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1 Introduction

This tutorial introduces techniques for creating, handling, manipulating, analyzing and
simulating hyperspectral data using the hsdar package. Though we’ll try our best to keep
the examples as easy as possible, we assume that you are already familiar with the R
software.

In most cases this tutorial is not built successively so that you can get in at your
chapter of interested. However, you should briefly run over this introduction to see how
to use this tutorial.

The tutorial focuses on the usage of hsdar for the calculation of several common
methods in hyperspectral data manipulation and analysis. Despite some less common
methods, we won’t explain in detail what the methods do and in which cases they are
useful or not. Please read the hsdar help files and references for more information about
your methods of interest.

hsdar is still experimental. If you have any questions, suggestions or concerns don’t
hesitate to contact the authors. For some applications of hsdar see Lehnert et al. (2013,
2014, 2015); Meyer et al. (2013).

1.1 Sample data

Almost all of the exercises in this tutorial use one single sample dataset - "spectral_data” -
which is included in the hsdar package. This dataset was created on a free air enrichment
site (FACE) near Giessen, central Germany.

In the first line, the dataset contains hyperspectral reflectance measurements which
were taken with a field spectrometer from a height of approx. 1.50 m covering the in-
tegrated spectrum of a circle of approx. 50 cm on the ground. Thus, reflectance values
result from different fractions of vegetation, soil, stones etc. Furthermore, the dataset
contains chlorophyll content of the vegetation.

1.2 How to start

To work with the tutorial, first install the hsdar package and load the library as well as
the sample data:

> #install.packages("hsdar")
> library(hsdar)
> data(spectral_data) #Load the data used in the tutorial

If you need help, see

> help(hsdar)

2 Handling of speclibs

In this chapter a ”Speclib” which is the main class of hsdar will be presented. Almost
all functions of hsdar require that your Spectra are stored in a Speclib. To learn how to
handle Speclibs, we will first have a look on the structure of the sample data. Afterwards
it will be shown how to create own Speclibs and how to read and write them.



2.1 Structure

Hyperspectral data as well as further information related to these data are stored in a
class called "Speclib”. To understand the structure of a Speclib, have a look on the sample
Speclib "spectral_data”

> spectral_data #See how Speclibs are printed

Summary of Speclib

History of usage

(1) Reflectance = mean applied to matrix spectra by attribute 'site'
PP P y

Summary of spectra

Total number of spectra : 45

Number of bands : 1401

Width of bands : 1

Spectral range of data : 305 - 1705 nm

Speclib contains SI
Variables Classes
year integer
season factor
site factor
chlorophyll numeric

S wWw N e

The printed information of a Speclib contain the number of spectra, the number of spectral
bands and the width of the bands. However, there are more information stored in the
Speclib. Have a look on the structure of "spectral_data” to see all its information:

> str(spectral_data)

Formal class 'Speclib' [package "hsdar"] with 13 slots
..Q spectra :Formal class '.Spectra' [package "hsdar"] with 3 slots
. ..@ fromRaster: logi FALSE
. ..0 spectra_ma: num [1:45, 1:1401] 6.52 7.01 7.25 6.74 7.52 ...
..— attr(*, "dimnames")=List of 2
..$ : NULL
..$ : NULL
. ..@ spectra_ra:Formal class 'RasterBrick' [package "raster"] with 12 slots

. ..0 file :Formal class '.RasterFile' [package "raster"] with 13 slots
..Q@ name : chr ""
..@ datanotation: chr "FLT4S"
..@ byteorder : chr "little"
..@ nodatavalue : num -Inf
..@ NAchanged : logi FALSE
..@ nbands :int 1
..@ bandorder : chr "BIL"
..Q@ offset : int O
..@ toptobottom : logi TRUE
..@ blockrows : int O



..@ blockcols : int O
..@ driver : chr ""
.. .. ..@ open : logi FALSE
..Q data :Formal class '.MultipleRasterData' [package "raster"] with 14 slots
..Q values : logil0 , 0]
..@ offset : num O
..@ gain : num 1
..@ inmemory : logi FALSE
..@ fromdisk : logi FALSE
..@ nlayers : int O
..@ dropped : NULL
..@ isfactor : logi FALSE
..@ attributes: list()
..@ haveminmax: logi FALSE
..@ min : num Inf
..0 max : num -Inf
..Q unit : chr ""
. .. ..0 names : chr ""
..@ legend :Formal class '.RasterLegend' [package "raster"] with 5 slots
..Q type : chr(0)
@ values : logi(0)
..Q@ color : logi(0)
..@ names : logi(0)
.. .. ..0 colortable: logi(0)
..0 title : chr(0)

..Q@ extent :Formal class 'Extent' [package "raster"] with 4 slots
..Q@ xmin: num O
..@ xmax: num 1
..@ ymin: num O

.. ..@ ymax: num 1

..@ rotated : logi FALSE

..Q@ rotation:Formal class '.Rotation' [package "raster"] with 2 slots
..@ geotrans: num(0)
..@ transfun:function ()

..Q@ ncols : int 1
..Q@ nrows :int 1
..0@ crs :Formal class 'CRS' [package "sp"] with 1 slot

.. .. ..@ projargs: chr NA
..@ history : list()

e e e .. Q@ 2z ¢ list ()
..@ wavelength : num [1:1401] 305 306 307 308 309 310 311 312 313 314 ...
..@ 8I :Formal class '.SI' [package "hsdar"] with 4 slots
..0@ SI_data :List of 4
..$ year : int [1:45] 2014 2014 2014 2014 2014 2014 2014 2014 2014 2014 ...
..$ season : Factor w/ 2 levels "spring","summer": 2 2 22222222 ...
..$ site : Factor w/ 15 levels "Ci1","C2","C3",..: 1 234567 89 10 ...
.. ..$ chlorophyll: num [1:45] 25.2 23.7 31.5 19.1 23.3 ...
..0@ dim : num [1:2] 45 4

..@ rasterObject: logi [1:4] FALSE FALSE FALSE FALSE
..0@ numericVar : logi [1:4] TRUE FALSE FALSE TRUE

@ fwhm : num 1
@ continuousdata : logi TRUE
@ wlunit : chr "nm"
@ xlabel : chr "Wavelength"
..Q@ ylabel : chr "Reflectance"
..@ ID : chr(0)
@ wavelength.is.range: logi FALSE
Q@ transformation : chr(0)
@ usagehistory : chr "Reflectance = mean applied to matrix spectra by attribute 'site'"
Q@ rastermeta : 1list()

Only considering the most important components (slots), the Speclib contains spectra,
wavelengths, supplementary data (SI, optional) and some metadata (optional). The spec-
tra are stored in a matrix with the spectral bands organized in columns and the different
samples (or pixels) organized in rows. Alternatively, it is possible to use a RasterBrick-
object to store the spectra. The vector "wavelength” indicates the corresponding wave-
length of each band. The ”"SI”-slot offers a possibility to store further information related
to the spectra, in this case, these are "year”, ”season”, ’site” and "chlorophyll” content.
Thus, the wavelength contains the metadata of the column and the SI contain the in-
formation of the rows of the spectra-matrix. Of note is that the SI may contain data
from additional raster files if the spectra are stored in a RasterBrick object. For further
information on handling of large raster files in hsdar, see section 2.2.2. Finally, some
metadata are given like "reflectance” as the type of the spectra or "nm” as the unit of the



wavelength.

2.2 Creating Speclibs

Now, we will explain how to create your own Speclibs. We will do this the way that
we split the sample Speclib back into its components and then show how to bring the
components together into a new Speclib.

2.2.1 Speclibs from matrices

Speclibs can be created in different ways. To build a Speclib you need at least spectra
and the corresponding wavelength values. The easiest way is to prepare a matrix of your
spectra. This matrix must be organized in the way that each row represents one sample
and each column represents a spectral band. To go on with the example introduced above,
we transform the spectra of ”spectral_data back into a matrix:

> spectra <- spectra(spectral_data)

See what happened:

> str(spectra)

num [1:45, 1:1401] 6.52 7.01 7.25 6.74 7.52 ...
- attr(*, "dimnames")=List of 2

..$ : NULL

..$ : NULL

This is how the input matrix must look like: We have a matrix with each row representing
one spectrum and each column representing one channel. Further, we need a vector
indicating which wavelength corresponds to each column. Therefore we will extract the
wavelength from ”spectral_data”:

> wavelength <- wavelength(spectral_data)

Now both components needed to create a Speclib are available: spectra and the corre-
sponding wavelength. Now you can build a new Speclib from them:

> newSpeclib <- speclib(spectra, wavelength)

Having a look at the structure showing that you have re-created "spectral_data’:

> str(newSpeclib)



Formal class 'Speclib' [package "hsdar"] with 13 slots
..Q@ spectra :Formal class '.Spectra' [package "hsdar"] with 3 slots
..@ fromRaster: logi FALSE
..Q spectra_ma: num [1:45, 1:1401] 6.52 7.01 7.25 6.74 7.52 ...
..— attr(*, "dimnames")=List of 2

..$ : NULL
..$ : NULL

..Q@ spectra_ra:Formal class 'RasterBrick' [package "raster"] with 12 slots

..Q file :Formal class '.RasterFile' [package "raster"] with 13 slots
..@ name : chr ""
..@ datanotation: chr "FLT4S"
..@ byteorder : chr "little"
..@ nodatavalue : num -Inf
..@ NAchanged : logi FALSE
..@ nbands ¢ int 1
..@ bandorder : chr "BIL"
..Q@ offset : int O
..@ toptobottom : logi TRUE
..@ blockrows : int O
..@ blockcols : int O
..@ driver : chr ""
.. .. ..@ open : logi FALSE
..@ data :Formal class '.MultipleRasterData' [package "raster"] with 14 slots
..@ values : logil0 , 0]
..@ offset : num O
..@ gain : num 1
..@ inmemory : logi FALSE
..@ fromdisk : logi FALSE
..@ nlayers : int O
..@ dropped : NULL
..@ isfactor : logi FALSE
..0@ attributes: list()
..@ haveminmax: logi FALSE
..@ min : num Inf
..@ max : num -Inf
..Q unit : chr ""
. .. ..0 names : chr ""
..@ legend :Formal class '.RasterLegend' [package "raster"] with 5 slots
..Q type : chr(0)
@ values : logi(0)
..Q@ color : logi(0)
..@ names : logi(0)
.. .. ..0@ colortable: logi(0)
..0 title : chr(0)

..Q@ extent :Formal class 'Extent' [package "raster"] with 4 slots
..Q@ xmin: num O
..0@ xmax: num 1
..@ ymin: num O

.. .. ..0 ymax: num 1

..@ rotated : logi FALSE

..Q@ rotation:Formal class '.Rotation' [package "raster"] with 2 slots
..@ geotrans: num(0)
..@ transfun:function ()

..Q@ ncols :int 1

..@ nrows :int 1

..0@ crs :Formal class 'CRS' [package "sp"] with 1 slot

.. .. ..@ projargs: chr NA
..@ history : list()

F N I 1 ¢ list ()
..Q@ wavelength : num [1:1401] 305 306 307 308 309 310 311 312 313 314 ...
..@ 8I :Formal class '.SI' [package "hsdar"] with 4 slots
..@ SI_data : Named 1list()
..Q@ dim : num [1:2] 0 O
..@ rasterObject: logi(0)
.. .. ..0 numericVar : logi(0)
..Q@ fwhm : num 1
..0 continuousdata : logi TRUE
..0 wlunit : chr "nm"
..Q@ xlabel : chr "Wavelength"
..0 ylabel : chr "Reflectance"
..@ ID : chr(0)
..@ wavelength.is.range: logi FALSE
..@ transformation : chr(0)
..Q@ usagehistory : chr(0)
..Q@ rastermeta ¢ 1list(O)

However, it would be nice to have an ID for each spectrum:




> ids <- idSpeclib(spectral_data) #extract ID from "spectral_data"
> idSpeclib(newSpeclib) <- as.character(ids) #...and assign them to the
> #new Speclib

Still the SI (containing any associated supplementary information on spectra) is missing
in the new Speclib. Those can be handled with the function ”SI”: If you extract the
SI from "spectral_data” using ”SI”, you get a data.frame containing the values for each
attribute in the SI at each site:

> SI <- SI(spectral_data)
> head(SI)

year season site chlorophyll
2014 summer C1 25.18261
2014 summer c2 23.65696
2014 summer C3 31.50000
2014 summer K1 19.12000
2014 summer K2 23.31818
2014 summer K3 25.21500

DO WN -

You can now use this data.frame to complete your new Speclib:

> SI(newSpeclib) <- SI

Finally you have a Speclib which is well comparable to the exemplary Speclib:

> str(newSpeclib)

Formal class 'Speclib' [package "hsdar"] with 13 slots
..@ spectra :Formal class '.Spectra' [package "hsdar"] with 3 slots
. ..@ fromRaster: logi FALSE
. ..0 spectra_ma: num [1:45, 1:1401] 6.52 7.01 7.25 6.74 7.52 ...
..— attr(*, "dimnames")=List of 2

..$ : NULL
..$ : NULL
. ..@ spectra_ra:Formal class 'RasterBrick' [package "raster"] with 12 slots

. ..0 file :Formal class '.RasterFile' [package "raster"] with 13 slots
..@ name : chr ""
..@ datanotation: chr "FLT4S"
..@ byteorder : chr "little"
..@ nodatavalue : num -Inf
..@ NAchanged : logi FALSE
..@ nbands :int 1
..@ bandorder : chr "BIL"
..Q@ offset : int O
..@ toptobottom : logi TRUE
..@ blockrows : int O
..@ blockcols : int O
..Q@ driver : chr ""

.. +«. .. ..0 open : logi FALSE

. ..0@ data :Formal class '.MultipleRasterData' [package "raster"] with 14 slots
..0@ values : logil0 , 0]
..0@ offset : num O
..@ gain : num 1
..Q@ inmemory : logi FALSE



..@ fromdisk : logi FALSE
..@ nlayers : int O
..@ dropped : NULL
..@ isfactor : logi FALSE
..@ attributes: list()
..@ haveminmax: logi FALSE
..@ min : num Inf
..0@ max : num -Inf
..@ unit : chr ""
. .. ..0 names : chr ""
..@ legend :Formal class '.RasterLegend' [package "raster"] with 5 slots
..Q@ type : chr(0)
..Q@ values : logi(0)
..@ color : logi(0)
..Q names : logi(0)
.. .. ..0 colortable: logi(0)
..Q title : chr(0)
..Q@ extent :Formal class 'Extent' [package "raster"] with 4 slots

..@ xmin: num O
..@ xmax: num 1
..@ ymin: num O
.. ..0@ ymax: num 1
..@ rotated : logi FALSE
..@ rotation:Formal class '.Rotation' [package "raster"] with 2 slots
..Q geotrans: num(0)
..@ transfun:function ()

..@ ncols : int 1
..Q@ nrows :int 1
..Q@ crs :Formal class 'CRS' [package "sp"] with 1 slot

.. .. ..@ projargs: chr NA
..@ history : list()

J N B4 : list()
..0@ wavelength : num [1:1401] 305 306 307 308 309 310 311 312 313 314 ...
..@ 8I :Formal class '.SI' [package "hsdar"] with 4 slots
..@ SI_data :List of 4
..$ year : int [1:45] 2014 2014 2014 2014 2014 2014 2014 2014 2014 2014 ...
..$ season : Factor w/ 2 levels "spring","summer": 2 2 22222222 ...
..$ site : Factor w/ 15 levels "C1","C2","C3",..: 1234567 89 10 ...
.. ..$ chlorophyll: num [1:45] 25.2 23.7 31.5 19.1 23.3 ...
..@ dim : num [1:2] 45 4

..Q@ rasterObject: logi [1:4] FALSE FALSE FALSE FALSE
.. ..@ numericVar : logi [1:4] TRUE FALSE FALSE TRUE
fwhm :

e : num 1
@ continuousdata : logi TRUE
@ wlunit : chr "nm"
..0 xlabel : chr "Wavelength"
..0@ ylabel : chr "Reflectance"
@ ID : chr [1:45] "1m 2" 3" "4
@ wavelength.is.range: logi FALSE
@ transformation : chr(0)
@ usagehistory : chr(0)
@ rastermeta ¢ list ()

2.2.2 Speclibs from raster files

The investigation of data taken with a hyperspectral camera or by hyperspectral satellite
sensors (e.g., Hyperion) brings along that a huge number of spectra must be analyzed.
Unless you are working on a large cluster, R won’t be able to store all of the data in RAM
in this case. A workaround is, to analyze a small number of rows of the image separately.
This is possible as far as you are using techniques which do not take the neighboring
spectra into account. This is the case for almost all functions in this tutorial except the
correlation and linear regression techniques. A very good starting point for the row-wise
analysis of large raster files is given in the tutorials of the "raster”-package the hsdar-
package is depending on. Nevertheless, there are two specific difficulties if hyperspectral
data should be analyzed:

1. The wavelength information must be stored along the spectra

2. Most of the function in the hsdar-package require that data is transferred to functions
as Speclib.



Consequently, hsdar supports the iterative reading and writing functionality of the raster
package without the need to care about wavelength or data in the SI.

In the following example, we will first create a small hyperspectral raster file using
PROSAIL (for explanation of PROSAIL see section 4):

## Create raster file using PROSAIL
## Run PROSAIL
parameter <- data.frame(N = c(rep.int(seq(0.5, 1.4, 0.1), 6)),
LAI = c(rep.int (0.5, 10), rep.int(1, 10),
rep.int(1.5, 10), rep.int(2, 10),
rep.int (2.5, 10), rep.int(3, 10)))
spectra <- PROSAIL(parameterList = parameter)
## Create SpatialPixelsDataFrame and fill data with spectra from
## PROSAIL
rows <- round(nspectra(spectra)/10, 0)
cols <- ceiling(nspectra(spectra)/rows)
grd <- SpatialGrid(GridTopology(cellcentre.offset = c(1,1,1),
cellsize = c(1,1,1),
cells.dim = c(cols, rows, 1)))
x <- SpatialPixelsDataFrame(grd,
data = as.data.frame(spectra(spectra)))
## Write data to example file (example_in.tif) in workingdirectory
writeGDAL (x, fname = "example_in.tif", drivername = "GTiff")

VV+V++VVVVVYV + 4+ 4+ YV VYV

Once the file is created, we will read it back into R and create an object of class Speclib
from it:

infile <- "example_in.tif"
wavelength <- wavelength (spectra)
ra <- speclib(infile, wavelength)
tr <- blockSize(ra)

vV VvV Vv Vv

Note that we haven’t read the values of the file into memory, yet. This is now performed in
a small loop over all rows: Let’s assume that we want to calculate all available vegetation
indices from the hyperspectral image. Thus, we will read each block of rows into memory,
calculate the vegetation indices from the subset of pixels in the memory and store the
output in a new file:

outfile <- "example_result.tif"
n_veg <- as.numeric(length(vegindex()))
res <- writeStart(ra, outfile, overwrite = TRUE, nl = n_veg)
for (i in 1:tr$n)
{
v <- getValuesBlock(ra, row=tr$row[i], nrows=tr$nrows[i])
mask(v) <- c(1350, 1450)
v <- as.matrix(vegindex (v, index=vegindex()))
res <- writeValues(res, v, tr$row[i])
}

res <- writeStop(res)

V+++ 4+ 4+ +VVVYV



Note that hsdar is automatically transferring the data to an object of class Speclib during
each step in the loop (so, v is a Speclib).

Depending on the number of columns in your image and on the amount of memory of
your computer the loop may significantly speed up if you read multiple rows per iteration
step. See the tutorial in the raster package mentioned above for further examples and
information.

Additionally, it is possible to include raster file(s) as variables in the SI data of the
Speclib-object created from the hyperspectral raster file. Therefore, we first need to create
a raster file, which contain some kind of additional information. In our example, we will
use the LAT information stored in the Speclib created by PROSAIL:

> LAI <- SI(spectra)$LAI

> SI_file <- "example_SI.tif"

> SI_raster <- setValues(raster(infile), LAI)
> SI_raster <- writeRaster(SI_raster, SI_file)

Now, we can use this file as an attribute in the SI of the Speclib object and calculate e.g.,
the NDVT for all spectra with LAI values greater than 1:

outfile <- "example_result_ndvi.tif"
SI(ra) <- raster(SI_file)
names (SI(ra)) <- "LAI"
res <- writeStart(ra, outfile, overwrite = TRUE, nl = 1)
for (i in 1:tr$n)
{
v <- getValuesBlock(ra, row=tr$row[i], nrows=tr$nrows[i])
mask(v) <- c(1350, 1450)
LAI <- SI(v)$LAI
v <- as.matrix(vegindex (v, index="NDVI"))
v[LAI <= 1] <- NA
res <- writeValues(res, v, tr$row[i])
}

res <- writeStop(res)

V++++++++VVVYVYV

If plotting the resulting NDVI-image (plot(raster("example_result_ndvi.tif"))),
we will see that the upper part with the LAI-values below or equal to 1 does not contain
valid NDVI-values.

10
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3 Plotting Speclibs

Speclibs can easily be plotted using the plot.speclib function. The default way is to plot
mean values (solid line) of all spectra in the Speclib and the standard deviations within
bands. If the data are continuous the standard deviations are plotted as dashed lines
otherwise error bars will indicate standard deviations. You can also plot single spectra
by adapting the FUN parameter to the ID of the spectra to be plotted. Also, you can use
a function as FUN parameter like e.g. the median or mean spectrum. See some examples
below:

> par(mfrow = c(2,2))

> plot(spectral_data, main = "Default Plot")

> plot(spectral_data, FUN = 1, main = "First spectrum of Speclib")
> plot(spectral_data, FUN = "median", main = "Median spectrum")

> plot(spectral_data, FUN = "mean", main = "Mean spectrum")

11
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There are some more parameters which might

parameter "new” allows you to plot more than one spectrum in one plot:

be interesting to plot the data: The

> plot(spectral_data, FUN
> plot(spectral_data, FUN = 2,
> plot(spectral_data, FUN =

]
[
.

|
W

col
col
col

Hredll)
"blue", new = FALSE)
"orange", new = FALSE)
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Beside these specific arguments to plot spectra, any arguments known from the default
plot function can be used.

4 Simulating spectra with PROSPECT and PROSAIL

PROSPECT is a widely used leaf reflectance (or transmittance) model which simulates
reflectance values between 400 and 2500 nm. For a detailed description of PROSPECT
see Jacquemoud and Baret (1990) and for the recently published version "D” see Féret
et al. (2017). PROSPECT requires a set of parameters describing structure and chemical
composition of leafs. In hsdar there are default values for each parameter. However, these
default values were included with the intention to provide an easy access to the model
and should be used with care in any scientific approach! But now, let’s jump into the
simulation of reflectance values:

## Simulate first spectrum with lower chlorophyll content

spectruml <- PROSPECT(N = 1.3, Cab = 30, Car = 10, Cbrown = O,
Cw = 0.01, Cm = 0.01)

## Simulate second spectrum with higher chlorophyll content

spectrum2 <- PROSPECT(N = 1.3, Cab = 60, Car = 10, Cbrown = O,
Cw = 0.01, Cm = 0.01)

## Plot results:

plot(spectruml, col = "darkorange4", ylim = c¢(0,0.5),

subset = c (400, 800))

+ VV + VvV + VYV

13



> plot(spectrum2, col = "darkgreen", new = FALSE)
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In addition to PROSPECT, PROSAIL simulates the reflectance of the canopy of vege-
tation. Thus, the number of parameters is considerably larger and includes the geometry
of the plants and the viewing and illumination geometry. General information about
PROSAIL may be found in Jacquemoud et al. (2009). In the following example, we will
use another way to specify the parameters which is available in PROSPECT and PRO-
SAIL: the parameterList. Let’s assume we want to test the effect of the illumination
geometry (the solar zenith angle) on reference values. It would be possible to simulate
many different spectra with different parameter settings. However, we would then have a
confusing number of speclibs. An easier way is the parameterList (which is a data.frame
in R):

> ## Defining parameter
parameter <- data.frame(tts = seq(15, 85, 0.5))
> head (parameter)

A\

tts
15.
15.
16.
16.
17.
17.

O U W N -
o O o1 © o1 O
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> ## Perform simulation (all other parameters are set to default

> ## values)
> spectra <- PROSAIL (parameterList = parameter)

> spectra

Summary of

Summary of

Total numb
Number of

Width of b
Spectral r

Speclib co

Variabl
1
2 C
3 C
4 Cbro
5
6
7 pso
8 L
9  Typeli
10 lid
11 lid
12 hsp
13 t
14 t
15 P
> ## Let's

Speclib

spectra

er of spectra : 141
bands : 2101
ands : 1

ange of data :

ntains SI

es Classes
N numeric
ab numeric
ar numeric
wn numeric
Cw numeric
Cm numeric
il numeric
AT numeric
df numeric
fa numeric
fb numeric
ot numeric
ts numeric
to numeric
si numeric

see the SI

> summary (SI (spectra))

N
Min.
1st Qu.:
Median :
Mean
3rd Qu.:
Max.

Cm
Min.
1st Qu.:
Median :
Mean
3rd Qu.:
Max.

O O O O O O

1idfb
Min. 1=
1st Qu.:-

N e

400 - 2500 nm

Cab Car Cbrown Cw
5 Min. 140 Min. :8 Min. :0 Min. :0.01
5 1st Qu.:40 1st Qu.:8 1st Qu.:0 1st Qu.:0.01
5 Median :40 Median :8 Median :0 Median :0.01
5 Mean 140 Mean :8 Mean 0 Mean 0.01
5 3rd Qu.:40 3rd Qu.:8 3rd Qu.:0 3rd Qu.:0.01
5 Max . 140 Max . :8 Max . :0 Max . :0.01
psoil LAT TypeLidf lidfa
.009 Min. :0 Min. 01 Min. 01 Min. -0
.009 1st Qu.:0 1st Qu.:1 1st Qu.:1 1st Qu.:-0
.009 Median :0 Median :1 Median :1 Median :-0
.009 Mean :0 Mean 01 Mean 01 Mean :=0
.009 3rd Qu.:0 3rd Qu.:1 3rd Qu.:1 3rd Qu.:-0
.009 Max. :0 Max. 01 Max. 01 Max. :=0
hspot tts tto
0.15 Min. :0.01 Min. :15.0 Min. :10
0.15 1st Qu.:0.01 1st Qu.:32.5 1st Qu.:10

15

.35
.35
.35
.35
.35
.35



Median :-0.15 Median :0.01 Median :50.0 Median :10

Mean :-0.15 Mean :0.01 Mean :50.0 Mean 110

3rd Qu.:-0.15 3rd Qu.:0.01 3rd Qu.:67.5 3rd Qu.:10

Max. :-0.15 Max. :0.01 Max . :85.0 Max. :10
psi

Min. :0

1st Qu.:0

Median :0

Mean :0

3rd Qu.:0

Max. :0

We can visualize the effect of the solar zenith angle simply plotting the spectra in different
colours:

> colours <- colorRamp(c("darkorange4", "yellow"))
> plot(spectral1,], ylim = c(0, 0.3),
+ col = rgb(colours(SI(spectra)$tts[1]/85),

+ maxColorValue = 255))
> for (i in 2:nspectra(spectra))
+ plot(spectrali,], new = FALSE,
+ col = rgb(colours(SI(spectra)$tts[i]/85),
+ maxColorValue = 255))
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Of course it is also possible to test the effect of two parameters on the reflectance values.
In the following example we will plot the reflectance values of canopies with three different
LAT values. Within each LAT class we vary the leaf angle distribution:

> ## Defining parameter

> parameter <- data.frame(LAI = rep.int(c(1,2,3),5),

+ TypeLidf = 1,
+ lidfa = c(rep.
+ rep.
+ 1idfb = c(rep.
+ rep.
> parameter

LAT TypeLidf lidfa 1lidfb

1 1.00 0.00

1.00 0.00

1.00 0.00
-1.00 0.00
-1.00 0.00
-1.00 0.00
0.00 -1.00
0.00 -1.00
0.00 -1.00
0.00 1.00
0
0

© 00 ~NO O d WN -

=
= O

.00 1.00
.00 1.00
-0.35 -0.15
-0.35 -0.15
-0.35 -0.15

= e
w N

=
S
e e

W N, WONFE, WNEFE, WONFE WN

[
[l

> ## Perform simulation

> spectra <- PROSAIL(parameterList = parameter)

> spectra

Summary of Speclib

Summary of spectra

Total number of spectra : 15

Number of bands : 2101

Width of bands : 1

Spectral range of data : 400 - 2500 nm

Speclib contains SI
Variables Classes
N numeric
Cab numeric
Car numeric
Cbrown numeric

O WN -

Cw numeric
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.int (-1,3),
.int(-0.35,3)),
.int(-1,3),
.int(-0.15,3)))



© 0N O

10
11

+ 4+ +V+++V++V+E+E+FVVYVVY

Cm numeric

psoil numeric
LAT numeric
TypeLidf numeric
lidfa numeric
1idfb numeric
hspot numeric
tts numeric

tto numeric

psi numeric

## Plot result:
## Colour indicates LAI
## Line style indicates LIDF type
colours <- c("darkblue", "red", "darkgreen")
LIDF_type <- as.factor(c(rep.int("Planophile", 3),
rep.int ("Erectophile", 3),
rep.int("Plagiophile", 3),
rep.int ("Extremophile", 3),
rep.int ("Spherical”, 3)))
plot(spectrall,], ylim = c(0, 0.5),
col = colours[SI(spectra)$LAI[1]],
1ty = which(levels(LIDF_type) == LIDF_type[1]))
for (i in 2:nspectra(spectra))
plot(spectrali,], new= FALSE,
col = colours[SI(spectra)$LAI[i]],
1ty = which(levels(LIDF_type) == LIDF_typel[i]))
legend("topright",
legend = c(paste("LAI =", c(1:3)), "", levels(LIDF_type)),
col = c(colours, rep.int("black", 1 + length(levels(LIDF_type)))),
1ty = c(rep.int(1, 3), 0, 1:length(levels(LIDF_type))))
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5 Basic data manipulation tools

The Speclib-class provides several routines for data manipulation which will be described
in the following.

5.1 Subsets of spectra

Subsets of Speclibs can be built using the subset function. This function separates the
spectra according to a condition. Usually the conditions are derived from the SI stored
in the Speclib like study site, season or vegetation type. For example you could split
“spectral_data” to get a subset for the summer and the spring spectra:

> ## Return names of SI data
> names (SI(spectral_data))

[1] "year" "season" "site" "chlorophyll"

> ## Devide into both seasons using to the SI attribute "season"

> sp_spring <- subset(spectral_data, season == "spring")
> sp_summer <- subset(spectral_data, season == "summer")
> #

> #Plot results:

> #
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> plot(sp_spring, FUN = "mean", col = "darkgreen", ylim = c(0,70))
> plot(sp_summer, FUN "mean", col "darkred", new = FALSE)
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20
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400 600 800 1000 1200 1400 1600

Wavelength (nm)

As you can see the Speclib is split into two Speclibs, one containing all spectra which had
had been sampled in spring and one containing all spectra which had been acquired in
sumimer.

5.2 Mask

Usually, there are parts in the spectrum which are associated with errors or which are
simply not of interest. hsdar allows you to mask these parts so that they don’t appear in
further analysis any more. In ”spectral_data”, the areas between 1040 and 1060 nm are
errors due to channel crossing of the spectrometer and the wavelengths 1300 to 1450 are
affected by water absorption. These areas should be masked in the following. There are
several ways of how to enter the lower and upper limits of the wavelengths to be masked.
For example you can set these values from a vector which simply consists of a sequence
of lower and upper wavelengths. All wavelength between lower and upper wavelength are
then masked. See 7mask for further options of how to specify these values.

> spectral_data_masked <- spectral_data

> mask (spectral_data_masked) <- c(1040,1060,1300,1450)
> #

> #plot results:

> #
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> par(mfrow = c(1,2))
> plot(spectral_data, FUN = 1)
> plot(spectral_data_masked, FUN = 1)
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Beside of masking these wavelength you can also assign "new” values to them by linear
interpolation. Note that interpolation is not working if start or end point of the whole
spectrum were masked.

> spectral_data_interpolated <- interpolate.mask(spectral_data_masked)
> plot(spectral_data_interpolated, FUN = 1)
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5.3 Filter

Having a look at one spectrum in detail you might wish to smooth the spectrum somehow.

> plot(spectral_data, FUN = 1, subset = c(1200,1300)) #raw spectrum
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hsdar implements several methods to smooth spectra. These are Savitzky-Golay, Spline,
locally weighted scatterplot smoothing (Lowess) and Mean-filter. noiseFiltering needs a
Speclib as input and the method to be used. Depending on the method there are further
parameters to be set. Have a look on the hsdar help to find more information on these
additional parameters.

> #

> #Filter Speclib:

> #

> sgolay <- noiseFiltering(spectral_data, method = "sgolay", n = 25)
> lowess <- noiseFiltering(spectral_data, method = "lowess", f = .01)
> meanflt <- noiseFiltering(spectral_data, method = "mean", p = 5)

> spline <- noiseFiltering(spectral_data, method = "spline",

+ n = round(nbands (spectral_data)/10, 0))

Now plot the results:

par (mfrow = c(2,2))

plot(sgolay, FUN = 1, subset = c(1200,1300), col = "red",
main = "Savitzky-Golay-Filter")

plot(spectral_data, FUN = 1, new = FALSE) #raw spectrum

plot(lowess, FUN = 1, subset = c(1200,1300), col = "red",

vV V. + Vv Vv

23



main = "Lowess-Filter")
plot(spectral_data, FUN = 1, new = FALSE) #raw spectrum
plot (meanflt, FUN = 1, subset = c¢(1200,1300), col = "red",
main = "Mean-filter")
plot(spectral_data, FUN = 1, new = FALSE) #raw spectrum
plot(spline, FUN = 1, subset = c(1200,1300), col = "red",
main = "Spline-Filter")
plot(spectral_data, FUN = 1, new = FALSE) #raw spectrum
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5.4 Calculations of derivations

The derivation of spectra are needed in some analyzing techniques for example to charac-
terize the shape of the red edge. The number of derivation is indicated by the parameter
m, thus m = 1 returns the first derivation of the spectra.

> spectral_data_lderiv <- derivative.speclib(spectral_data, m
> spectral_data_2deriv <- derivative.speclib(spectral_data, m
> ## Get index of red edge wavelength

> redEdgePart <- wavelength(spectral_data_2deriv) >= 600 &

1)
2)
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+ wavelength (spectral_data_2deriv) <= 800
> ## Cut spectra to red edge
> spectral_data_lderiv <- spectral_data_lderiv[,redEdgePart]
> spectral_data_2deriv <- spectral_data_2deriv[,redEdgePart]
> #
> #plot derivations of the red edge area of 1. spectrum in the Speclib:
> #
> par(mfrow=c(1,2))
> plot(spectral_data_lderiv, FUN = 1, xlim = c(600,800),
+ main = "First derivation")
> plot(spectral_data_2deriv, FUN = 1, xlim = c(600,800),
+ main = "Second Derivation")
First derivation Second Derivation
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However, depending on the objectives it might be favorable to first smooth the spectra
before calculating the derivations:

> spectral_data_lderiv <- derivative.speclib(noiseFiltering(
+  spectral_data, method = "sgolay", n = 35), m = 1)

> spectral_data_2deriv <- derivative.speclib(noiseFiltering(
+  spectral_data, method = "sgolay", n = 35), m = 2)

> #

> #Plot results:

> #

> par(mfrow=c(1,2))

>
+
>
+

plot(spectral_data_lderiv, FUN = 1, xlim = c(600,800),
main = "First derivation")

plot (spectral_data_2deriv, FUN = 1, xlim = c(600,800),
main = "Second Derivation")
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5.5 Resampling of bands to various satellite sensors

hsdar allows to resample the speclib to the bands of common satellite sensors. The char-
acteristics of (satellite) sensor to integrate spectra can be chosen from a list of already
implemented sensors or they can be passed as a data.frame with two columns: first col-
umn with lower bounds of channels and second column with upper bounds. See which
sensors are already implemented:

> get.sensor.characteristics(0)

Numerical abbreviation Response function implemented

ALT 5 FALSE
EnMAP 11 FALSE
Hyperion 6 FALSE
Landsat4 9 TRUE
Landsatb 4 TRUE
Landsat7 10 TRUE
Landsat8 12 TRUE
MODIS 1 FALSE
Quickbird 7 TRUE
RapidEye 2 TRUE
Sentinel2a 13 TRUE
Sentinel2b 14 TRUE
WorldView2-4 8 TRUE
WorldView2-8 3 TRUE

For some sensors the spectral response functions are available. The spectra can be re-
sampled in three ways. One possibility is the use of the spectral response functions, if
available. Otherwise spectra can be resampled assuming a Gaussian distribution (respon-
sefunction = FALSE) or the mean value (responsefunction = NA) of reflectances between
the limiting wavelength of a satellites channel.
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> ## use spectral response function
> spectral_data_resampled <- spectralResampling(spectral_data,
+ "WorldView2-8")

See what changed in the Speclib:

> spectral_data_resampled

Summary of Speclib

History of usage

(¢D) Reflectance = mean applied to matrix spectra by attribute 'site'

(2)  Apply mask to spectra
(3)  Integrated spectra to WorldView2-8 channels

Summary of spectra

Total number of spectra : 45

Number of bands : 8

Mean width of bands : 66.25 nm
Spectral range of data : 427 - 908 nm

Speclib contains SI
Variables Classes
year integer
season factor
site factor

S w N e

chlorophyll numeric
> wavelength (spectral_data_resampled)
[1] 427 478 546 608 659 724 831 908

> #
> #plot results:
> plot(spectral_data_resampled)
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You can see that the number of bands is now reduced to the 8 WorldView?2 bands instead
of 1401 hyperspectral channels. The wavelengths are automatically adapted in the speclib
attribute. Note that standard deviations are now not longer plotted as dashed line by
default but as error bars because the data are not longer continuous.

6 Continuum removal

Continuum removal is a commonly used method in hyperspectral remote sensing to nor-
malize spectra and to detect and ensure the comparability of absorption features The con-
tinuum removal transformation is performed by firstly establishing a continuum line/hull
which connects the local maxima of the reflectance spectrum. Two kinds of this hull are
well established in scientific community: the convex hull (e.g. Mutanga and Skidmore
(2004a)) and the segmented hull (e.g. Clark et al. (1987)). Both hulls are established
by connecting the local maxima, however, the precondition of the convex hull is that the
resulting continuum line must be convex whereas considering the segmented hull it might
be concave or convex but the algebraic sign of the slope is not allowed to change from the
global maximum of the spectrum downwards to the sides. In contrast to a convex hull,
the segmented hull is able to identify small absorption features.

Because the continuum removal transformation is sensitive to errors in the spectrum,
it’s advisable to first mask erroneous parts of the spectrum. Further you should consider
to smooth the spectra very slightly to avoid small local maxima which are not associated
with reflection maxima. Read section 5.3 and 5.2 for more details on the preprocessing.
For this example we use simulated spectra from the PROSAIL model (see section 4)
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> parameter <- data.frame(N = c¢(0.5,1),LAI = 0.5,Car=3)
> spectra <- PROSAIL (parameterList = parameter)

Then have a look at the transformSpeclib function:

> str(transformSpeclib)

function (data, ..., method = "ch", out = "bd")

“data” defines the speclib which is to be transformed. Concerning the "methods” pa-
rameter, currently the mentioned convex hull ("ch”) and the segmented hull ("sh”) are
implemented. The “out” parameter indicates if the continuum line ("raw”), the continuum
removed spectra (band depth, "bd”) or the "ratio” will be returned. Have a look on the
help page of transform.speclib and the listed literature for details on these methods or
for help with interpretation. The output type of "ratio” the "bd” is a speclib, out="raw”
returns an object of "clman”. “clman” is a class designed to store and handle manual

continuum lines.

The following example will show you how to calculate the continuum line (just for
visualization) and the band depth using the convex hull as well as the segmented hull

approach:

> #convex hull:

> ch_cline <- transformSpeclib(spectra,

+ method = "ch", out = "raw")
> ch_bd <- transformSpeclib(spectra,

+ method = "ch", out = "bd")

> #

> #segmented hull:

> #

> sh_cline <- transformSpeclib(spectra,

+ method = "sh", out = "raw")
> sh_bd <- transformSpeclib(spectra,

+ method = "sh", out = "bd")

Plot continuum lines and resulting band depths for both methods to see the differences:

#plot results for the first spectrum:
#
par (mfrow = c(2,2))
plot(ch_cline, ispec = 1, numeratepoints = FALSE,
main = "Convex hull - Continuum line")
plot(ch_bd, ispec = 1, main = "Convex hull - Band depth")
plot(sh_cline, ispec = 1, numeratepoints = FALSE,
main = "Segmented hull - Continuum line")
plot(sh_bd, ispec = 1, main = "Segmented hull - Band depth')

V + VV + VvV VYV
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6.1 Manually adapting continuum lines

Let’s have a look on the segmented hull in more detail and compare it to another spectrum.
Therefore, we zoom to the red edge area:

+ V + Vv Vv

par (mfrow = c(1,2))
plot(sh_cline, ispec =
xlim =

plot(sh_cline, ispec = 2, main =
xlim =

30

1, main = "Continuum line, Spectrum 1",
c(500,800)) #first spectrum
"Continuum line, Spectrum 2",
c(500,800)) #fifth spectrum
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By the way: Plotting an object of the class “clman” allows you to numerate the local
maxima which were used to construct this line.

Comparing the first spectrum and the fifth spectrum it is obvious that in the first
there are several small local maxima around 600 nm whilst the fifth spectrum features
clearly one larger absorption feature between the local maxima around 550 nm and 750
nm. Thus, if your objectives include to compare the absorption in the red edge of different
spectra, these two spectra would not be comparable due to the fact that this large feature
is split into several smaller features in spectrum 1.

However, you might have the impression that some of the local maxima could be re-
moved because they are very small and maybe afflicted with uncertainties which might
legitimate it to manipulate the continuum line. Therefore, hsdar provides functions to
remove and add “continuum points” to a continuum line which allows to adapt the con-
tinuum line which can be used to also adapt band depth or ratio transformation. Handle
these functions with care to avoid continuum lines too much build by subjective decisions.

If you have a large Speclib, its quite labor-intensive to manually adapt the continuum
lines because you have to go through every sample in you Speclib. In the following example
the procedure will be shown with one exemplary sample:

Continuum points can be deleted using the deletecp function:

> str(deletecp)

function (x, ispec, cpdelete)

with x is the continuum line, ispec is the name or index of the spectrum to be modified
and cpdelete is a single value or vector of wavelength containing fix points to be deleted.
Comparing spectrum 1 and spectrum 2 we have seen that the continuum line of spectrum
1 features additional local maxima beyond 530 nm which are, however, not physically
explainable so that you might want to delete all points between 530nm and 600nm:

> getcp(sh_cline, 1, subset = c(500, 600)) #see all points

$ptscon
Wavelength Reflectance
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1 529 0.02743533

2 530 0.02744671
3 550 0.02748033
$ispec

(11 1

> sh_cline <- deletecp(sh_cline, 1,
+ c(530:600)) #delete all between 500 and 700 nm
> getcp(sh_cline, 1, subset = c(500, 600)) #see what happened

$ptscon

Wavelength Reflectance
1 529 0.02743533
$ispec
[1] 1

Similarly you could add a continuum point by specifying the wavelength of the point to
be added. Though it doesn’t make sense in this context you could add a point at the
wavelength 460:

> #sh_cline <- addcp(sh_cline, 1, 460)

After modifying the continuum line by adding and/or deleting continuum points, you
can check the line for intersection with the spectrum using the checkhull function:

> checkhull (sh_cline, 1)$error

[1] 2487 2495

If there are any errors, additional continuum points have to be defined to meet the con-
straint that the hull does not cross the spectrum. In this case, we have to add points
at 2487 and 2495 which is an issue due to the mask. As often the start and the end of
the spectra are affected with problems, we add points for all wavelengths between 2487
and 2498 nm to avoid further problems. Please note that these points do not affect the
following example as they are out of the range of interest.

> sh_cline <- addcp(sh_cline, 1, c(2487:2498))

Again, we check for errors:

> checkhull(sh_cline, 1)$error

[11 00
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After all uncertainties are removed, the hull can be re-calculated using "makehull”:

> sh_clineUpdate <- makehull(sh_cline, 1) #update the hull of spectrum 1

After all hulls of the Speclib are modified and corrected, the transformed Speclib has to
be updated with the new hulls:

> sh_bd <- updatecl(sh_bd, sh_clineUpdate) #update the band depth

Now, we can plot the resulting continuum removed spectra between 300 and 800 nm:

> #plot new line:
> par (mfrow = c(1,2))
> plot(sh_cline, ispec = 1, main = "Updated Segmented hull",
+ x1lim = ¢(300,800))
> #plot new band depth
> plot(sh_bd[1,], main="Updated hull - Band depth",
+ x1im = ¢(300,800))
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6.2 Extracting absorption features

For some cases, it is of interest to inspect and characterize individual absorption features
(e.g. considering chlorophyll absorption of plants). To do so, let’s continue with the
preprocessed spectra from section 6 and extract the major absorption features. As w've
already seen, there are major features around the wavelengths 450, 600, 1500 and 2000
nm. The following example shows how to extract these four featurss.
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> ##Example to isolate the features around 450, 600, 1500 and 2000 nm.
> featureSelection <- specfeat(sh_bd, c(450,600, 1500, 2000))

> ## Plot features

> plot(featureSelection, fnumber= 1:4)
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In some cases it might appear that the features of some spectra are larger than others as
the fix points of the continuum removed spectra are usually not equal. If this is the case
(not present in the current example), hsdar gives functionality to cut the features at fixed
wavelengths to ensure comparability. The following example shows how to cut the first
two features at defined wavelengths to clearly separate the first two absorption features
for all spectra in the Speclib:

> featuresCut <- cut_specfeat (featureSelection, fnumber = c(1,2),

+ limits = c(c(310, 525), c(530, 800)))
> ## Plot result

> plot(featuresCut, 1:2)
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The isolated and cleaned features can then be characterized by calculating e.g. the
area of the features. This information can be added to the supplementary information
of the speclib, e.g. for a later statistical analysis of the relationships between the size of
specific absorption features and vegetation characteristics.

## Calculate properties of features

featureProp <- feature_properties(featureSelection)
## See resulting feature property variables

head (SI(featureProp))

vV Vv Vv Vv

N Cab Car Cbrown Cw Cm psoil LAI TypelLidf lidfa 1idfb hspot
0.5 40 3 0 0.01 0.009 0 0.5 1 -0.35 -0.15 0.01
21.0 40 3 0 0.01 0.009 0 0.5 1 -0.35 -0.15 0.01

tts tto psi f450_area f600_area f1500_area £2000_area f450_maxwl
1 30 10 0 17.33435 82.24519 76.98186  144.1289 488

30 10 0 25.00874 93.50950 77.46814  147.5307 490
£600_maxwl £1500_maxwl f£2000_maxwl £450_lo_wlhm £450_up_wlhm
1 665 1445 1950 431 513
665 1445 1950 434 514
£450_width_wlhm f450gauss_lo_wlhm f450gauss_up_wlhm £600_lo_wlhm
1 82 0.01554335 0.02768966 565
2 80 0.02392144 0.05048365 563
£600_up_wlhm f600_width_wlhm f600gauss_lo_wlhm f600gauss_up_wlhm
1 717 152 0.02406863 0.08448581

[
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2 713 150 0.02770233 0.10209275
£1500_lo_wlhm £1500_up_wlhm £1500_width_wlhm f1500gauss_lo_wlhm

1 1386 1533 147 0.07323509
2 1387 1532 145 0.07444304
£1500gauss_up_wlhm £2000_lo_wlhm £2000_up_wlhm £2000_width_wlhm
1 0.02948896 1873 2076 203
2 0.02962346 1874 2076 202
£2000gauss_lo_wlhm £2000gauss_up_wlhm £450_max £600_max £1500_max
1 0.1380797 0.04917713 0.2235747 0.5634348 0.4950826
0.1399368 0.05268565 0.3246917 0.6456393 0.5033862
£2000_max
1 0.7408866
2 0.7575050

7 Calculating spectral indices

There are three different kinds of spectral indices implemented in hsdar: A variety of com-
mon as well as recently developed vegetation indices, red edge parameters and normalised
ratio indices.

7.1 Vegetation indices

To see the whole set of implemented indices and how they are calculated please read the
hsdar help or manual. The indices are calculated for each sample in the Speclib. For
example calculate the normalized difference vegetation index (NDVI) like this:

> data(spectral_data)
> ndvi <- vegindex(spectral_data, "NDVI")
> ndvi #see ndvi

[1] 0.8645385 0.8902434 0.9030130 0.8645695 0.8912563 0.8744318
[7] 0.8859704 0.8970170 0.8914286 0.8804466 0.8873673 0.8921778
[13] 0.9007679 0.8898776 0.8911217 0.8518171 0.8957341 0.8821210
[19] 0.8821841 0.8839156 0.8798848 0.8740733 0.8639535 0.8770984
[25] 0.8866471 0.8864226 0.8872358 0.8845266 0.8778616 0.9002123
[31] 0.9190947 0.9293130 0.9151203 0.9307388 0.9335307 0.9178542
[37] 0.9393256 0.9354712 0.9271099 0.9375971 0.9321078 0.9296322
[43] 0.9350494 0.9262040 0.9327303

You can also directly calculate all available indices by creating a vector of the names
of all already implemented indices with "vegindex()” which is used as index parameter in
the vegindex function:

> avl <- vegindex ()
> vi <- vegindex(spectral_data, index = avl)
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7.2 Red edge parameters
Shape and location of the red edge can be described by the following parameters:
10 wavelength of the minimum reflectance in the red spectrum
RO minimum reflectance in the red spectrum
Ip wavelength of the inflection point
Rp reflectance at the inflection point
ls wavelength of the reflection shoulder
Rs Reflectance at the shoulder

See the figure below for an example where the parameters are located in a reflectance
spectrum.
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Red edge parameters in hsdar are calculated as proposed in Bach (1995) from the
spectral area between 600 and 900 nm. 10 is calculated as the last root before the maximum
value of the 2nd derivation. The minimum reflectance is the reflectance at (10). The
inflection point is the root of the 2nd derivative function between the maximum value
and the minimum value. The shoulder wavelength is the first root beyond the minimum
value of the 2nd derivation.

> data(spectral_data)
> rd <- rededge(spectral_data)

Results can be presented as boxplot. For example create a boxplot for RO:

> boxplot(rd$RO ~ SI(spectral_data)$season, ylab = "RO")
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7.3 Normalised ratio indices

hsdar has implemented a method to calculate NDVI-like Normalised ratio indices (NRI)
(also named as narrow band indices). Thus for all possible band combinations in the
spectrum, the following calculation is performed:

Rp1 — Rpo

_ 1
Rp1+ Rpo S

nrip1,B2 =
with R being reflectance values at wavelength B1 and B2, respectively.
With this function you could now calculate the NRI for all band combinations, however
this requires some time so that we will explain the NRI using resampled bands. Resample
“spectral_data to the resolution of WorldView-2-8:

> spec_WV <- spectralResampling(spectral_data, "WorldView2-8",
+ response_function = FALSE)

Now, see how nris are calculated:

> str(ari)

function (x, bl, b2, recursive = FALSE, bywavelength = TRUE)
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> help(nri)

There are two possibilities what to do with nri. Either you could assign two bands by
wavelength from which the NRI should be calculated or you can assign "recursive=TRUE”
which means that NRI are calculated for all possible band combinations. For our case with
8 WorldView channels this would mean that 8*7 = 56 combinations will be calculated for
each spectrum in the Speclib.

> nri_WV <- nri(spec_WV, recursive = TRUE)
> nri_WV

Data: nri dimension: 8, 8, 45

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] NA NA NA NA NA NA
[2,] 0.2002899 NA NA NA NA NA
[3,] 0.5084916 0.3431500 NA NA NA NA
[4,] 0.4606805 0.2868589 -0.06243717 NA NA NA
[5,] 0.4664228 0.2935569 -0.05514847 0.007313881 NA NA
[6,] 0.8562469 0.7917383 0.61592603 0.653241754 0.6490287 NA
[7,] 0.9133002 0.8726372 0.75581145 0.781375051 0.7785102 0.2617243
[8,] 0.9174453 0.8786030 0.76656735 0.791138887 0.7883868 0.2853859
[,71 [,8]
[1,] NA NA
2,1 NA NA
[3,] NA NA
[4,] NA NA
[5,] NA NA
[6,] NA NA
(7,1 NA NA

[8,] 0.02557163  NA

(43 layers omitted)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] NA NA NA NA NA NA
[2,] 0.1809942 NA NA NA NA NA
[3,] 0.4942798 0.3440664 NA NA NA NA
[4,] 0.4062179 0.2430969 -0.11018558 NA NA NA
[5,] 0.4495496 0.2923421 -0.05750886 0.05301264 NA NA
[6,] 0.8970190 0.8548073 0.72354215 0.77216750 0.7498497 NA
[7,] 0.9488000 0.9269964 0.85592633 0.88284975 0.8705822 0.3477377
[8,]1 0.9509982 0.9300971 0.86182916 0.88771623 0.8759247 0.3673642
[,71 [,8]
[1,] NA NA
2,1 NA NA
[3,] NA NA
[4,] NA NA
[5,] NA NA
[6,] NA NA
(7,1 NA NA

[8,]1 0.02250085  NA
wavelength of length = 8
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fwhm for each wavelength

History of usage

(¢D) Reflectance = mean applied to matrix spectra by attribute 'site'
(2) Integrated spectra to WorldView2-8 channels

(3)  NRI values calculated

To get access to the NRI of a specific spectrum use

> str(ari_WV)

to see that the NRI can be accessed via object$nri. This object has three dimensions:
band 1, band 2 and the spectrum. Therefore type the following to see the NRI for all
band combinations of the first spectrum in the Speclib:

> nri_WV$nril,,1]

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] NA NA NA NA NA NA
[2,] 0.2002899 NA NA NA NA NA
[3,] 0.5084916 0.3431500 NA NA NA NA
[4,] 0.4606805 0.2868589 -0.06243717 NA NA NA
[5,] 0.4664228 0.2935569 -0.05514847 0.007313881 NA NA
[6,] 0.8562469 0.7917383 0.61592603 0.653241754 0.6490287 NA
[7,] 0.9133002 0.8726372 0.75581145 0.781375051 0.7785102 0.2617243
[8,] 0.9174453 0.8786030 0.76656735 0.791138887 0.7883868 0.2853859
[,71 [,8]
[1,] NA NA
[2,1] NA NA
[3,] NA NA
[4,] NA NA
[5,] NA NA
(6,1 NA NA
(7,1 NA NA

[8,]1 0.02557163  NA

Note that the resulting matrix only contains the indices for one side of the matrix because
the information content would be the same for the other side of the matrix only with
opposite algebraic sign.

8 Analysing relations between NRI and environmen-
tal variables

This section will show how to relate the NRI (see section 7.3) to environmental variables
and how to create nice plots with a lot of information content.
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If you haven’t already calculated the NRI from WorldView-resampled bands, do it
now to work through this section:

> spec_WV <- spectralResampling(spectral_data, "WorldView2-8",
+ response_function = FALSE)
> nri_WV <- nri(spec_WV, recursive = TRUE)

8.1 Correlations

In this example we want to correlate each NRI to the chlorophyll content of the vegetation.
Use the Speclib and NRI data created in section 8. First create a new variable from the
SI of the Speclib containing the chlorophyll content per sample:

> chlorophyll <- SI(spec_WV)$chlorophyll

Then you can correlate this to the NRI:

> cortestnri <- cor.test(nri_WV, chlorophyll)

See how the output of such a correlation is printed:

> cortestnri

Data: nri dimension: 8, 8, 45

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] NA NA NA NA NA NA
[2,] 0.2002899 NA NA NA NA NA
[3,] 0.5084916 0.3431500 NA NA NA NA
[4,]1 0.4606805 0.2868589 -0.06243717 NA NA NA
[5,]1 0.4664228 0.2935569 -0.05514847 0.007313881 NA NA
[6,]1 0.8562469 0.7917383 0.61592603 0.653241754 0.6490287 NA
[7,] 0.9133002 0.8726372 0.75581145 0.781375051 0.7785102 0.2617243
[8,] 0.9174453 0.8786030 0.76656735 0.791138887 0.7883868 0.2853859
[,71 [,8]
[1,] NA NA
[2,] NA NA
[3,1] NA NA
(4,1 NA NA
[5,] NA NA
[6,] NA NA
[7,] NA NA

[8,] 0.02557163  NA

(43 layers omitted)
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[,1] [,2] [,3] [,4] [,5] [,6]

[1,] NA NA NA NA NA NA

[2,] 0.1809942 NA NA NA NA NA

[3,] 0.4942798 0.3440664 NA NA NA NA

[4,] 0.4062179 0.2430969 -0.11018558 NA NA NA

[5,] 0.4495496 0.2923421 -0.05750886 0.05301264 NA NA

[6,] 0.8970190 0.8548073 0.72354215 0.77216750 0.7498497 NA

[7,1 0.9488000 0.9269964 0.85592633 0.88284975 0.8705822 0.3477377

[8,]1 0.9509982 0.9300971 0.86182916 0.88771623 0.8759247 0.3673642
[,71 [,8]

[1,] NA NA

2,1 NA NA

[3,] NA NA

(4,] NA NA

[5,] NA NA

[6,] NA NA

(7,1 NA NA

[8,]1 0.02250085  NA
wavelength of length = 8
fwhm for each wavelength

Call: cor.test(NA NA NA)

Models contain following parameters:
[[1]1] p.value
[[2]] estimate
Dimension of each parameter: 8, 8, 1

History of usage

(GD) Reflectance = mean applied to matrix spectra by attribute 'site'
(2)  Integrated spectra to WorldView2-8 channels

(3)  NRI values calculated

As you can see, there are p values and estimates of the correlation stored for each band
combination. The coefficients of the correlation can be visualized by the function by
plotting the object. The p-value is in most cases the interesting coefficient:

> plot(cortestnri, coefficient = "p.value")
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Now it becomes obvious that the NRI from the band combination 4 and 3 is the definitely
not correlated to vegetation cover. To see which NRI are significantly correlated let’s only
plot the p-values where NRI was correlated with a p value less than 0.01:

> plot(cortestnri, coefficient = "p.value", range = c(0,0.01))
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Obviously all other NRI except the mentioned NRI from the bands 4 and 3 are signifi-
cantly correlated to vegetation cover.
8.2 Linear models

Linear regressions between NRI and environmental variables can be performed using the
"Im.nri” function. See how this function works:

> str(lm.nri)

function (formula, preddata = NULL, ...)

The function requires the formula of the model as well as "preddata” which is a Speclib
or a data.frame containing the environmental variables. Use the Speclib and NRI data
created in section 8 to perform a linear regression between NRI and fraction of vegetation
which is stored as SI-attribute in "spec_WV™:

> Imnri <- Im.nri(nri_WV ~ chlorophyll, preddata = spec_WV)

See how the Imnri object looks like:
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> Imnri

Data: nri dimension: 8, 8, 45

(1,]
2,1
(3,1]
[4,]
(5,]
(6,1]
(7,1
(s,]

[1,]
(2,1]
(3,1
4,1]
(5,1
(6,1
7,1
(8,1

(1,]
2,1]
(3,1
[4,]
(5,]
(6,1
(7,1
(s,]

[1,]
[2,]
(3,]
4,1]
(5,1
(6,1
7,1

O O O O O O O

O O O O O O O

[,1] [,2]
NA NA
.2002899 NA
.5084916 0.3431500
.4606805 0.2868589
.4664228 0.2935569
.8562469 0.7917383
.9133002 0.8726372
.9174453 0.8786030

(.71 [,8]

NA NA

NA NA

NA NA

NA NA

NA NA

NA NA

NA NA

.02557163  NA

[,3]

NA

NA

NA
-0.06243717
-0.05514847
0.61592603
0.75581145
0.76656735

(43 layers omitted)

[8,1 0.02250085

[,1] [,2]
NA NA
.1809942 NA
.4942798 0.3440664
.4062179 0.2430969
.4495496 0.2923421
.8970190 0.8548073
.9488000 0.9269964
.9509982 0.9300971

(.71 [,8]

NA NA

NA NA

NA NA

NA NA

NA NA

NA NA

NA NA

NA

[,3]

NA

NA

NA
-0.11018558
-0.05750886
0.72354215
0.85592633
0.86182916

wavelength of length = 8
fwhm for each wavelength

Call: 1m(nri_WV ~ chlorophyll)

Models contain following parameters:
[[1]] estimate
[[2]] std.error
[[31] t.value
[[4]] p.value
[[5]] r.squared
Dimension of each parameter: 8, 8, 2

[,4]

NA

NA

NA

NA
0.007313881

[,5]
NA
NA
NA
NA
NA

0.653241754 0.6490287
0.781375051 0.7785102 0.2617243
0.791138887 0.7883868 0.2853859

[,4]

NA

NA

NA

NA
0.05301264

[,5]
NA
NA
NA
NA
NA

0.77216750 0.7498497
0.88284975 0.8705822 0.3477377
0.88771623 0.8759247 0.3673642

45

[,6]
NA
NA
NA
NA
NA
NA

[,6]
NA
NA
NA
NA
NA
NA



History of usage

@¢D) Reflectance = mean applied to matrix spectra by attribute 'site'
(2) Integrated spectra to WorldView2-8 channels

(3) NRI values calculated

Each model contains the parameters known from common linear regressions. However,
the dimensions of the parameters make clear that there are 8*8 models stored in the
object for which the parameters are available. Imagine you have even more bands than
8 you will most likely want to find out which is the best performing model. You can do
this using the function "nri_best_performance”:

> str(nri_best_performance)

function (nri, n = 1, coefficient = "p.value", predictor = 2,
abs = FALSE, findMax = FALSE, ...)

The function takes the NRI data and the linear (or generalized linear) model as input.
Further "n” can be specified which is the number of best models which should be returned.
The other parameters are not interesting at the moment.

In this example we want to get only the best model (n=1):

> nribest <- nri_best_performance(lmnri, n = 1)
> nribest

$Indices
Band_1 Band_2
1 608 478

$Models

Call:
Im(formula = formula, data = glm_data)

Coefficients:
(Intercept) chlorophyll
0.3440 -0.0022

Maybe it it interesting to see the NRI values of the best performing NRI. Use "getNRI”
and the NRI data as well as the best performing NRI as input. For each sample of the
Speclib, the NRI value of the best model is then shown:

> getNRI(nri_WV, nribest)

[1] 0.2868589 0.3000261 0.2811214 0.3118467 0.2994424 0.2981061
[7] 0.3026912 0.2501619 0.3055730 0.3027269 0.3077740 0.2571044
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[13] 0.2899708 0.2831544 0.3031803 0.2373592 0.2618759 0.2484873
[19] 0.2557212 0.2597004 0.2599517 0.2698255 0.2547197 0.2666212
[25] 0.2652733 0.2653331 0.2612740 0.2595289 0.2557841 0.2412859
[31] 0.2521280 0.2256435 0.2620617 0.2560031 0.2326724 0.2524840
[37] 0.2566662 0.2510728 0.2627070 0.2551183 0.2452236 0.2529550
[43] 0.2293681 0.2546962 0.2430969

8.3 Generalized linear models

Calculation and plotting of generalized linear models work in the same way as the cal-
culation of linear models in section 8.2. Note that the coefficients change because of the
different models (e.g. r.squared is not available using glms).

8.4 Plot NRI models

Linear (or generalized linear) models of NRI and environmental variables can be plot-
ted like shown in e.g. Meyer et al. (2013); Mutanga and Skidmore (2004b). Note: The
plots in the cited studies based on NRI with narrow bands which were not resampled to
e.g. WorldView channels like shown in this tutorial. You can easily create models and
plots with narrow bands by omit the resampling in the beginning of this section 8 and
using “spectral_data” instead of the resampled data "spec_WV”.

The plot.lmnri function takes a model from NRI and predictor variables (see section
8.2) and the coefficient to be plotted as input. Start with plotting the r.squared values of
the linear model from section 8.2:

> plot(lmnri, coefficient = '"r.squared", main = "R squared")
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For each band combination, the r.squared value of the model of NRI and the environmen-
tal variable is represented by colour. Maybe you want to limit your plot to only these
band combinations whose NRI were significantly related to the environmental variable.
You can do this using the ”constraint” parameter. Assign your constraint as string. For
example: constraint = "p.value<0.01” means that only r.squared values of models with p
value less than 0.01 will be drawn:

> plot(lmnri, coefficient = '"r.squared", main = "R squared",
+ constraint = "p.value<0.01")

48



R squared

8
> [ —
0.01 0.63
o
o p—
[¢6]
~~
£
=
N o
© —
e R
o)
e
——
(@)
C
g g ]
[ |
z 3
=
o
o p—
k -

I
500 600 700

Wavelength band 1 (nm)

9 Linear spectral unmixing

Linear spectral unmixing is a method to derive the cover fractions of different materi-
als within the footprint of multi- or hyperspectral pixels/measurements. For a detailed
overview of linear spectral unmixing see e.g. Sohn and McCoy (1997). The algorithm in
the hsdar package uses the code originally developed for Grass GIS by Markus Neteler.
The basic concept behind linear spectral unmixing is that you provide a set of spectra
(taken by a field spectrometer or multi/hyperspectral satellite sensor) and a set of spectra
providing the information about the spectral properties of the pure materials which are
mixed in the first set. The latter set is usually called "endmembers”. Here, we will use two
spectra from the USGS and define the endmember "vegetation” and ”soil”. The spectral
to be unmixed are generated with PROSAIL:

> ## Use PROSAIL to generate some vegetation spectra with different LAI
> parameter <- data.frame(LAI = seq(0, 1, 0.01))

> spectral_data <- PROSAIL(parameterList = parameter)

> ## We resample the data to (uickbird channels to get the same

> ## spectral ranges

> spectral_data_gb <- spectralResampling(spectral_data, "Quickbird")

Now, we download the required endmember spectra from USGS’s ftp-server.
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## Get endmember spectra
## Retrieve all available spectra
avl <- USGS_get_available_files()
## Download all spectra matching '"grass-fescue"
grass_spectra <- USGS_retrieve_files(avl = avl,
pattern = "grass-fescue")
limestone <- USGS_retrieve_files(avl = avl, pattern = "limestone")
## Perform resampling for the endmember spectra. Note that we only
## use the first vegetation spectrum
grass_spectra_qb <- spectralResampling(grass_spectrall,],
"Quickbird")
limestone_gb <- spectralResampling(limestone, "Quickbird")

Now, we merge the endmember spectra into one Speclib (and make sure that the range
of the spectra is in [0,1]) and finally start the unmixing approach:

>
+
+
>
>
>

em <- speclib(spectra = rbind(spectra(grass_spectra_gb),
spectra(limestone_gb)) /100,
wavelength = wavelength(limestone_gb))
unmix_res <- unmix(spectral_data_gb, em)
## Let's have a look at the output:
str(unmix_res)

List of 2
$ fractions: num [1:2, 1:101] 0.895 0.104 0.897 0.103 0.898 ...

..— attr(*, "dimnames")=List of 2
.$ . chr [1:2] "1 non
'$ : Chr [1:101] |l1|| |l2|| |l3|| |l4||

$ error : num [1:101] 0.0235 0.0234 0.0232 0.0231 0.023 ...

The return value of "unmix” is a list with two elements:

1. "fractions”: A matrix with the unmixed fractions of each endmember in each spec-
trum. The different spectra are the columns and the endmembers the rows of the
matrix.

2. 7error”: Mathematically speaking, an over-determined linear equation system is
solved during linear spectral unmixing. Thus, one is only able to minimize the error
during solving the system. This amount of error is returned as the euclidean norm
of the error vector after least square error minimisation. Large error values may
indicate that endmember spectra do not fit well to the mixed material spectra.

Finally, we can generate a simple plot to visualize our results.

> plot(unmix_res$fractions[1,] ~ SI(spectral_data_gb)$LAI,

+
+

type = "1", xlab = "LAI",
ylab = "Unmixed fraction of vegetation")
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