
5 Gears | 175 | 175 | 175 | 19.7 | 19.7 | 19.7 | 15.5 | 15.5 | 15.5 | |||||
8 Cylinders | ||||||||||||||
3 Gears | 245 | 194.2 | 150 | 33.4 | 19.2 | 15.1 | 10.4 | 2.8 | 18 | 17.1 | 15.4 | 0.8 | ||
5 Gears | 335 | 299.5 | 264 | 50.2 | 15.8 | 15.4 | 15 | 0.6 | 14.6 | 14.6 | 14.5 | 0.1 |