Package ‘hsdar’

August 4, 2020

Type Package

Title Manage, Analyse and Simulate Hyperspectral Data

Version 1.0.3

Date 2020-08-04

Maintainer Lukas W. Lehnert <lukaslehnert@googlemail.com>

Depends R (>=3.3.1), raster (>= 2.5-8), rgdal (>= 1.1-10), signal, methods, caret, Boruta
Suggests rgl (>=0.98.1), RCurl, foreach, asdreader

Description
Transformation of reflectance spectra, calculation of vegetation indices and red edge parame-
ters, spectral resampling for hyperspectral remote sensing, simulation of reflectance and transmit-
tance using the leaf reflectance model PROSPECT and the canopy reflectance model PROSAIL.

License GPL

LazyLoad yes

BuildVignettes yes

Copyright see file COPYRIGHTS

R topics documented:

hsdar-package . . . . . . . . . e e e e 3
addep . . . e e 5
apply.DistMat3D . . . . . . e 6
apply.Speclib . . . . . L 8
bandnames . . . . . ... L e e e e 9
bdri . . . e 10
Boruta::Boruta . . . . . . ... e 11
CANCEI_SPECIIA . . . « . v v v i v i e e e e e e e e e e e e e e e e e e e 13
caret::createDataPartition-methods . . . . . . . . . ... ... .. ... ... ... 14
caret::createFolds-methods . . . . . . . . . . ... ... 14
caret::createResample-methods . . . . . . . . ... L L oL 14
caret::featurePlot-methods . . . . . . . . . ... .. ... 15
caret:igafs . . . Lo L 15
caret::preProcess-methods . . . . . . ..o 16



R topics documented:

caretirfe . . . L L e 17
caret:isafs . ... L L 18
caret:isbf . . L L L e e e 19
caret:isetPredictor . . . . . oL L L 21
caret:setResponse . . . . . . L. L 22
caret::showCaretParameters . . . . . . . . . . . . . . ... e 23
caret::itrain-methods . . . . . . L L. 24
checkhull . . . . . . . . e 24
clman . . . . .. e e e e 25
Clman-class . . . . . . . . . e e e e e 27
COLEESE . . o o v o o e e e e e e e 28
cubePlot . . . . . .. 29
cut_specfeat . . . . ... e 31
deletecp . . . . . . . 32
derivative.speclib . . . . . . ... e e 33
dim.speclib . . . . ... 35
dist.speclib . . . . .. 36
distMat3D . . . .. e 37
DistMat3D-class . . . . . . . ... e 39
Extract Speclibbyindex . . . . . . . . . .. ... 40
feature_properties . . . . . . . ... L e 41
EL.AUSSIANLTESPONSE . © . v v v v v v v e e e e e e e e e e e e e e e e 43
get.sensor.characteristics . . . . . . . . .. ..o 44
BEICP -« v i e e 46
getNRIL. . . . . e e 47
get_reflectance . . . . . . . L. 48
glmanri . . . . Lo 49
hsdardocs . . . . . . e 50
hsdar_parallel . . . . . . . . .. . e 51
HyperSpecRaster . . . . . . . . . ... 52
HyperSpecRaster-class . . . . . . . . . . . L 54
idSpeclib . . . . L 54
import USGS . . . . . . e 55
makehull . . . . ... e e 56
mask . . .o e 58
meanfilter . . . . . ... 59
00155 ¢ AN 60
noiseFiltering . . . . . . . ... 61
0 o 63
Nri-class . . . . . . o e e e 64
Nri-methods . . . . . . . . . . e e e e 65
nri_best_performance . . . . . . . . ... L. e e 66
PIOLNIL . . . o e e e e 67
plot.Specfeat . . . . . ... 69
plot.Speclib . . . . . . 71
postprocessASD . . . . L. e e 72
predictHyperspec . . . . . . . .. 73

PROSAIL . . . . . e 75



hsdar-package 3

PROSPECT . . . . . 77
Raster-methods . . . . . . . . . ... 80
N 33 0T 2 P 82
read ASD . . . . L 83
read_header . . . . . . . . e 83
rededge . . . . . . e e e e e 84
R 86
S & o v v v e e e e e e e e e e e e e e e e e e 88
soilindex . . . . . . L 90
specfeat . . . .. 92
Specfeat-class . . . . . . . .. 93
speclib . . . . e 94
Speclib-class . . . . . . .. 97
speclib_raster-methods . . . . . . . . ... 99
SPECLIA . . v v v i e e e e e e e e e 101
spectrallnterpolation . . . . . . . ... 102
spectralResampling . . . . . . . ... 103
spectral_data . . . ... L. 106
ST e e 106
SUDSEL.NIT . . . . . e 107
subset.speclib . . . ... L 109
LEESE . o o e e e 110
transformSpeclib . . . . . ... 111
10101001 < 113
updatecl . . ... L L 115
UsagehiStory . . . . . . . .. e 117
Vegindex . . . ... 118
wavelength . . . . . .. 123
Index 125
hsdar-package Manage, analyse and simulate hyperspectral data in R
Description

The hsdar package contains classes and functions to manage, analyse and simulate hyperspectral
data. These might be either spectrometer measurements or hyperspectral images through the inter-
face of raster.

Details

hsdar provides amongst others the following functionality.

» Data handling: hsdar is designed to handle even large sets of spectra. Spectra are stored in a

Speclib containing, amongst other details, the wavelength and reflectance for each spectrum.
hsdar further contains functions for plotting spectral data and applying functions to spectra.



4 hsdar-package

» Data manipulation: A variety of established methods for data manipulation such as filter func-
tions (noiseFiltering) for noise reduction, resampling of bands to various satellite sensors
(spectralResampling), continuum removal (transformSpeclib), calculations of deriva-
tions (derivative.speclib) and extraction of absorption features (cut_specfeat) are im-
plemented.

 Data analysis: Supported methods to analyse vegetation spectra are the calculation of red edge
parameters (rededge), vegetation (vegindex) and soil (soilindex, smgm) indices as well as
ndvi-like narrow band indices (nri). hsdar further enables to perform linear spectral unmix-
ing of spectra (unmix) by use of endmember spectra. Note that some functions allow the paral-
lel execution using the doMPI-, doMC- and foreach-packages. Execute *hsdar_parallel()’
to get supporting functions.

* Data simulation: hsdar has implemented the models PROSAIL 5B (PROSAIL, Jacquemoud et
al. 2009) and PROSPECT 5 and D (PROSPECT, Jacquemoud and Baret 1990, Feret et al. 2017)
to simulate spectra of canopy and plants.

Several classes are defined and used in hsdar. Most of the classes are used and respective objects
are created internally. However, the following figure gives an overview which class is used at which
stage of processing.

DistMat3D Speclib*
v T~
Nri* Clman
!
Specfeat*

Note that the asterisk marks all classes for which wrapper functions for the caret package exist.

To see the preferable citation of the package, type citation("hsdar").

Acknowledgements

Development initially funded by German Federal Ministry of Education and Research (03G0808C)
in the scope of the project PaDeMoS as precondition to develop a space-based Pasture Degradation
Monitoring System for the Tibetan Plateau.

Author(s)

Lukas Lehnert, Hanna Meyer, Jorg Bendix

References
Feret J.B., Gitelson A.A., Noble S.D., & Jacquemoud S. (2017), PROSPECT-D: towards modeling
leaf optical properties through a complete lifecycle, Remote Sensing of Environment, 193, 204-215.

Jacquemoud, S., Verhoef, W., Baret, F., Bacour, C., Zarco-Tejada, P.J., Asner, G.P., Francois, C.,
and Ustin, S.L. (2009): PROSPECT + SAIL models: a review of use for vegetation characterization,
Remote Sensing of Environment, 113, S56-S66.



addcp 5

Jacquemoud, S. and Baret, F. (1990). PROSPECT: A model of leaf optical properties spectra,
Remote Sensing of Environment 34: 75 - 91.

addcp Manually add fix point to continuum line

Description
This function is used to add an additional fix point to a manually created hull of a single spectrum.
This fix point is then used to re-construct a continuum line.

Usage

addcp(x, ispec, cpadd)

Arguments

X Object of class Clman.

ispec ID or index of spectrum to be modified.

cpadd Single value or vector of wavelength containing new fix point(s).
Details

In some cases, it might be desirable to manually adapt automatically constructed segmended hulls
(transformSpeclib). For example local maxima could be removed because they are very small
and maybe afflicted with uncertainties which might legitimate it to manipulate the continuum line.
Therefore, hsdar provides functions to remove and add "continuum points" from or to a continuum
line. Manually adapted continuum lines can then be used to update band depth or ratio transfor-
mation. Handle these functions with care to avoid continuum lines too much build by subjective
decisions. In the typical workflow, spectra are first transformed (transformSpeclib). Contin-
uum points can then be retrieved (getcp) and manually adapted by adding addcp and deleting
(deletecp) of points. Use checkhull to check for errors. If all uncertainties are removed, re-
calculate the hull (makehull) and update the transformed spectrum (updatecl).

Value

Object of class Clman containing the updated version of x.

Author(s)

Lukas Lehnert and Hanna Meyer

See Also

transformSpeclib, deletecp, getcp, checkhull, makehull, updatecl,
idSpeclib



apply.DistMat3D

Examples

## Model spectra using PROSAIL
parameter <- data.frame(N = rep.int(c(1, 1.5),2), LAI = c(1,1,3,3))
spec <- PROSAIL (parameterList=parameter)

## Transform spectra
spec_clman <- transformSpeclib(spec, method = "sh”, out = "raw")

## Plot original line
par(mfrow = c(1,2))
plot(spec_clman, ispec = 1, xlim = c(2480, 2500), ylim=c(0.022,0.024))

## Add fix point at 4595 nm to continuum line of first spectrum
spec_clman <- addcp(spec_clman, 1, 2495)

## Plot new line
plot(spec_clman, ispec = 1, xlim = c(2480, 2500), ylim=c(0.022,0.024))

## Check new hull
hull <- checkhull(spec_clman, 1)
hull$error

apply.DistMat3D Apply function for class DistMat3D

Description

Apply function to values in a 3-D distance matrix. The 3-D distance matrix is an S4-class in hsdar
to efficiently store distance values in hyperspectral datasets.

Usage
## S4 method for signature 'DistMat3D'
apply (X, MARGIN, FUN, ..., simplify = TRUE)
Arguments
X Object of class 'DistMat3D’.
MARGIN A vector giving the subscripts (dimensions) of the DistMat3D-object which the
function will be applied over (see examples).
FUN Function to be applied. Matched with match. fun.
Further arguments passed to FUN.
simplify Currently ignored.
Value

Depending on the length of the return value of the specified function, objects of classes numeric or
matrix are returned.



apply.DistMat3D

Author(s)

Lukas Lehnert

See Also

apply, match. fun, DistMat3D

Examples

data(spectral_data)

## Part I: Create an object of class DistMat3D

## Calculate all possible NRI - combinations for WorldView-2-8

spec_WV <- spectralResampling(spectral_data, "WorldView2-8",
response_function = FALSE)

nri_WV <- nri(spec_WV, recursive = TRUE)

## Get all NRI-values as numeric vector
nri_values <- as.numeric(t(as.matrix(getNRI(nri_Wv,
getFiniteNri(nri_Wv)))))

## Create object of class DistMat3D
dmat <- distMat3D(nri_values, 8, 45)

## Part II: Apply function mean to values in the new object
## Calculate mean value of all samples for all indices
meanIndexVals <- apply(dmat, MARGIN = 1, FUN = mean)

## Convert to DistMat3D

meanIndexVals <- distMat3D(meanIndexVals, 8, 1)

## Same but for array

nri_WV_dat <- as.array(dmat)

meanIndexVals_arr <- apply(nri_WV_dat, MARGIN = c(1, 2), FUN = mean)
## Convert to DistMat3D

meanIndexVals_arr <- distMat3D(meanIndexVals_arr)

## Test if equal
all(meanIndexVals_arr == meanIndexVals)

## Calculate mean value of all indices wihtin each sample

meanSampleVals <- apply(dmat, MARGIN = 3, FUN = mean)

meanSampleVals_arr <- apply(nri_WV_dat, MARGIN = 3, FUN = mean,
na.rm = TRUE)

## Test if equal

all(meanSampleVals == meanSampleVals_arr)

## User-defined function (in this case the median)
quant <- function(x)
return(quantile(x, probs = 0.5))
## Apply user defined function to all samples for all indices



8 apply.Speclib

medianIndexVals <- apply(dmat, MARGIN = 1, FUN = quant)

apply.Speclib Apply function for class Speclib

Description

Apply function over all spectra or a subset of spectra in a Speclib.

Usage
## S4 method for signature 'Speclib’
apply(X, FUN, bySI = NULL, ..., simplify = TRUE)
Arguments
X Object of class Speclib
FUN Function to be applied. Matched with match. fun.
bySI Character string giving the name of the column in the SI to be used as subsets to
apply function FUN on.
Further arguments passed to FUN.
simplify Currently ignored.
Value

Object of class Speclib.

Author(s)

Lukas Lehnert

See Also

apply, match. fun, Speclib

Examples

data(spectral_data)

mean_spectrum <- apply(spectral_data, FUN = mean)
plot(mean_spectrum)

## Same as above but seperately for both seasons

mean_spectra <- apply(spectral_data, FUN = mean, bySI = "season")
plot(mean_spectral1, 1, ylim = c(0,50))

plot(mean_spectral[2, 1, new = FALSE)

SI(mean_spectra)



bandnames 9

bandnames Handling names of bands

Description

Returning and setting names of bands in Speclib

Usage

bandnames (x)
bandnames(x) <- value

Arguments

X Object of class Speclib.

value Character vector of the same length as nbands(x), or NULL.
Value

For bandnames<-, the updated object. Otherwise a vector giving the name of each band in Speclib
is returned.

Note
Bandnames are not mandatory in Speclibs. If not set, the default names are in the form V+index
of bands.

Author(s)

Lukas Lehnert

See Also
Speclib

Examples

data(spectral_data)

## Return band names
bandnames (spectral_data)

## Change band names

bandnames (spectral_data) <- paste(”Band”, wavelength(spectral_data),
sep = "_"

## Return new band names

bandnames(spectral_data)



10 bdri

bdri Band depth ratio indices

Description

Calculate band depth ratio indices for objects of class Specfeat.

Usage

bdri(x, fnumber, index = "ndbi")

Arguments

X Object of class Specfeat.

fnumber Integer. Index of feature to modify.

index Method to be applied. Currently, "bdr”, "ndbi” and "bna” are available.
Details

Method "bdr"” calculates the normalised band depth ratio as

BD
bdr = —
"= D¢’

with BD is the band depth calculated by transformSpeclib and Dc is the maximum band depth
called band centre. Method "ndbi"” calculates the the normalised band depth index as

BD — Dc

dbi = == — €
"= BD ¥ De

Method "bna” calculates the band depth normalised to band area as

bna = ——
na Da’

where Da is the area of the absorption feature (see feature_properties). For further information
see Mutanga and Skidmore (2004).

Value

Object of class specfeat containing the updated version of x.

Author(s)
Lukas Lehnert and Hanna Meyer

References

Mutanga, O. and Skidmore, A. (2004): Hyperspectral band depth analysis for a better estimation
of grass biomass (Cenchrus ciliaris) measured under controlled laboratory conditions. International
Journal of applied Earth Observation and Geoinformation, 5, 87-96



Boruta::Boruta 11

See Also

transformSpeclib, specfeat

Examples

data(spectral_data)

## Transform speclib
bd <- transformSpeclib(subset(spectral_data, season == "summer"),
method = "sh", out = "bd")

## Isolate the features around 450nm, 700nm, 1200nm and 1500nm and
## convert to specfeat.
featureSelection <- specfeat(bd, c(450,700,1200,1500))

## Plot features
plot(featureSelection,1:4)

## Calculate normalized band depth index for first feature
featureSelection_bdri <- bdri(featureSelection, 1, index = "ndbi")

## Plot result
plot(featureSelection_bdri)

Boruta: :Boruta Methods for Function Boruta

Description

Methods for function Boruta in package Boruta. Please refer to help pages in the Boruta-package
for further information.

Usage

## S4 method for signature 'Speclib'’
Boruta(x, y, ..., returnData = TRUE, includeTentative
na.rm = FALSE)

FALSE,

## S4 method for signature 'Nri'
Boruta(x, y, ..., returnData = TRUE, includeTentative = FALSE,
na.rm = FALSE)

## S4 method for signature 'Specfeat’
Boruta(x, y, ..., returnData = TRUE, includeTentative = FALSE,
na.rm = FALSE)

get_Boruta(x)



12

Boruta::Boruta

Arguments
X Object of class Speclib, Nri or Specfeat. For get_Boruta, x must be the
output of Boruta as Speclib or Nri.
y A numeric or factor vector containing the outcome for each sample. If missing,
the response variable set by setResponse is used.
returnData Logical. If TRUE, the updated object of x is returned, otherwise only the result
of Boruta is returned.
includeTentative
Logical. If TRUE, the tentative variables are kept and returned in the Speclib-
object.
na.rm Logical. If TRUE, all variables are excluded which contain at least one non-
finite value.
Further arguments passed to Boruta.
Value

If returnData

TRUE, an object of class Speclib or Nri, otherwise an object of class Boruta.

Note that if x is an object of class Specfeat, the function returns an object of class Speclib con-
taining the relevant transformed band values.

Author(s)

Lukas Lehnert

See Also

rfe, gafs

Examples

## Not run:

data(spectral_data)

## Set response variable (Chlorophyll content)
spectral_data <- setResponse(spectral_data, "chlorophyll")

## Set additional predictor variables from the SI
spectral_data <- setPredictor(spectral_data, "season")

## Run Boruta

## Note that this may take some time!
bor_res <- Boruta(spectral_data)

get_Boruta(bor_res)
plot(get_Boruta(bor_res))

## End(Not run)



cancer_spectra 13

cancer_spectra Hyperspectral samples

Description

Hyperspectral samples from the human larynx

Usage

data(cancer_spectra)

Format

An object of class Speclib

Details

This dataset contains hyperspectral data from the human larynx. The data were acquired in a project
aiming to test the feasibility to use hyperspectral imaging for the non-invasive detection of cancer
of the human larynx (head-and-neck squamous cell carcinoma). In hsdar, a subset of the total
dataset is kindly provided by the project. This subset includes hyperspectral images from 25 pa-
tients including 10 cases with histopathological diagnosis of cancer. The images were acquired
using an endoscope which was coupled with a monochromatic CCD camera. As light source, a
special Polychrome V light machine was used. This allowed to change the wavelength of the im-
pinging radiation so that hyperspectral cubes could be acquired by combining several images taken
under different illuminations. The images were preprocessed using the methodology proposed by
Regeling et al. (2015). The spectra were manually classified into cancerous and non-cancerous
tissue by medical experts which is included in the SI of the data.

Author(s)

Bianca Regeling, Lukas Lehnert

References

Regeling, B., Laffers, W., Gerstner, A.O.H., Westermann, S., Mueller, N.A., Schmidt, K., Bendix,
J., Thies, B. (2015): Development of an Image Pre-processor for Operational Hyperspectral Laryn-
geal Cancer Detection. Journal of Biophotonics, 1-11.



14 caret::createResample-methods

caret: :createDataPartition-methods
Methods for Function createDataPartition

Description
Methods for function createDataPartition in package caret. Please refer to help pages in the
caret-package for further information.

Methods

signature(y = ".CaretHyperspectral”) Wrapper method for createDataPartition.
Note that ".CaretHyperspectral” is a class union containing classes Speclib, Nri, Specfeat.

caret::createFolds-methods
Methods for Function createFolds and createMultiFolds

Description

Methods for functions createFolds and createMultiFolds in package caret

Methods

signature(y = ".CaretHyperspectral”) Wrapper methods for createFolds and createMultiFolds.
Note that ".CaretHyperspectral” is a class union containing classes Speclib, Nri, Specfeat.

caret::createResample-methods
Methods for Function createResample

Description

Methods for function createResample in package caret

Methods

signature(y = ".CaretHyperspectral”) Wrapper method for createResample.
Note that " . CaretHyperspectral” is a class union containing classes Speclib, Nri, Specfeat.



caret::featurePlot-methods 15

caret::featurePlot-methods
Methods for Function featurePlot

Description

Methods for function featurePlot in package caret

Methods

signature(x = ".CaretHyperspectral”) Wrapper method for featurePlot.
Note that " . CaretHyperspectral” is a class union containing classes Speclib, Nri, Specfeat.

caret::gafs Methods for Function gafs

Description

Methods for function gaf's in package caret. Please refer to help pages in the caret-package for
further information.

Usage
## S4 method for signature 'Speclib'’
gafs(x, y, cutoff = 0.95, returnData = TRUE, na.rm = FALSE, ...)
## S4 method for signature 'Nri'
gafs(x, y, cutoff = 0.95, returnData = TRUE, na.rm = FALSE, ...)
## S4 method for signature 'Specfeat'
gafs(x, y, cutoff = 0.95, returnData = TRUE, na.rm = FALSE, ...)
get_gafs(x)
Arguments
X Object of class Speclib, Nri or Specfeat. For get_gaf's, x must be the output
of gafs as Speclib or Nri.
y A numeric or factor vector containing the outcome for each sample. If missing,
the response variable set by setResponse is used.
cutoff The cutoff value of the correlation coefficients between response variables.
returnData Logical. If TRUE, the updated object of x is returned, otherwise only the result
of gaf's is returned.
na.rm Logical. If TRUE, all variables are excluded which contain at least one non-

finite value.

Further aruments passed to gaf's.



16 caret::preProcess-methods

Value

If returnData == TRUE, an object of class Speclib or Nri, otherwise an object of class gafs. Note
that if x is an object of class Specfeat, the function returns an object of class Speclib containing
the relevant transformed band values.

Author(s)

Lukas Lehnert

See Also

gafs

Examples

## Not run:
data(spectral_data)

## Set response variable (Chlorophyll content)
spectral_data <- setResponse(spectral_data, "chlorophyll")

## Set additional predictor variables from the SI
spectral_data <- setPredictor(spectral_data, "season”)

## Feature selection using genetic algorithms
## Note that this may take some time!
gafs_res <- gafs(spectral_data)

get_gafs(gafs_res)

## End(Not run)

caret: :preProcess-methods
Methods for Function preProcess

Description
Methods for function preProcess in package caret. The function is mainly internally required, but
can be also used to transform the reflectance values and the SI e.g., by centering, scaling etc.
Methods

signature(x = ".CaretHyperspectral”) Wrapper method for preProcess.
Note that " . CaretHyperspectral” is a class union containing classes Speclib, Nri, Specfeat.



caret::rfe 17

caret::rfe Methods for Function rfe

Description
Methods for function rfe in package caret. Please refer to help pages in the caret-package for
further information.

Usage

## S4 method for signature 'Speclib'’
rfe(x, y, cutoff = 0.95, returnData = TRUE, na.rm = FALSE, ...)

## S4 method for signature 'Nri'
rfe(x, y, cutoff = 0.95, returnData = TRUE, na.rm = FALSE, ...)

## S4 method for signature 'Specfeat’

rfe(x, y, cutoff = .95, returnData = TRUE, na.rm = FALSE, ...)
get_rfe(x)
Arguments

X Object of class Speclib, Nri or Specfeat. For get_rfe, x must be the output
of rfe as Speclib or Nri.

y A numeric or factor vector containing the outcome for each sample. If missing,
the response variable set by setResponse is used.

cutoff The cutoff value of the correlation coefficients between response variables.

returnData Logical. If TRUE, the updated object of x is returned, otherwise only the result

of rfe is returned.

na.rm Logical. If TRUE, all variables are excluded which contain at least one non-
finite value.

Further aruments passed to rfe.

Value

If returnData == TRUE, an object of class Speclib or Nri, otherwise an object of class rfe. Note
that if x is an object of class Specfeat, the function returns an object of class Speclib containing
the relevant transformed band values.

Author(s)

Lukas Lehnert

See Also

rfe



18 caret::safs

Examples

## Not run:
data(spectral_data)

## Set response variable (Chlorophyll content)
spectral_data <- setResponse(spectral_data, "chlorophyll”)

## Set additional predictor variables from the SI
spectral_data <- setPredictor(spectral_data, "season”)

## Recursive feature selection

## Note that this may take some time!
rfe_res <- rfe(spectral_data)
get_rfe(rfe_res)

plot(get_rfe(rfe_res))

## End(Not run)

caret::safs Methods for Function safs

Description
Methods for function safs in package caret. Please refer to help pages in the caret-package for
further information.

Usage

## S4 method for signature 'Speclib'
safs(x, y, cutoff = 0.95, returnData = TRUE, na.rm = FALSE, ...)

## S4 method for signature 'Nri'
safs(x, y, cutoff = 0.95, returnData = TRUE, na.rm = FALSE, ...)

## S4 method for signature 'Specfeat’

safs(x, y, cutoff = 0.95, returnData = TRUE, na.rm = FALSE, ...)
get_safs(x)
Arguments
X Object of class Speclib, Nri or Specfeat. For get_saf's, x must be the output
of safs as Speclib or Nri.
y A numeric or factor vector containing the outcome for each sample. If missing,

the response variable set by setResponse is used.

cutoff The cutoff value of the correlation coefficients between response variables.



caret::sbf 19

returnData Logical. If TRUE, the updated object of x is returned, otherwise only the result
of safs is returned.

na.rm Logical. If TRUE, all variables are excluded which contain at least one non-
finite value.

Further aruments passed to saf's.

Value

If returnData == TRUE, an object of class Speclib or Nri, otherwise an object of class saf's. Note
that if x is an object of class Specfeat, the function returns an object of class Speclib containing
the relevant transformed band values.

Author(s)

Lukas Lehnert

See Also

safs

Examples

## Not run:
data(spectral_data)

## Set response variable (Chlorophyll content)
spectral_data <- setResponse(spectral_data, "chlorophyll”)

## Set additional predictor variables from the SI
spectral_data <- setPredictor(spectral_data, "season”)

## Supervised feature selection using simulated annealing
## Note that this may take some time!

safs_res <- safs(spectral_data)

get_safs(safs_res)

plot(get_safs(safs_res))

## End(Not run)

caret::sbf Methods for Function sbf

Description

Methods for function sbf in package caret. Please refer to help pages in the caret-package for
further information.



20 caret::sbf

Usage
## S4 method for signature 'Speclib'’
sbf(x, y, cutoff = 0.95, returnData = TRUE, ...)
## S4 method for signature 'Nri'
sbf(x, y, cutoff = .95, returnData = TRUE, ...)
## S4 method for signature 'Specfeat'
sbf(x, y, cutoff = 0.95, returnData = TRUE, ...)
get_shf(sbf_obj)
Arguments
X Object of class Speclib, Nri or Specfeat.
y A numeric or factor vector containing the outcome for each sample. If missing,
the response variable set by setResponse is used.
cutoff The cutoff value of the correlation coefficients between response variables.
returnData Logical. If TRUE, the updated object of x is returned, otherwise only the result
of sbf is returned.
Further aruments passed to sbf.
sbf_obj Object of class Speclib, Nri or Specfeat as output of sbf-function.
Value

If returnData == TRUE, an object of class Speclib or Nri, otherwise an object of class sbf. Note
that if x is an object of class Specfeat, the function returns an object of class Speclib containing
the relevant transformed band values.

Author(s)

Lukas Lehnert

See Also
sbf

Examples

## Not run:
data(spectral_data)

## Set response variable (Chlorophyll content)
spectral_data <- setResponse(spectral_data, "chlorophyll")

## Set additional predictor variables from the SI
spectral_data <- setPredictor(spectral_data, "season")



caret::setPredictor 21

## Selection by filtering

## Note that this may take some time!
sbf_res <- sbf(spectral_data)
get_sbf(sbf_res)
plot(get_sbf(sbf_res))

## End(Not run)

caret::setPredictor Set predictor variable(s)

Description

Set predictor variable(s) to be used in model-fitting functions of package caret. This function can
be used to define additional predictor variables stored in the SI of a Speclib- or Nri-object. If the
passed object is of class Nri, By default, all Nri-indices (if the passed object is of class Nri) or all
bands (if the passed object is of class Speclib) are used as predictors.

Usage
## S4 method for signature '.CaretHyperspectral,character'
setPredictor(x, predictor)

Arguments

X Object of one of the following classes: Speclib, Nri, Specfeat.

predictor Character vector. Name of additional predictor variable(s) (from the SI).

Value

The updated object.

Author(s)

Lukas Lehnert

See Also

showCaretParameters, setResponse



22 caret::setResponse

Examples

## Not run:
data(spectral_data)

## Set "season” as additional predictor variable from the SI
spectral_data <- setPredictor(spectral_data, "season")

## Show caret related parameters stored in the Speclib
showCaretParameters(spectral_data)

## End(Not run)

caret: :setResponse Set response variable

Description

Set response variable to be used in model-fitting functions of package caret. The response variable
must be set upon any model training using a hsdar-object in caret.

Usage
## S4 method for signature '.CaretHyperspectral,character'
setResponse(x, response)

Arguments

X Object of one of the following classes: Speclib, Nri, Specfeat.

response Character. Name of response variable (from the SI).

Value

The updated object.

Author(s)

Lukas Lehnert

See Also

showCaretParameters, setPredictor



caret::showCaretParameters 23

Examples

## Not run:
data(spectral_data)

## Set response variable (Chlorophyll content)
spectral_data <- setResponse(spectral_data, "chlorophyll")

## Show caret related parameters stored in the Speclib
showCaretParameters(spectral_data)

## End(Not run)

caret: :showCaretParameters
Show caret related parameters

Description

Show caret related parameters in objects of classes Speclib, Nri, Specfeat. Several parameters such
as predictor and response variables are internally stored and used for model training and validation
in the caret-package.

Usage

showCaretParameters(x)

Arguments

X Object of one of the following classes: Speclib, Nri, Specfeat.

Author(s)

Lukas Lehnert

See Also

sbf



24 checkhull

caret::train-methods  Methods for Function train

Description

Methods for functions train and train.formula in package caret

Methods
signature(x = ".CaretHyperspectral”) Wrapper method for train.
Note that " . CaretHyperspectral” is a class union containing classes Speclib, Nri, Specfeat.

signature(form = "formula”, data = "Speclib”) Wrapper method for train.formula to
be used with objects of class Speclib.

checkhull Check continuum line

Description

Check if continuum line is intersecting the reflectance curve.

Usage
checkhull(x, ispec)

Arguments

X Object of class clman.

ispec ID or index of spectrum to be checked.
Details

In some cases, it might be desirable to manually adapt automatically constructed segmended hulls
(transformSpeclib). For example local maxima could be removed because they are very small
and maybe afflicted with uncertainties which might legitimate it to manipulate the continuum line.
Therefore, hsdar provides functions to remove and add "continuum points" from or to a continuum
line. Manually adapted continuum lines can then be used to update band depth or ratio transfor-
mation. Handle these functions with care to avoid continuum lines too much build by subjective
decisions. In the typical workflow, spectra are first transformed (transformSpeclib). Contin-
uum points can then be retrieved (getcp) and manually adapted by adding addcp and deleting
(deletecp) of points. Use checkhull to check for errors. If all uncertainties are removed, re-
calculate the hull (makehull) and update the transformed spectrum (updatecl).

Value

Object of class 1ist.



clman 25

Author(s)

Lukas Lehnert and Hanna Meyer

See Also

transformSpeclib, addcp, deletecp, makehull, updatecl

Examples

## Model spectra using PROSAIL
parameter <- data.frame(N = rep.int(c(1, 1.5),2), LAI = c(1,1,3,3))
spec <- PROSAIL (parameterList=parameter)

## Transform spectra
spec_clman <- transformSpeclib(spec, method = "sh"”, out = "raw")

## Plot original line
par(mfrow = c(1,2))
plot(spec_clman, ispec = 1, xlim = c(2480, 2500), ylim=c(0.022,0.024))

## Add fix point at 4595 nm to continuum line of first spectrum
spec_clman <- addcp(spec_clman, 1, 2495)

## Plot new line
plot(spec_clman, ispec = 1, xlim = c(2480, 2500), ylim=c(0.022,0.024))

## Check new hull
hull <- checkhull(spec_clman, 1)
hull$error

## Add fix point at 4596 nm to continuum line of first spectrum
spec_clman <- addcp(spec_clman, 1, 2496)

## Check new hull
hull <- checkhull(spec_clman, 1)
hull$error

clman Methods to create, manipulate and query objects of class 'Clman’.

Description

Methods to create, manipulate and query objects of class ’Clman’. The class ’Clman’ is used to
store manually defined continuum lines and the associated spectra.



26 clman

Usage

## Creation of objects
## S4 method for signature 'Clman'
initialize(.Object, ...)

## S4 method for signature 'Clman'
spectra(object, ...)

## S4 replacement method for signature 'Clman,data.frame'
spectra(object) <- value

## S4 replacement method for signature 'Clman,matrix’
spectra(object) <- value

## S4 replacement method for signature 'Clman,numeric'’
spectra(object) <- value

## S4 method for signature 'Clman'
plot(x, ispec, subset = NULL, numeratepoints = TRUE,
hull.style = NULL, points.style = list(), ...)

Arguments

.Object,object Matrix, numeric or array in cases of creation of ’Clman’ objects otherwise object
of class ’Clman’.

value Object of class numeric, matrix or array which is used for replacement of the
values in x.

Arguments passed to speclib or plot.default.

X Object of class clman.
ispec Name or index of spectrum to be plotted.
subset Lower and upper spectral limits used for plot.

numeratepoints Flag if points should be numerated in plot.
hull.style List of arguments passed to lines to construct the continuum line.

points.style  List of arguments passed to points to construct the continuum points. May be
NULL to suppress plotting of fix points.

Value

For spectra<-, the updated object. Otherwise a matrix returning the spectra in the Clman object.

Note

The functions to create objects of class Clman are mainly internally needed by transformSpeclib.



Clman-class 27

Author(s)

Lukas Lehnert

See Also

dist.speclib, Clman, transformSpeclib, plot

Examples

## Model spectra using PROSAIL
parameter <- data.frame(N = rep.int(c(1, 1.5),2), LAI = c(1,1,3,3))
spec <- PROSAIL (parameterList=parameter)

## Transform spectra
spec_clman <- transformSpeclib(spec, method = "sh”, out = "raw")

## Return first spectrum
spectra(spec_clman)[1,]

## Plot clman
plot(spec_clman, ispec = 1, subset = c(400, 1000))

Clman-class * Clman class

Description

Class to store and handle manual continuum lines.

Details

The class is only required if a continuum line is manually adopted or entirely manually created.
This is useful if the automatic approaches are not able to identify absorption features because, for
instance, the spectrum has two pronounced maxima within the absortion feature of interest.

Clman is defined as Speclib extended by the following two slots:

* cp: Matrix containing the fix points (continuum points) of each spectrum.

* hull: Matrix containing the hull of each spectrum.

Normally, it is not necessary to manually change the values in any of the slots above. Use the
functions addcp and deletecp to change the hulls manually. Functionality for conversion back to
a Speclib with the final hull and the transformed spectra provides function updatecl.

Note

See figure in hsdar-package for an overview of classes in hsdar.



28 cor.test

Author(s)

Lukas Lehnert and Hanna Meyer

See Also

transformSpeclib, plot, Speclib, addcp, deletecp, updatecl

cor.test Test for association/correlation between nri values and vector of sam-
ples

Description

Test for association between paired samples (with one variable being nri-values), using one of
Pearson’s product moment correlation coefficient, Kendall’s tau or Spearman’s rho.

Usage
## S4 method for signature 'Nri'
cor.test(x, vy, ...)
Arguments
X Object of class Nri or numerical vector
y Object of class Nri or numerical vector

Further arguments passed to cor. test

Details

NRI-values may be used as x and/or as y variable. If x and y are NRI-values the number of sam-
ples in both datasets must be equal. For additional information on correlation tests see details in
cor.test.

Value

Object of class Nri

Author(s)

Lukas Lehnert

See Also

plot, cor.test, glm.nri, Im.nri, getNRI



cubePlot

Examples

29

data(spectral_data)

## Calculate all possible combinations for WorldView-2-8
spec_WV <- spectralResampling(spectral_data, "WorldView2-8",

response_function = FALSE)

nri_WV <- nri(spec_WV, recursive = TRUE)

cortestnri <- cor.test(nri_WV, SI(spec_WV)$chlorophyll)

cortestnri

cubePlot

cubePlot

Description

Plotting 3D cube of hyperspectral data using rgl-package

Usage

cubePlot(x, r, g, b, ncol =1, nrow = 1,
sidecol = colorRamp(palette(heat.colors(100))),
z_interpolate = FALSE, ...)

Arguments

X

r

ncol

nrow
sidecol

z_interpolate

Object of class Speclib.

Integer. Index of band used as red channel. If omitted, the band closest to 680
nm is selected.

Integer. Index of band used as green channel. If omitted, the band closest to 540
nm is selected.

Integer. Index of band used as blue channel. If omitted, the band closest to 470
nm is selected.

Integer giving the column(s) in x which is/are used to plot the spectral dimen-
sion.

Integer giving the row(s) in x which is/are used to plot the spectral dimension.
ColorRamp used to illustrate spectral dimension.

Interpolate spectral dimension. This is useful if a cube is plotted which has a
much larger spatial compared to spectral dimension. If TRUE the spectral dimen-
sion will be interpolated to the minimum of the spatial dimension. Alternatively,
an integer value may be passed.

Further arguments passed to plotRGB for the top of the cube. Currently, the
following two arguments are supported:



30 cubePlot

e scale: Maximum (possible) value in the three channels. Defaults to the
maximum value in the red, green and blue band selected by arguments r, g
and b.

* stretch: Option to stretch the values to increase the contrast of the image:
"lin" (default) or "hist"

Note

The function may take a lot of time if the images are large. Consider plotting a subset of the entire
image instead of plotting the entire image. Please note that the example below demonstrates the
functionality with a very small image.

For unknown reasons, it may be necessary to execute the function twice in order to get the right
colors at the walls of the cube.

Author(s)

Lukas Lehnert

See Also

Speclib

Examples

## Not run:

## Create raster file using PROSPECT D

## Run PROSPECT for 1600 random chlorophyll content values

parameter <- data.frame(Cab = round(runif(1600, min = 10, max = 40), 0))
spectra <- PROSPECT(parameterList = parameter)

## Create SpatialPixelsDataFrame and fill data with spectra from PROSPECT
rows <- round(nspectra(spectra)/40, 0)

cols <- ceiling(nspectra(spectra)/rows)

grd <- SpatialGrid(GridTopology(cellcentre.offset = c(1,1,1),

cellsize = c¢(1,1,1),

cells.dim = c(cols, rows, 1)))

x <- SpatialPixelsDataFrame(grd, data = as.data.frame(spectra(spectra)))
## Write data to example file (example_in.tif) in workingdirectory
writeGDAL(x, fname = "example_in.tif", drivername = "GTiff")

## Read the raster and plot 3D cube
wavelength <- wavelength(spectra)
ras <- speclib(”example_in.tif", wavelength)

cubePlot(ras)

## End(Not run)



cut_specteat 31

cut_specfeat Cut absorption features

Description

Function cuts absorption features to a user-specified range. Since features may differ among spectra,
it might be important to cut the features to specific wavelengths ranges.

Usage
cut_specfeat(x, ..., fnumber, limits)
Arguments
X An object of class Specfeat containing isolated features determined by specfeat.
fnumber A vector of the positions of the features in x to be cut.
limits A vector containing the start and end wavelength for each fnumber. The corre-
sponding feature will be cut to this specified range.
Further arguments passed to generic functions. Currently ignored.
Details

The typical workflow to obtain feature properties is to first calculate the band depth transformSpeclib,
then isolate the absorption features specfeat. Optionally, cut_specfeat allows to cut the features

at specified wavelengths. Finally use feature_properties to retrieve characteristics of the fea-
tures.

Value

An object of class Specfeat containing the cut features.

Author(s)

Hanna Meyer and Lukas Lehnert

See Also

specfeat, Specfeat

Examples

data(spectral_data)

##Example to cut the features around 450nm and 700nm to a specific range
## Transform speclib
bd <- transformSpeclib(subset(spectral_data, season == "summer"),

method = "sh"”, out = "bd")



32 deletecp

## Convert speclib to specfeat giving center wavelength of features
featureSelection <- specfeat(bd, c(450,700,1200,1500))

## Cut 1st and 2nd feature to [310 nm, 560 nm] and [589 nm, 800 nm]
featuresCut <- cut_specfeat(x = featureSelection, fnumber = c(1,2),
limits = c(c(310, 560), c(589, 800)))

## Plot result (1st and 2nd feature)
plot(featuresCut, fnumber = 1:2)

deletecp Delete fix point

Description

Delete fix point from continuum line.

Usage

deletecp(x, ispec, cpdelete)

Arguments

X Object of class Clman.

ispec ID or index of spectrum to be modified.

cpdelete Single value or vector of wavelength containing fix point(s) to be deleted.
Details

In some cases, it might be desirable to manually adapt automatically constructed segmended hulls
(transformSpeclib). For example local maxima could be removed because they are very small
and maybe afflicted with uncertainties which might legitimate it to manipulate the continuum line.
Therefore, hsdar provides functions to remove and add "continuum points" from or to a continuum
line. Manually adapted continuum lines can then be used to update band depth or ratio transfor-
mation. Handle these functions with care to avoid continuum lines too much build by subjective
decisions. In the typical workflow, spectra are first transformed (transformSpeclib). Contin-
uum points can then be retrieved (getcp) and manually adapted by adding addcp and deleting
(deletecp) of points. Use checkhull to check for errors. If all uncertainties are removed, re-
calculate the hull (makehull) and update the transformed spectrum (updatecl).

Value

Object of class C1man containing the updated version of x.

Author(s)

Lukas Lehnert and Hanna Meyer



derivative.speclib 33

See Also

transformSpeclib, addcp, getcp, checkhull, makehull, updatecl

Examples

## Model spectra using PROSAIL

parameter <- data.frame(N = rep.int(c(1, 1.5),2), LAI = c(1,1,3,3))
spec <- PROSAIL (parameterList=parameter)

## Mask parts not necessary for the example

mask(spec) <- c(1600, 2600)

## Transform spectra
spec_clman <- transformSpeclib(spec, method = "sh”, out = "raw")

## Plot original line
par(mfrow = c(1,2))
plot(spec_clman, ispec = 1, xlim = c(1100, 1300),ylim=c(0.17,0.21))

## Find wavelength of fix point to be deleted
getcp(spec_clman, 1, subset = c(1100, 1300))

## Delete all fix points between 1200 and 1240 nm
spec_clman <- deletecp(spec_clman, 1, c(1200:1240))

## Plot new line
plot(spec_clman, ispec = 1, xlim = c(1100, 1300),ylim=c(0.17,0.21))

## Check new hull
hull <- checkhull(spec_clman, 1)
hull$error

derivative.speclib Derivation

Description

Calculate derivations of spectra in Speclib.

Usage
derivative.speclib(x, m = 1, method = "sgolay”, ...)
Arguments
X Object of class Speclib.
m Return the m-th derivative of the spectra.
method Character string giving the method to be used. Valid options are "finApprox"

or "sgolay”.

Further arguments passed to sgolayfilt.



34 derivative.speclib

Details
Two different methods are available:
* Finite approximation (finApprox):

dr_ r(A) = r(Aiga)
d\ AN ’

where 7; is the reflection in band 7 and A\ the spectral difference between adjacent bands.

 Savitzky-Golay derivative computation (sgolay, default method)

Value

Object of class Speclib.

Author(s)

Lukas Lehnert

References

Tsai, F. & Philpot, W. (1998): Derivative analysis of hyperspectral data. Remote Sensing of Envi-
ronment 66/1. 41-51.

See Also

sgolayfilt, vegindex, soilindex

Examples

data(spectral_data)

## Calculate 1st derivation
d1 <- derivative.speclib(spectral_data)

## Calculate 2nd derivation

d2 <- derivative.speclib(spectral_data, m = 2)
## Calculate 3rd derivation
d3 <- derivative.speclib(spectral_data, m = 3)

par(mfrow=c(2,2))
plot(spectral_data)
plot(dl)

plot(d2)

plot(d3)



dim.speclib

35

dim.speclib Dimensions of Speclib

Description

Get dimension(s) of Speclib

Usage

## S4 method for signature 'Speclib'’
dim(x)

nspectra(x)
nbands (x)
Arguments

X Object of class Speclib.

Value

Vector of length = 2 for dim or single integer value for nspectra and nbands.

Author(s)

Lukas Lehnert

See Also

Speclib

Examples
data(spectral_data)

dim(spectral_data)



36 dist.speclib

dist.speclib Distance between spectra

Description

Calculation of distance matrices by using one of the various distance measure to compute the dis-
tances between the spectra in Speclib. Spectral Angle Mapper (SAM) is calculated with sam giving
reference spectra or with sam_distance taking all combinations between spectra in single Speclib
into account.

Usage
dist.speclib(x, method = "sam", ...)
## Direct call to Spectral Angle Mapper function

sam(x, ref)
sam_distance(x)

Arguments
X Object of class Speclib. Note that spectra in x must be in range [0,1].
method The distance measure to be used. This must be one of "sam", "euclidean", "max-
imum", "manhattan"”, "canberra", "binary" or "minkowski".
ref Object of class Speclib containing reference spectra.
Further arguments, passed to other methods.
Details

Available distance measures are "spectral angle mapper" (sam, Kruse et al. 1993) and all distance
measures available in dist. Spectral angle mapper is calculated with the following formula:

1 Y tir
b b
VI ey 2

nb is the number of bands in Speclib. ¢; and r; are the reflectances of target and reference spectrum
in band ¢, respectively.

sam = cos

Value
The dist-method for Speclibs returns an object of class "dist"”. See dist for further information
on class "dist"”. Both other functions return an object of class matrix.

Author(s)

Lukas Lehnert



distMat3D 37

References

Kruse, F. A.; Lefkoff, A. B.; Boardman, J. W.; Heidebrecht, K. B.; Shapiro, A. T.; Barloon, P. J. &
Goetz, A. F. H. (1993). The spectral image processing system (SIPS) — interactive visualization and
analysis of imaging spectrometer data. Remote Sensing of Environment, 44, 145-163.

See Also

dist, Speclib

Examples

data(spectral_data)

## Mask channel crossing part (around 1050 nm) and strong
## water absorption part (above 1350 nm)
mask(spectral_data) <- c(1045, 1055, 1350, 1706)

## Calculate distance between all spectra from spring
## using spectral angle mapper
dist.speclib(subset(spectral_data, season == "spring"))

## Calculate spectral angle mapper between reference spectrum
## and spectral_data
## Use first spectrum from summer as reference

distance <- sam(subset(spectral_data, season == "spring"),
subset(spectral_data, season == "summer”)[1,])
distMat3D Methods to create, manipulate and query objects of class ’Dist-
Mat3D’.
Description

Methods to create, manipulate and query objects of class *DistMat3D’. The following relational
operators are defined to compare values between ’DistMat3D’-object(s): <, <=, ==, >, >=

Usage

## Creation of objects
## S4 method for signature 'numeric'
distMat3D(x, ncol, nlyr)

## S4 method for signature 'matrix’
distMat3D(x, lower_tri = TRUE)

## S4 method for signature 'array'



38 distMat3D

distMat3D(x, lower_tri = TRUE)

## Conversion methods
## S4 method for signature 'DistMat3D'
as.array(x)

## S4 method for signature 'DistMat3D'
as.matrix(x, lyr = 1)

## Query of properties
## S4 method for signature 'DistMat3D'
dim(x)

## S4 method for signature 'DistMat3D'
ncol(x)

## S4 method for signature 'DistMat3D'
nrow(x)

## Manipulate and query data in objects

## S4 method for signature 'DistMat3D'

x[i, j, n]

## S4 replacement method for signature 'DistMat3D’

x[i, j, n] <- value

## S4 method for signature 'DistMat3D'

show(object)
Arguments
x,object Matrix, numeric or array in cases of creation of *DistMat3D’ objects otherwise
object of class *DistMat3D’.
ncol Number of columns in the new *DistMat3D’ object.
nlyr Number of layer in the new 'DistMat3D’ object.
lower_tri Flag if only the lower triangle is used.
lyr Layer in the *DistMat3D’ object to be transformed into matrix.
value Object of class numeric, matrix or array which is used for replacement of the
values in x.
i,j,n Subscripts to access data.
Author(s)

Lukas Lehnert



DistMat3D-class 39

See Also

DistMat3D, apply, Nri

Examples

data(spectral_data)

## Mask channel crossing part (around 1050 nm) and strong
## water absorption part (above 1350 nm)
mask(spectral_data) <- c(1045, 1055, 1350, 1706)

## Calculate SAM distances (object of class 'dist')
sam_dist <- dist.speclib(subset(spectral_data, season == "summer"))

## Convert to class 'distMat3D'
sam_dist <- distMat3D(as.matrix(sam_dist))

## Default print of DistMat3D-object
sam_dist

## Convert back to matrix
as.matrix(sam_dist)

## Get number of rows and samples
dim(sam_dist)

## Compare values in DistMat3D-object
small_dists <- sam_dist < 0.02

## Convert small_dists-object to DistMat3D
distMat3D(as.numeric(small_dists), 15, 1)

DistMat3D-class * DistMat3D class

Description

Class to store effectively (large) distance matrices (up to 3D), which can be interpreted as a stack
of traditional 2-D distance matrices. Therefore, the first two dimensions are of equal length and
usually describe the wavelength in hsdar. This third dimension is normally the number of samples
or pixels. In hsdar, objects of class DistMat3D are used e.g., to store nri-values. In this case,
the first and second dimensions store the information which band #1 is substraced by which band
#2, respectively. The third dimension is the sample. Since it usually does not matter if band #1
is substracted from band #2 or vice versa, the nri-matrix would contain the same absolute values
on both triangles (as 2-D distance matrices would do). Therefore, hsdar defines and uses the class
DistMat3D in which only one triangle is stored and memory demand is considerably reduced.



40 Extract Speclib by index

Details
S4-class with 3 slots:

* values: Numerical vector containing distance values

* ncol: Number of columns in the 3D-matrix. Number of columns equals always the number of
TOWS

* nlyr: Number of layers in the 3D-matrix

The data in the values slot is organized as follows: The first value is the distance at band #1 and
band #2 for sample number #1, the second one is for band #1 and band #3 (sample #1) and so forth.
Methods to create objects of class DistMat3D for matrix and array objects exist. Additionally,
methods to apply functions to the values exist.

Note

See figure in hsdar-package for an overview of classes in hsdar.

Author(s)

Lukas Lehnert

See Also

distMat3D, apply.DistMat3D

Extract Speclib by index
Indexing Speclib

Description

Access subsets of data in Speclibs both in spectrals and sample dimensions

Usage
## S4 method for signature 'Speclib'’
x[i, 3, ...1
Arguments
X Object of class Speclib to be indexed.
i Samples to be returned.
j Bands to be returned.

Further arguements (currently ignored).



feature_properties 41

Details

The first index represents the sample dimension and the second one is the band dimension. If the
sample dimension is indexed, care is taken that the SI and the id is indexed as well.

Value

Object of class Speclib containing the updated version of x.

Author(s)

Lukas Lehnert

See Also

Speclib, subset.speclib, SI, idSpeclib

Examples

data(spectral_data)

## Get the first five spectra
spec_1_5 <- spectral_data[1:5,]
spec_1_5

## Get the first ten bands
spec_1_10 <- spectral_data[,1:10]
spec_1_10

## Get the bands number 20 to 30 for the third and fifth spectra
spec_20_30 <- spectral_datal[c(3,5),20:30]
spec_20_30

feature_properties Calculation of properties of features

Description

Function to calculate feature properties such as the area, the position of the maximum and several
other parameters. This function can only be used for spectral data transformed using any kind of
continuum removal (see transformSpeclib).

Usage

feature_properties(x)

Arguments

X Object of class Specfeat



42 feature_properties

Details
The function calculates several parameters:

* area: The feature area is calculated by

maz (A

)
areap, = Z BDAJ,
k=min(\)

with arear, is the area of the feature i, min(\) is the minimum wavelength of the spectrum,
max(A) is the maximum wavelength of the spectrum and BD is the band depth.

* max: Wavelength position of the maximum value observed in the feature.

* Parameters based on half-max values:

— lo and up: Wavelength position of the lower and upper half-max value.
— width: Difference between wavelength positions of upper and lower half-max values.

— gauss_lo: Similarity of the Gauss distribution function and the feature values between the
lower half-max and the maximum position. As similarity measurement, the root mean
square error is calculated.

— gauss_up: Same as above but for feature values between the maximum position and the
upper half-max.

The typical workflow to obtain feature properties is to first calculate the band depth transformSpeclib,
then isolate the absorption features specfeat. Optionally, cut_specfeat allows to cut the features

at specified wavelengths. Finally use feature_properties to retrieve characteristics of the fea-
tures.

Value

An object of class Specfeat containing the properties as (part of the) SI table.

Author(s)
Hanna Meyer & Lukas Lehnert

See Also

specfeat

Examples

data(spectral_data)

## Example calculating the areas of the features around 450nm,

## 700nm, 1200nm and 1500nm.

bd <- transformSpeclib(subset(spectral_data, season == "summer"),
method = "sh"”, out = "bd")

## Convert speclib to specfeat giving center wavelength of features
featureSelection <- specfeat(bd, c(450,700,1200,1500))



get.gaussian.response 43

## Calculate properties of features
featureProp <- feature_properties(featureSelection)

## See resulting feature property variables
head(SI(featureProp))

get.gaussian.response Gaussian response function

Description
Simulate Gaussian response function for band(s) of a (satellite) sensor. Each band is either defined
by center and full-width-half-maximum values or by passing its upper and lower border.

Usage

get.gaussian.response(fwhm)

Arguments
fwhm Object of class data. frame with three columns. See details and examples sec-
tions.
Details

The characteristics of the sensor must be passed as a data. frame with three columns: first column
is used as name for bands, second with lower bounds of channels and third column with upper
bounds (5% sensitivity). Alternatively, the data.frame may encompass band centre wavelength
and full-width-half-maximum values of the sensor. Function will check the kind of data passed by
partially matching the names of the data frame: If any column is named "fwhm"” or "center”, it is
assumed that data are band centre and full-width-half-maximum values.
Value

Data frame with response values for all bands covering the entire spectral range of sensor passed to
the function.

Author(s)

Lukas Lehnert

See Also

get.sensor.characteristics, spectralResampling



44 get.sensor.characteristics

Examples

par(mfrow=c(1,2))
## Plot response function of RapidEye
plot(c(@,1)~c(330,1200), type = "n", xlab = "Wavelength [nm]",
ylab = "Spectral response”)
data_RE <- get.gaussian.response(get.sensor.characteristics(”RapidEye"))
xwl_response <- seq.int(attr(data_RE, "minwl"),
attr(data_RE, "maxwl"),
attr(data_RE, "stepsize"))
for (i in 1:ncol(data_RE))
lines(xwl_response, data_RE[,i], col = i)

## Plot original response function
data_RE <- get.sensor.characteristics(”RapidEye"”, TRUE)

plot(c(@,1)~c(330,1200), type = "n", xlab = "Wavelength [nm]",
ylab = "Spectral response”)
xwl_response <- seq.int(attr(data_RE$response, "minwl"),
attr(data_RE$response, "maxwl"),
attr(data_RE$response, "stepsize"))
for (i in 1:nrow(data_RE$characteristics))
lines(xwl_response, data_RE$response[,i], col = i)

## Simulate gaussian response for arbitrary sensor with 3 bands
sensor <- data.frame(Name = paste(”Band_", c(1:3), sep = ""),
center = c(450, 570, 680),
fwhm = c(30, 40, 30))

## Plot response function
par(mfrow=c(1,1))
plot(c(@,1)~c(330,800), type = "n", xlab = "Wavelength [nm]",
ylab = "Spectral response”)
data_as <- get.gaussian.response(sensor)
xwl_response <- seq.int(attr(data_as, "minwl”),
attr(data_as, "maxwl"),
attr(data_as, "stepsize"))
for (i in 1:3)
lines(xwl_response, data_as[,i], col = i)

get.sensor.characteristics
Sensor characteristics

Description

Get channel wavelength of implemented (multispectral) satellite sensors.

Usage

get.sensor.characteristics(sensor, response_function = FALSE)



get.sensor.characteristics 45

Arguments

sensor Character or integer. Name or numerical abbreviation of sensor. See ’sen-
sor="help"’ or ’sensor=0’ for an overview of available sensors.

response_function
If TRUE, the spectral response function is returned.

Details

The following sensors are currently implemented: ALI, EnMAP, Hyperion, Landsat4, LandsatS,
Landsat7, Landsat8, MODIS, Quickbird, RapidEye, Sentinel2a, Sentinel2b, World View2-4, World View2-
8.

Spectral response functions are available for the following ones: Landsat4, Landsat5, Landsat7,
Landsat8, Quickbird, RapidEye, Sentinel2a, Sentinel2b, WorldView2-4, World View2-8.

Author(s)

Lukas Lehnert

See Also

spectralResampling

Examples

## Return implemented sensors
get.sensor.characteristics(@)

## Sentinel 2A
data_s2a <- get.sensor.characteristics("Sentinel2a”, TRUE)

## Plot response functions
plot(c(@,1)~c(attr(data_s2a$response, "minwl"),
attr(data_s2a$response, "maxwl”)),
type = "n", xlab = "Wavelength [nm]",
ylab = "Spectral response”)
xwl_response <- seq.int(attr(data_s2a$response, "minwl"),
attr(data_s2a$response, "maxwl"),
attr(data_s2a$response, "stepsize”))
for (i in 1:nrow(data_s2a$characteristics))
lines(xwl_response, data_s2a$response[,i], col = i)

## Sentinel 2B
data_s2b <- get.sensor.characteristics(”Sentinel2b"”, TRUE)

## Add response functions
for (i in 1:nrow(data_s2b$characteristics))

lines(xwl_response, data_s2b$response[,i], col = i, 1ty = "dashed")
legend("topright”, legend = c(”Sentinel2a”, "Sentinel2b"),



46 getcp

1ty = c(”"solid”, "dashed"))

getcp Get fix points

Description

Get fix points of continuum line within spectral range.

Usage

getcp(x, ispec, subset = NULL)

Arguments

X Object of class Clman.

ispec ID or index of spectrum to be analysed.

subset Vector of length = 2 giving the lower and upper limit of spectral range.
Value

Object of class 1ist containing two elements:

* ptscon: Data frame with wavelength and reflectance of fix points

* ispec: Index of analysed spectrum within passed C1lman-object.

Author(s)

Lukas Lehnert and Hanna Meyer

See Also

transformSpeclib, deletecp, addcp, Clman

Examples

## Model spectra using PROSAIL
parameter <- data.frame(N = rep.int(c(1, 1.5),2), LAI = c(1,1,3,3))
spec <- PROSAIL (parameterList=parameter)

## Transform spectra
spec_clman <- transformSpeclib(spec, method = "sh"”, out = "raw")

## Fix points
spec_cp <- getcp(spec_clman, 1, c(400, 800))
spec_cp



getNRI 47

getNRI Return nri-values

Description

Return normalized ratio index values at a given wavelength combination.

Usage

getNRI(nri, wavelength)

Arguments

nri Object of class *Nri’

wavelength Wavelength values where nri is returned. See details section.
Details

Wavelength can be passed in three ways. As the result of nri_best_performance, as a data frame
with two columns or as a vector of length 2. In the first two cases, the result will be a data frame
(if data frames contain more than one row) with the nri-values of each pair of wavelengths. In the
latter case it will be a vector.

Author(s)

Lukas Lehnert

See Also

nri, Nri

Examples

data(spectral_data)

## Calculate all possible combinations for WorldView-2-8
spec_WV <- spectralResampling(spectral_data, "WorldView2-8",

response_function = FALSE)
nri_WV <- nri(spec_WV, recursive = TRUE)

## Build glm-models
glmnri <- glm.nri(nri_WV ~ chlorophyll, preddata = spec_WV)

## Return best 5 models
BM <- nri_best_performance(glmnri, n = 5, coefficient = "p.value")

## Get nri values for the 5 models
nri_BM <- getNRI(nri_WV, BM)



48 get_reflectance

get_reflectance Get reflectance values

Description

Returns weighted or unweighted reflectance values at wavelength position.

Usage
get_reflectance(spectra, wavelength, position, weighted = FALSE, ...)
Arguments
spectra Object of class Speclib or data.frame with reflectance values.
wavelength Vector with wavelength values. May be missing if spectra is object of class
Speclib.
position Numeric value passing the position of reflectance values to be returned in di-
mensions of the wavelength values.
weighted Logical indicating if reflectance values should be interpolated to fit wavelength
position. If FALSE the reflectance values of nearest neighbour to passed position
are returned.
Arguments to be passed to specific functions. Currently ignored.
Value

A vector with reflectance values for each spectrum is returned. If position falls outside of spectral
range of input values, NA values are returned.

Author(s)
Lukas Lehnert \& Hanna Meyer

See Also

spectra

Examples

data(spectral_data)
## Simulate multispectral sensor encompassing two bands
## to show effect of weighted and unweighted modes

spectral_data_res <- spectralResampling(spectral_data,
sensor = data.frame(lb = c(400, 600), ub = c(500, 700)))

## Compare reflectance at 520 nm (in between both bands to



glm.nri 49

## show the difference between weighted and unweighted modes)

weighted_reflectance <- get_reflectance(spectral_data_res,
520, weighted = TRUE)

unweighted_reflectance <- get_reflectance(spectral_data_res,
520, weighted = FALSE)

## Plot result

plot(weighted_reflectance, unweighted_reflectance,
ylab = "Reflectance at 520 nm (unweighted)"”,
xlab = "Reflectance at 520 nm (weighted)")

glm.nri (Generalised) Linear models from normalised ratio indices

Description

Build (generalised) linear models of normalised ratio indices as response and predictor variables
usually stored in the SI.

Usage

Im.nri(formula, preddata = NULL, ...)

glm.nri(formula, preddata = NULL, ...)
Arguments

formula Formula for (generalized) linear model

preddata Data frame or speclib containing predictor variables

Further arguments passed to 1m, glm and generic print.default

Details

NRI-values may be used as predictor or response variable. If NRI-values are predictors, the models
are build only with one index as predictor instead of all available indices. In this case, only one
predictor and one response variable is currently allowed. See help pages for 1m and glm for any
additional information. Note that this function does not store the entire information returned from
a normal (g)lm-model. To get full (g)lm-models use either the function nri_best_performance
to return best performing model(s) or extract nri-values with getNRI and build directly the model
from respective index.

See details in Nri-plot-method for information about plotting.



50 hsdardocs

Value

The function returns an object of class Nri. The list in the slot multivariate contains the new (g)lm
information which depends on the kind of model which is applied:

1. 1m.nri: The list contains the following items:

¢ Estimate: Coefficient estimates for each index and term

L]

Std.Error: Standard errors
¢ t.value: T-values
* p.value: P-values

+ r.squared: R? values
2. glm.nri: The list contains the following items (depending on formula used):

» Estimate: Coefficient estimates for each index and term
¢ Std.Error: Standard errors

e t.value/z.value: T-values or Z-values

* p.value: P-values

Author(s)

Lukas Lehnert

See Also

plot, Im, glm, getNRI

Examples

data(spectral_data)

## Calculate all possible combinations for WorldView-2-8
spec_WV <- spectralResampling(spectral_data, "WorldView2-8",

response_function = FALSE)
nri_WV <- nri(spec_WV, recursive = TRUE)

glmnri <- glm.nri(nri_WV ~ chlorophyll, preddata = spec_WV)
glmnri

plot(glmnri)

hsdardocs Load additional documents

Description

Access help documents and references for different methods.



hsdar_parallel 51

Usage
hsdardocs(doc)
Arguments
doc Name of document to load. Currently, "Hsdar-intro.pdf”, "References.pdf”
and "Copyright” are available
Author(s)

Lukas Lehnert

Examples

## Not run:
## Open introduction to hsdar (PDF-file)
hsdardocs("Hsdar-intro.pdf")

## Open references of hyperspectral vegetation indices (PDF-file)
hsdardocs("References.pdf")

## See copyrights of routines and data used in hsdar-package (ascii-file)
hsdardocs("Copyright™)

## End(Not run)

hsdar_parallel hsdar_parallel

Description
Get all functions which support parallel execution. Currently, the parallel backend functions in
doMPI and doMC are supported.

Usage
hsdar_parallel()

Details

Parallel execution is performed via the foreach-package. Care is taken that a function will never
run in parallel if the calling function is already using multicore processing.

Value

Vector containing supported function names



52 HyperSpecRaster

Author(s)

Lukas Lehnert

Examples

## Not run:
supported_functions <- hsdar_parallel()
supported_functions

data(spectral_data)

## Example for Windows and other systems where doMPI is available
## Load library

library(doMPI)

## Register number of workers

cl <- startMPIcluster(count = 3)

registerDoMPI(cl)

## Transform speclib using 3 cores
bd <- transformSpeclib(spectral_data)

## Close the cluster (important to get rid of processes)
closeCluster(cl)

## Example for Linux and other systems where doMC is available
## Load library

library(doMC)

## Register number of workers

registerDoMC(3)

## Transform speclib using 3 cores
bd <- transformSpeclib(spectral_data)

## End(Not run)

HyperSpecRaster Handle hyperspectral cubes using raster package (deprecated)

Description

The HyperSpecRaster-Class is deprecated. Use Speclib instead.

Usage

## S4 method for signature 'character,numeric’
HyperSpecRaster(x, wavelength, fwhm = NULL, SI = NULL, ...)

## S4 method for signature 'RasterLayer,numeric'
HyperSpecRaster(x, wavelength, fwhm = NULL, SI = NULL)



HyperSpecRaster 53

## S4 method for signature 'RasterBrick,numeric'
HyperSpecRaster(x, wavelength, fwhm = NULL, SI = NULL)

## S4 method for signature 'HyperSpecRaster'
HyperSpecRaster(x, wavelength)

## S4 method for signature 'Speclib'
HyperSpecRaster(x, nrow, ncol, xmn, xmx, ymn, ymx, crs)

## S4 method for signature 'HyperSpecRaster,character'’
writeStart(x, filename, ...)

## S4 method for signature 'HyperSpecRaster'
getValuesBlock(x, ...)

## S4 method for signature 'RasterlLayer,Speclib’
writeValues(x, v, start)

## S4 method for signature 'RasterBrick,Speclib'
writeValues(x, v, start)

## S4 method for signature 'HyperSpecRaster,Speclib'
writeValues(x, v, start)

Arguments

X Raster* object

wavelength Vector containing wavelength for each band

fwhm Optional vector containing full-width-half-max values. If length == 1 the same
value is assumed for each band. Note that function does not check the integrity
of the values

SI Optional data.frame containing SI data

nrow Optional. Number of rows in HyperspecRaster. If omitted, function will try to
get the information from the SI in Speclib (attr(x, "rastermeta”))

ncol Optional. Number of colums in HyperspecRaster. See nrow above.

Xmn Optional. Minimum coordiante in x-dimension. See nrow above.

XMX Optional. Maximum coordiante in x-dimension. See nrow above.

ymn Optional. Minimum coordiante in y-dimension. See nrow above.

ymx Optional. Maximum coordiante in y-dimension. See nrow above.

crs Optional. Object of class 'CRS' giving the coordinate system for HyperspecRas-
ter. See nrow above.
Additional arguments as for brick

filename Name of file to create

v Speclib or matrix of values

start Integer. Row number (counting starts at 1) from where to start writing v



54 idSpeclib

Value

HyperSpecRaster or RasterBrick

Author(s)

Lukas Lehnert

HyperSpecRaster-class HyperSpecRaster* class (deprecated)

Description

This is a deprecated class. Use Speclib-class instead.

Details

Extension of *RasterBrick-class with three additional slots:

wavelength: A numeric vector giving the center wavelength for each band.
fwhm (optional): A numeric vector giving the full-width-half-max values for each band.

SI (optional): A data.frame containing additional information for each pixel.

The information in the three slots are used for the convertion to Speclib.

Author(s)
Lukas Lehnert

See Also

brick, Speclib

idSpeclib Handling IDs of spectra

Description

Returning and setting ID of spectra in Speclib

Usage

idSpeclib(x)
idSpeclib(x) <- value



import_USGS

Arguments

X

value

Value

55

Object of class Speclib.

Character vector of the same length as nspectra(x), or NULL.

For idSpeclib<-, the updated object. Otherwise a vector giving the ID of each spectrum in Speclib

is returned.

Author(s)

Lukas Lehnert

See Also
Speclib

Examples

data(spectral_data)

idSpeclib(spectral_data)

import_USGS

import USGS spectra

Description

Import and download spectral data from USGS spectral library

Usage

USGS_get_available_files(url = NULL)

USGS_retrieve_files(avl = USGS_get_available_files(),

Arguments

url

avl

pattern
retrieve
loadAsSpeclib
tol

pattern = NULL, retrieve = TRUE,
loadAsSpeclib = TRUE, tol = 0.1)

Character passing the url of the data. If NULL, the following URL is used:
*ftp://ftpext.cr.usgs.gov/pub/cr/co/denver/speclab/pub/spectral.library/splib06.library/ ASCII/

List of available files. Typically the result of USGS_get_available_files.
Search pattern to define a subset of all available spectra.

Logical. Should the data be downloaded?

Logical. If TRUE, an object of class "Speclib" is retured

Discrepancy of the wavelength values between different spectra.



56 makehull

Author(s)

Lukas Lehnert

Examples

## Not run:
## Retrieve all available spectra
avl <- USGS_get_available_files()

## Download all spectra matching "grass-fescue”
grass_spectra <- USGS_retrieve_files(avl = avl, pattern = "grass-fescue")

plot(grass_spectra)

## End(Not run)

makehull Re-calculate hull

Description

Re-calculates the hull after it was manually adapted

Usage

makehull(x, ispec)

Arguments

X Object of class Clman.

ispec Name or index of spectrum to be checked.
Details

In some cases, it might be desirable to manually adapt automatically constructed segmended hulls
(transformSpeclib). For example local maxima could be removed because they are very small
and maybe afflicted with uncertainties which might legitimate it to manipulate the continuum line.
Therefore, hsdar provides functions to remove and add "continuum points" from or to a continuum
line. Manually adapted continuum lines can then be used to update band depth or ratio transfor-
mation. Handle these functions with care to avoid continuum lines too much build by subjective
decisions. In the typical workflow, spectra are first transformed (transformSpeclib). Contin-
uum points can then be retrieved (getcp) and manually adapted by adding addcp and deleting
(deletecp) of points. Use checkhull to check for errors. If all uncertainties are removed, re-
calculate the hull (makehull) and update the transformed spectrum (updatecl).

Value

Object of class list.



makehull 57

Author(s)

Lukas Lehnert and Hanna Meyer

See Also

transformSpeclib, addcp, deletecp, makehull, updatecl

Clman

Examples

## Model spectra using PROSAIL
parameter <- data.frame(N = rep.int(c(1, 1.5),2), LAI = c(1,1,3,3))
spec <- PROSAIL(parameterList=parameter)

## Transform spectra
spec_clman <- transformSpeclib(spec, method = "sh", out = "raw")

## Plot original line
par(mfrow = c(1,2))
plot(spec_clman, ispec = 1, xlim = c(2480, 2500), ylim=c(0.022,0.024))

## Add fix point at 4595 nm to continuum line of first spectrum
spec_clman <- addcp(spec_clman, 1, 2495)

## Plot new line
plot(spec_clman, ispec = 1, xlim = c(2480, 2500), ylim=c(0.022,0.024))

## Check new hull
hull <- checkhull(spec_clman, 1)
hull$error

## Add fix point at 4596 nm to continuum line of first spectrum
spec_clman <- addcp(spec_clman, 1, 2496)

## Check new hull
hull <- checkhull(spec_clman, 1)
hull$error

## Re-calculate hull
hull <- makehull(spec_clman, 1)

## Transform spectra using band depth
spec_bd <- transformSpeclib(spec, method = "sh”, out = "bd")

## Update continuum line of first spectrum
spec_bd <- updatecl(spec_bd, hull)

## Plot modified transformed spectrum
plot(spec_bd, FUN = 1)



58 mask

mask Mask spectra

Description

Returning and setting mask of spectra in Speclib. interpolate.mask linearly interpolates masked
parts in spectra.

Usage

## S4 method for signature 'Speclib'’

mask (object)

## S4 replacement method for signature 'Speclib,data.frame'’
mask (object) <- value

## S4 replacement method for signature 'Speclib,list'’

mask (object) <- value

## S4 replacement method for signature 'Speclib,numeric’
mask (object) <- value

## Linear interpolation of masked parts
interpolate.mask(object)

Arguments
object Object of class Speclib.
value Numeric vector, data frame or list giving the mask boundaries in wavelength
units. See details section.
Details

Value may be an object of class vector, data frame or list. Data frames must contain 2 columns with
the first column giving the lower (Ib) and the second the upper boundary (ub) of the wavelength
ranges to be masked. List must have two items consisting of vectors of length = 2. The first entry is
used as lower and the second as upper boundary value. Vectors must contain corresponding lower
and upper boundary values consecutively. The masked wavelength range(s) as defined by the lower
and upper boundaries are excluded from the object of class Speclib.

Interpolation of masked parts is mainly intended for internal use. Interpolation is only possible if
mask does not exceed spectral range of Speclib.

Value

For mask<-, the updated object. Otherwise a data frame giving the mask boundaries.

interpolate.mask returns a new object of class Speclib.

Author(s)

Lukas Lehnert and Hanna Meyer



meanfilter 59

See Also

Speclib

Examples

data(spectral_data)

mask (spectral_data) ## NULL

## Mask from vector

spectral_data_ve <- spectral_data

mask (spectral_data_ve) <- c(1040,1060,1300,1450)
mask (spectral_data_ve)

## Mask from data frame

spectral_data_df <- spectral_data

mask (spectral_data_df) <- data.frame(lb=c(1040,1300),ub=c(1060,1450))
mask (spectral_data_df)

## Mask from list

spectral_data_li <- spectral_data

mask(spectral_data_li) <- list(lb=c(1040,1300),ub=c(1060,1450))
mask (spectral_data_li)

## Linear interpolation
plot(spectral_data)
plot(interpolate.mask(spectral_data_li), new=FALSE)

meanfilter Apply mean filter

Description

Apply mean filter to spectra. Filter size is passed as number of bands averaged at both sides of the
respective band value.

Usage

meanfilter(spectra, p = 5)

Arguments

spectra Data.frame, matrix or Speclib containing spectra

p Filter size.



60 merge

Value

Filtered matrix or Speclib of same dimension as input matrix/Speclib

Author(s)

Lukas Lehnert

See Also

noiseFiltering

Examples

data(spectral_data)

spectra_filtered <- meanfilter(spectral_data, p = 10)
plot(spectra_filtered[1,])
plot(spectral_data[1,], new = FALSE)

merge Merge speclibs

Description

Merge two Speclibs and their SI data

Usage
## S4 method for signature 'Speclib,Speclib'’
merge(x, Yy, ...)

Arguments
X Ist Object of class Speclib to be merged.
y 2nd Object of class Speclib to be merged.

Further (optional) objects of class Speclib.

Value

Object of class Speclib.

Author(s)
Lukas Lehnert



noiseFiltering

See Also
Speclib

Examples

61

data(spectral_data)
spl <- spectral_datalc(1:10),]
sp2 <- spectral_datal[c(11:20),]

## Merge two Speclibs
speclib_merged_1 <- merge(spl, sp2)
nspectra(speclib_merged_1)

## Merge multiple Speclibs

sp3 <- spectral_datalc(21:30),]
speclib_merged_2 <- merge(spl, sp2, sp3)
nspectra(speclib_merged_2)

noiseFiltering

Smooth spectra

Description

Smoothing of spectral data by Savitzky-Golay, lowess, spline, mean or user-defined filtering ap-

proaches.
Usage
noiseFiltering(x, method = "mean”, ...)
Arguments
X Object of class Speclib.
method Character string giving the name of the method to be used. Predefined valid

options are "sgolay", "lowess", "spline" and "mean". However, method can also
be the (character) name of any other filter function (see examples).

Further arguments passed to the filter functions. The following arguments are
important for the predefined methods:
* sgolay: n sets the filter length (must be odd).
* lowess: f defines the smoother span. This gives the proportion of bands in
the spectrum which influence the smooth at each value. Larger values give
more smoothness.

* spline: n defines at how many equally spaced points spanning the interval
interpolation takes place.

* mean: p sets the filter size in number of bands. Note that larger values give
more smoothness.

Refer to the links in the details section, and see examples.



62 noiseFiltering

Details

Smoothing of spectra by filtering approaches is an essential technique in pre-processing of hy-
perspectral data with its contiguous spectra. By stepwise fitting of the spectral channels within a
defined window size, it is used to minimize the variances caused by intrumental variations or the
high noise levels resulting from the very fine wavelength resolution. Therefore, this function allows
filtering using four different methods:

» Savitzky-Golay: Smoothing applying Savitzky-Golay-Filter. See sgolayfilt from signal-
package for details.

* Lowess: Smoothing applying lowess-Filter. See lowess from stats-package for details.
* Spline: Smoothing applying spline-Filter. See spline from stats-package for details.

e Mean: Smoothing applying mean-Filter. See meanfilter for details.

Value

Object of class Speclib.

Author(s)
Lukas Lehnert, Wolfgang Obermeier

References

Tsai, F. & Philpot, W. (1998): Derivative analysis of hyperspectral data. Remote Sensing of Envi-
ronment 66/1. 41-51.

Vidal, M. & Amigo, J. (2012): Pre-processing of hyperspectral images. Essential steps before
image analysis. Chemometrics and Intelligent Laboratory Systems 117. 138-148.

See Also

sgolayfilt, lowess, spline, meanfilter

Examples

data(spectral_data)

## Example of predefined filter functions
## Savitzky-Golay
sgolay <- noiseFiltering(spectral_data, method="sgolay", n=25)

## Spline
spline <- noiseFiltering(spectral_data, method="spline”,
n=round(nbands(spectral_data)/10,0))

## Lowess
lowess <- noiseFiltering(spectral_data, method="lowess"”, f=.01)

## Mean
meanflt <- noiseFiltering(spectral_data, method="mean", p=5)



nri 63

par(mfrow=c(2,2))

plot(spectral_data, FUN=1, main="Savitzky-Golay")
plot(sgolay, FUN=1, new=FALSE, col="red”, lty="dotted")
plot(spectral_data, FUN=1, main="Spline")

plot(spline, FUN=1, new=FALSE, col="red"”, lty="dotted")
plot(spectral_data, FUN=1, main="Lowess")

plot(lowess, FUN=1, new=FALSE, col="red”, lty="dotted")
plot(spectral_data, FUN=1, main="Mean")

plot(meanflt, FUN=1, new=FALSE, col="red", lty="dotted")

## Example of a not predefined filter function (Butterworth filter)
bf <- butter(3, 0.1)

bf_spec <- noiseFiltering(spectral_data, method="filter"”, filt=bf)
plot(spectral_data, FUN=1, main="Butterworth filter")

plot(bf_spec, FUN=1, new=FALSE, col="red", lty="dotted")

nri Normalised ratio index

Description

Calculate normalised ratio index (nri) for a single given band combination or for all possible band
combinations. Calculating nri is a frequently used method to standardize reflectance values and to
find relationships between properties of the objects and their spectral data.

Usage
nri(x, b1, b2, recursive = FALSE, bywavelength = TRUE)

Arguments
X List of class Speclib or of class Nri for print and as.matrix methods.
b1 Band 1 given as band number or wavelength.
b2 Band 2 given as band number or wavelength.
recursive If TRUE indices for all possible band combinations are calculated. If FALSE,

only a single nri for the given bands in b1 and b2 is calculated.

bywavelength Flag to determine if bl and b2 are band number (bywavelength = FALSE) or
wavelength (bywavelength = TRUE) values.

Details

Function for nri performs the following calculation:

Rp1 — Rpo
Rp1 — Rpa’

with R being reflectance values at wavelength B1 and B2, respectively.

NnTiB1, B2 =

If recursive = TRUE, all possible band combinations are calculated.



64 Nri-class

Value

If recursive = FALSE, a data frame with index values is returned. Otherwise result is an object
of class Nri. See glm.nri for applying a generalised linear model to an array of normalised ratio
indices.

Author(s)

Lukas Lehnert

References

Sims, D.A.; Gamon, J.A. (2002). Relationships between leaf pigment content and spectral re-
flectance across a wide range of species, leaf structures and developmental stages. Remote Sensing
of Environment: 81/2, 337 - 354.

Thenkabail, P.S.; Smith, R.B.; Pauw, E.D. (2000). Hyperspectral vegetation indices and their re-
lationships with agricultural crop characteristics. Remote Sensing of Environment: 71/2, 158 -
182.

See Also

glm.nri, glm, Speclib, Nri

Examples

data(spectral_data)

## Calculate NDVI
ndvi <- nri(spectral_data, b1=800, b2=680)

## Calculate all possible combinations for WorldView-2-8

spec_WV <- spectralResampling(spectral_data, "WorldView2-8",
response_function = FALSE)

nri_WV <- nri(spec_WV, recursive = TRUE)

nri_Wv

Nri-class * Nri class

Description

Class to handle datasets containing normalized ratio indices of spectra.



Nri-methods 65

Details

Object with slots:

Note

nri: Object of class DistMat3D containing nri values.

fwhm: Vector or single numerical value giving the full-width-half-max value(s) for each band.
wavelength: Vector with wavelength information.

dimnames: Character vector containing band names used to calculate nri-values.

multivariate: List defining the kind of test/model applied to the data and the model data. Only
used after object has passed e.g. (g)1m.nri.

SI: Data.frame containing additional data

usagehistory: Vector giving information on history of usage of the object.

See figure in hsdar-package for an overview of classes in hsdar.

Author(s)

Lukas Lehnert

See Also

Speclib

Nri-methods Methods for * Nri-class

Description

Methods to handle data in objects of class Nri.

Usage

## S4 method for signature 'Nri'
as.matrix(x, ..., named_matrix = TRUE)

## S4 method for signature 'Nri'
as.data.frame(x, na.rm = FALSE, ...)

## S4 method for signature 'Nri'
wavelength(object)

## S4 method for signature 'Nri'
dim(x)

getFiniteNri(x)



66 nri_best_performance

Arguments
x,object Object of class *Nri’
na.rm Remove indices containing NA-values. Note that if TRUE, all indices are re-

moved which have at least one NA value.

named_matrix  Flag if column and row names are set to band indices used for the calculation of
the nri-values.

Further arguments passed to generic functions. Currently ignored.

Author(s)

Lukas Lehnert

See Also

glm.nri, glm, nri

nri_best_performance Best performing model(s) with NRI

Description

Get or mark best performing model(s) between narrow band indices and environmental variables

Usage
nri_best_performance(nri, n = 1, coefficient = "p.value",
predictor = 2, abs = FALSE, findMax = FALSE,
L))
mark_nri_best_performance(best, glmnri, n = nrow(best$Indices),
uppertriang = FALSE, ...)
Arguments
nri Object of class nri
glmnri Object of class glmnri
n Number of models to return or mark
coefficient Name or index of coefficient to plot
predictor Name or index of term to plot
abs Use absolute value (e.g. for t-values)
findMax Find maximum or minimum values
best Output from nri_best_performance

uppertriang Flag to mark the upper triangle
Further arguments passed to glm function. These must be the same as used for
initial creation of glm.nri. For mark_nri_best_performance arguments are
passed to polygon.



plot.Nri

Details

See details in glm.nri and glm.

Author(s)

Lukas Lehnert

See Also

glm.nri, glm

Examples

data(spectral_data)

## Calculate all possible combinations for WorldView-2-8
spec_WV <- spectralResampling(spectral_data, "WorldView2-8",

response_function = FALSE)
nri_WV <- nri(spec_WV, recursive = TRUE)

## Build glm-models
glmnri <- glm.nri(nri_WV ~ chlorophyll, preddata = spec_WV)

## Return best 5 models
BM <- nri_best_performance(glmnri, n = 5, coefficient = "p.value")

## Get nri values for the 5 models
nri_BM <- getNRI(nri_Wv, BM)

plot.Nri Plot function for (g)lm.nri and cor.test.nri

Description

Plot values in (generalised) linear modes and correlation tests from narrow band indices

Usage

## S4 method for signature 'Nri'

plot(x, coefficient = "p.value”, predictor = 2,
xlab = "Wavelength band 1 (nm)",
ylab = "Wavelength band 2 (nm)", legend = TRUE,
colspace = "hcl”, col = c(10, 90, 60, 60, 10, 80),
digits = 2, range = "auto”, constraint = NULL,
uppertriang = FALSE, zlog = FALSE, ...)



plot.Nri

Arguments

X Object to be plotted.

coefficient Name or index of coefficient to plot.

predictor Name or index of term to plot.

x1ab Label for x-axis.

ylab Label for y-axis.

legend Flag if legend is plotted. If legend == "outer” the legend is plotted in the
outer margins of the figure. This is useful if both diagonals are used.

colspace Either "hcl" or "rgb". Colour space to be used for the plots.

col If colspace == "hcl", the vector is giving the minimum and maximum values of
hue (element 1 & 2), chroma (element 3 & 4) and luminance (element 5 & 6).
The optional element 7 is used as alpha value. See hcl for further explanation.
If colspace == "rgb", a vector of length >=2 giving the colours to be interpolated
using colorRamp.

digits Precision of labels in legend.

range "auto" or a vector of length = 2 giving the range of values to be plotted.

constraint A character string giving a constraint which values should be plotted. See ex-
amples section.

uppertriang Flag if upper triangle is used for the plot. Note that if TRUE the current plot is
used instead of starting a new plot

zlog Flag indicating if color should be logarithmically scaled. Useful e.g. for p-
values.
Further arguments passed to plot.default.

Details

See details in glm.nri and glm.

Value

An invisible vector with minimum and maximum values plotted.

Author(s)

Lukas Lehnert

See Also

nri, glm.nri, glm, cor.test, t.test



plot.Specfeat 69

Examples

## Not run:
data(spectral_data)

## Calculate all possible combinations for WorldView-2-8
spec_WV <- spectralResampling(spectral_data, "WorldView2-8",

response_function = FALSE)
nri_WV <- nri(spec_WV, recursive = TRUE)

## Fit generalised linear models between NRI-values and chlorophyll
glmnri <- glm.nri(nri_WV ~ chlorophyll, preddata = spec_WV)

## Plot p-values
plot(glmnri, range = c(0, 0.05))
## Plot t-values

plot(glmnri, coefficient = "t.value")

## Plot only t-values where p-values < 0.001

plot(glmnri, coefficient = "t.value”,
constraint = "p.value < 0.001")

## Fit linear models between NRI-values and chlorophyll
Imnri <= Im.nri(nri_WV ~ chlorophyll, preddata = spec_WV)

## Plot r.squared
plot(lmnri)

## Example for EnMAP (Attention: Calculation time may be long!)

spec_EM <- spectralResampling(spectral_data, "EnMAP",
response_function = FALSE)

mask (spec_EM) <- c(300, 550, 800, 2500)

nri_EM <- nri(spec_EM, recursive = TRUE)

glmnri <- glm.nri(nri_EM ~ chlorophyll, preddata = spec_EM)

## Plot T values in lower and p-values in upper diagonal

## of the plot

## Enlarge margins for legends

par(mar = c(5.1, 4.1, 4.1, 5))

plot(glmnri, coefficient = "t.value”, legend = "outer")

plot(glmnri, coefficient = "p.value”, uppertriang = TRUE, zlog = TRUE)
lines(c(400,1705),c(400,1705))

## End(Not run)

plot.Specfeat Plot Specfeat

Description

Plot spectra in objects of class Specfeat. Specfeats contain spectral data after applying a transfor-
mation such as continuum removal (see function transformSpeclib.



70 plot.Specfeat

Usage

## S4 method for signature 'Specfeat'
plot(x, fnumber = 1:n_features(x), stylebysubset = NULL,
changecol = TRUE, changetype = FALSE, autolegend = TRUE, new = TRUE,

»)
Arguments

X Object to be plotted

fnumber Subscript of feature(s) to be plotted

stylebysubset Name of column in SI table to be used for colour.

changecol Flag indicating if line colours change according to values in coloumn defined by
stylebysubset

changetype Flag indicating if line types change according to values in coloumn defined by
stylebysubset

autolegend Flag if legend is plotted.

new Flag if a new plot should be started.

Further arguments passed to plot.default

Author(s)

Lukas Lehnert

See Also

nri, glm.nri, glm, cor.test,Nri-method, t.test,Nri-method, Specfeat

Examples

## Not run:
data(spectral_data)

## Transform speclib
bd <- transformSpeclib(spectral_data, method = "sh", out = "bd")

##Example to isolate the features around 450nm, 700nm, 1200nm and 1500nm.
featureSelection <- specfeat(bd, c(450,700,1200,1500))

## Plot features
plot(featureSelection)

## Advanced plotting example
plot(featureSelection, 1:2, stylebysubset = "season")

plot(featureSelection, 1:2, stylebysubset = "season”, changecol = FALSE,
changetype = TRUE)

## End(Not run)



plot.Speclib 71

plot.Speclib Plot speclib

Description

Plot Speclib in a new plot or adding it to an existing plot.

Usage
## S4 method for signature 'Speclib'’
plot(x, FUN = NULL, new = TRUE, ...)
Arguments
X Object of class Speclib.
FUN Name of a function (character) or index or ID of single spectrum to plot (inte-
ger).
new If FALSE the plot is added to active existing plot.

Further arguments passed to internal plot functions.

Details

The function may work in a couple of modes. The default way is to plot mean values (solid line) of
all spectra and the standard deviations within bands. If data is assumed to be continuous the standard
deviations are plotted as dashed lines otherwise error bars will indicate standard deviations.

The user has various options to change the way things are looking: With argument FUN the name of
a function, the ID or the index of a certain spectrum may be specified. Note that if FUN is a function,
this function will be applied to all spectra. If function should be applied to a subset of spectra, use
function subset to define rules excluding certain spectra.

By passing a subset, the user may specify a spectral range to plot. Limits for x- and y-axis will be
found automatically or may be passed separately.

Author(s)

Lukas Lehnert

See Also

Speclib



72 postprocessASD

Examples

data(spectral_data)

## Set mask for channel crossing and water absorption bands
mask(spectral_data) <- c(1040, 1060, 1350, 1450)

## Simple example
plot(spectral_data, legend = list(x = "topleft"))

## Example with function

par(mfrow = c(2,3))

plot(spectral_data, FUN = "min”, main = "Minimum of speclib")
plot(spectral_data, FUN = "max", main = "Maximum of speclib”)
plot(spectral_data, FUN = "median”, main = "Median of speclib”)

plot(spectral_data, FUN = "mean”, main = "Mean of speclib")

plot(spectral_data, FUN = "var"”, main = "Variance of speclib”)
postprocessASD Read ASD binary file
Description

Read spectra stored in ASD binary files using the package *asdreader’.

Usage

postprocessASD(x, reference, removeCrossings = TRUE,
correctReflectance = TRUE)

Arguments
X Object of class *Speclib’ containing spectra to be processed.
reference Object of class *Speclib’ containing single reference spectrum (sensitivity of the
white reference standard).
removeCrossings
Flag if channel crossings at 1000 nm and 1800 nm should be removed.
correctReflectance
Flag if reflectance values should be corrected using the spectrum of the refer-
ence.
Value

Object of class Speclib.

Author(s)

Lukas Lehnert



predictHyperspec 73

See Also

speclib

predictHyperspec Prediction based on train-object and Speclib

Description

Perform predictions based on a train-object from the caret-package and a hyperspectral dataset
from hsdar. See help file to function predict. train of the caret-package for general information
on prediction with caret.

Usage

## S4 method for signature 'train,.CaretHyperspectral,missing'
predictHyperspec(object, newdata, preProcess, ...)

## S4 method for signature 'train,.CaretHyperspectral,function’

predictHyperspec(object, newdata, preProcess, ...)
Arguments
object Object of class train from caret-package
newdata Object of class Speclib or Nri to predict on.
preProcess Optional function to be applied on newdata prior to the prediction.

Further arguments passed to original train function and/or to the preProcess-

function.
Value
Depending on the settings either a vector of predictions if type = "raw" or a data frame of
class probabilities for type = "prob”. In the latter case, there are columns for each class.

For predict.list, a list results. Each element is produced by predict.train. See details in
predict.train in the caret-package.

Author(s)

Lukas Lehnert

See Also

predict.train, Speclib



74 predictHyperspec

Examples

## Not run:

## The following example is taken from the journal paper
## "Hyperspectral Data Analysis in R: the hsdar Package"
## under review at the "Journal of Statistical Software”

data(spectral_data)
spectral_data <- noiseFiltering(spectral_data, method = "sgolay”, p = 15)

## Convert the chlorophyll measurements stored in the SI dataframe
## from SPAD-values into mg.
SI(spectral_data)$chlorophyll <-

(117.1 * SI(spectral_data)$chlorophyll) /

(148.84 - SI(spectral_data)$chlorophyll)

## Mask spectra
spectral_data <- spectral_data[, wavelength(spectral_data) >= 310 &
wavelength(spectral_data) <= 1000]

## Transform reflectance values into band depth applying a segmented upper hull
## continuum removal.
spec_bd <- transformSpeclib(spectral_data, method = "sh"”, out = "bd")

## Select the chlorophyll absorption features at 460 nm and 670 nm for further
## processing
featureSpace <- specfeat(spec_bd, c(460, 670))

## Calculate all parameters from both selected features such as area, distance
## to Gauss curve etc.
featureSpace <- feature_properties(featureSpace)

## Set response and additional predictor variables for random forest model
featureSpace <- setResponse(featureSpace, "chlorophyll”)
featureSpace <- setPredictor(featureSpace,

names (SI(featureSpace))[4:ncol (SI(featureSpace))])

## Define training and cross validation for random forest model tuning
ctrl <- trainControl(method = "repeatedcv”, number = 10, repeats = 5)

## Partition data set for training and validation
training_validation <- createDataPartition(featureSpace)

## Train random forest model based on training-subset
rfe_trained <- train(featureSpace[training_validation$Resamplel,],
trainControl = ctrl, method = "rf")

## Predict on the validation data set
pred <- predictHyperspec(rfe_trained, featureSpace[-training_validation$Resamplel,])

## Plot result for visual interpretation
lim <- range(c(SI(featureSpace,i = -training_validation$Resamplel)$chlorophyll,



PROSAIL 75

pred))
plot(SI(featureSpace,i = -training_validation$Resamplel)$chlorophyll, pred,

ylab = "Predicted chlorophyll content”,

xlab = "Estimated chlorophyll content”,

xlim = 1lim, ylim = lim)
lines(par()$usrlc(1,2)],par()$usrlc(3,4)]1, 1ty = "dotted")

## End(Not run)

PROSAIL Simulate canopy spectrum

Description

Simulate a canopy spectrum using PROSAIL 5B

Usage

PROSAIL(N = 1.5, Cab = 40, Car = 8, Cbrown = 0.0,
Cw = 0.01, Cm = 0.009, psoil = @, LAI = 1,

TypeLidf = 1, lidfa = -0.35, lidfb = -0.15,
hspot = 0.01, tts = 30, tto = 10, psi = 0,
parameterList = NULL, rsoil = NULL)
Arguments

N Structure parameter

Cab Chlorophyll content

Car Carotenoid content

Cbrown Brown pigment content

Cw Equivalent water thickness

Cm Dry matter content

psoil Dry/Wet soil factor

LAI Leaf area index

TypelLidf Type of leaf angle distribution. See details section

lidfa Leaf angle distribution. See details section

lidfb Leaf angle distribution. See details section

hspot Hotspot parameter

tts Solar zenith angle

tto Observer zenith angle

psi Relative azimuth angle

parameterList An optional object of class 'data.frame'. Function will iterate over rows of
parameterList setting missing entries to default values. See examples section.

rsoil An optional object of class 'Speclib' containing the background (soil) re-
flectance. Note that reflectance values must be in range [0...1].



76 PROSAIL

Details
This function uses the FORTRAN code of PROSAIL model (Version 5B). For a general introduction
see following web page and the links to articles provided there:
http://teledetection.ipgp.jussieu.fr/prosail/

The following table summarises the abbreviations of parameters and gives their units as used in
PROSAIL. Please note that default values of all parameters were included with the intention to
provide an easy access to the model and should be used with care in any scientific approach!

Parameter Description of parameter Units
N Leaf structure parameter NA
Cab Chlorophyll a+b concentration ~ jg/cm?
Car Carotenoid concentration pglem?
Caw Equivalent water thickness cm
Cbrown Brown pigment NA
Cm Dry matter content g/cm?
LAI Leaf Area Index NA
psoil Dry/Wet soil factor NA
hspot Hotspot parameter NA

tts Solar zenith angle deg

tto Observer zenith angle deg

psi Relative azimuth angle deg

Functions for distribution of leaf angles within the canopy may work in two modes, which is con-
trolled via TypelLidf:

1. TypeLidf == 1 (default): 1idfa is the average leaf slope and 1idfb describes bimodality of
leaf distribution. The following list gives an overview on typical settings:

LIDF type lidfa 1lidfb
Planophile 1 0
Erectophile -1 0
Plagiophile 0 -1
Extremophile 0 1

Spherical (default) -0.35  -0.15

2. TypeLidf != 1: lidfais the average leaf angle in degree (0 = planophile / 90 = erectophile);
lidfbis O
Value

An object of class Speclib. If parameterList is used, the parameter are stored in SI table of
Speclib.


http://teledetection.ipgp.jussieu.fr/prosail/

PROSPECT 77

Note

The function is based on the FORTRAN version of the PROSAIL-code initially developed by
Stephane JACQUEMOUD, Jean-Baptiste FERET, Christophe FRANCOIS and Eben BROADBENT.
SAIL component has been developed by Wout VERHOEF.

Author(s)

Lukas Lehnert

References

Jacquemoud, S., Verhoef, W., Baret, F., Bacour, C., Zarco-Tejada, P.J., Asner, G.P., Francois, C.,
and Ustin, S.L. (2009): PROSPECT + SAIL models: a review of use for vegetation characterization,
Remote Sensing of Environment, 113, S56-S66.

See Also

PROSPECT, Speclib

Examples

## Single spectrum
spectrum <- PROSAIL(N = 1.3)
plot(spectrum)

## Example using parameterList

## Test effect of leaf structure and LAI on spectra

parameter <- data.frame(N = c(rep.int(seq(@.5, 1.5, 0.5), 2)),
LAI = c(rep.int(0.5, 3), rep.int(1, 3)))

spectra <- PROSAIL(parameterList = parameter)

## Print SI table
SI(spectra)

## Plot spectra
plot(subset(spectra, LAI == 0.5), col = "red”, ylim = c(0@, 0.3))
plot(subset(spectra, LAI == 1), col = "green"”, new = FALSE)

PROSPECT Simulate plant spectrum

Description

Simulate plant spectrum using PROSPECT 5b or PROSPECT D. The inversion uses the concept
after Feret et al. (2008) based on PROSPECT 5B.



78 PROSPECT
Usage
PROSPECT(N = 1.5, Cab = 40, Car = 8, Anth = 1.0, Cbrown = 0.0,
Cw = 0.01, Cm = 0.009, transmittance = FALSE,
parameterList = NULL, version = "D")
## Inversion
PROSPECTinvert(x, P@ = NULL, lower = NULL, upper = NULL,
transmittance_spectra = NULL, sam = FALSE,
verbose = FALSE, ...)
Arguments
N Structure parameter
Cab Chlorophyll content
Car Carotenoid content
Anth Anthocyanin content
Cbrown Brown pigment content
Cw Equivalent water thickness
Cm Dry matter content
transmittance Logical flag, if transmittance instead of reflectance values are returned.
parameterList An optional object of class 'data.frame'. Function will iterate over rows of
parameterList setting missing entries to default values. See examples section.
version Sets the version of PROSPECT to be used (either "SB" or "D").
X, transmittance_spectra
Speclib(s) containing the reflectance/transmittance values to be simulated during
inversion of PROSPECT.
PO Initial set of parameters (N, Cab etc.) as numeric vector.
lower, upper  Lower and upper boundaries of parameters as numeric vectors.
sam Logical if spectral angle mapper is used as distance measurement. If FALSE,
the root mean square error is used. Note that this flag has only an effect if no
transmittance spectra are passed.
verbose If TRUE, the set of parameters during inversion is printed at each iteration.
Parameters passed to optim
Details

This function uses the FORTRAN code of PROSPECT model (Version 5B an D). For a general
introduction see following web page and the links to articles provided there:

http://teledetection.ipgp.jussieu.fr/prosail/

The following table summarises the abbreviations of parameters and gives their units as used in
PROSPECT. Please note that default values of all parameters were included with the intention to
provide an easy access to the model and should be used with care in any scientific approach!


http://teledetection.ipgp.jussieu.fr/prosail/

PROSPECT 79

Parameter Description of parameter Units
N Leaf structure parameter NA
Cab Chlorophyll a+b concentration ~ jg/cm?
Car Carotenoid concentration pglem?
Anth Anthocyanin content pglem?
Cw Equivalent water thickness cm
Cbrown Brown pigment NA
Cm Dry matter content g/cm?

The inversion uses the function optim and implements the Matlab-Code developed by Feret et al.
(2008). Please note that the inversion currently only uses version 5B.

Value

An object of class Speclib.

Note

The function is based on the FORTRAN version of the PROSPECT-code initially developed by
Jean-Baptiste FERET, Stephane JACQUEMOUD and Christophe FRANCOIS.

Author(s)

Lukas Lehnert

References

Feret J.B., Francois C., Asner G.P., Gitelson A.A., Martin R.E., Bidel L.P.R., Ustin S.L., le Maire
G., & Jacquemoud S. (2008), PROSPECT-4 and 5: advances in the leaf optical properties model
separating photosynthetic pigments. Remote Sensing of Environment, 112, 3030-3043.

Feret J.B., Gitelson A.A., Noble S.D., & Jacquemoud S. (2017), PROSPECT-D: towards modeling
leaf optical properties through a complete lifecycle, Remote Sensing of Environment, 193, 204-215.

Jacquemoud, S. and Baret, F. (1990). PROSPECT: A model of leaf optical properties spectra,
Remote Sensing of Environment 34: 75 - 91.

See Also
PROSAIL, optim, Speclib

Examples

## Single spectrum

spectrum <- PROSPECT(N = 1.3, Cab = 30, Car = 10, Cbrown = 0,
Cw = 0.01, Cm = 0.01)

plot(spectrum)

## Example using parameterList



80 Raster-methods

## Test effect of leaf structure and chlorophyll content on

## spectra

parameter <- data.frame(N = c(rep.int(seq(@.5, 1.5, 0.5), 2)),
Cab = c(rep.int(40, 3), rep.int(20, 3)))

spectra <- PROSPECT(parameterList = parameter)

## Print SI table
SI(spectra)

## Plot spectra for range from 400 to 800 nm
spectra <- spectral,wavelength(spectra) >= 400 &
wavelength(spectra) <= 800]

plot(subset(spectra, Cab == 20), col = "red”, ylim = c(@, 0.5))
plot(subset(spectra, Cab == 40), col = "green”, new = FALSE)

## Example for inversion
## Create spectrum using PROSAIL
spectrum <- PROSAIL(LAI = 4)

## Invert PROSPECT using Euclidean and SAM distances
param_rmse <- PROSPECTinvert(spectrum, transmittance_spectra = NULL)
param_sam <- PROSPECTinvert(spectrum, transmittance_spectra = NULL, sam = TRUE)

## Model spectrum based on parameters from inversion

pro_rmse <- PROSPECT(N = param_rmse$par[1], Cab = param_rmse$par[2],
Car = param_rmse$par[3], Cbrown = param_rmse$par[4],
Cw = param_rmse$par[5], Cm = param_rmse$par[6],
version = "5B")

pro_sam <- PROSPECT(N = param_sam$par[1], Cab = param_sam$par[2],
Car = param_sam$par[3], Cbrown = param_sam$par[4],
Cw = param_sam$par[5], Cm = param_sam$par[6],
version = "5B")

## Plot result
plot(spectrum, ylim = c(0,0.55))
plot(pro_rmse, new = FALSE, col = "red")
plot(pro_sam, new = FALSE, col = "blue")
legend("topright”, legend = c("original spectrum”, "inverted with RMSE",
"inverted with SAM"), 1ty = "solid",
col = c("black”, "red”, "blue"))

Raster-methods Rasterbased methods for spectra

Description

Methods to manipulate, save, convert and plot spectra in Speclibs stored as RasterBrick



Raster-methods 81

Usage

## S4 method for signature 'Speclib'’
extract(x, y, ...)

## S4 method for signature 'Speclib,character’
writeRaster(x, filename, ...)

## S4 method for signature 'Speclib'’
plotRGB(x, ...)

## S4 method for signature 'Speclib'’

brick(x, ...)
Arguments
X Speclib with RasterBrick-object for spectra
y Object of any valid type to define area to extract
filename Output filename
Additionaly arguments passed to basic funtions in the raster-package
Details

For extract, a Speclib is returned containing the data of y in the SI. Note that if y is a buffer,
spatial lines or spatial polygon object, the respective data in y is copied for each spectrum so that
the length of the SI equals the number of spectra.

For writeRaster, the Speclib is returned which is written to file. Please note that data in the SI
and the wavelength information cannot be stored in a raster file at present. Therefore, it should be
considered to store the entire Speclib as R-data file using the save-function in R.

Note for function brick that by default the values of the internal brick in the Speclib are copied to
the new object. However, new brick objects with differing dimensions, bands etc. may be created
if values == FALSE is passed as additional arguement.

Value

Speclib for extract and writeRaster. Object of class Brick for brick.

Author(s)

Lukas Lehnert



82 rastermeta

rastermeta Create list containing rastermeta-information

Description

Create valid objects for slot rastermeta in Speclib.

Usage

rastermeta(x, dim, ext, crs)

Arguments
X Optional. Object of one of the following classes: "Raster", "RasterBrick",
"RasterStack”, "HyperSpecRaster".
dim Optional. Vector with length == 2. The first and second elements give the
number of rows and columns, respectively.
ext Optional. Object of class extent.
crs Optional. Object of class CRS.
Value

List with following elements (in exactly this order!):

e dim: Vector with length == 2. The first and second elements give the number of rows and
columns, respectively.

* ext: Object of class extent.

* crs: Object of class CRS.

Author(s)

Lukas Lehnert

See Also

Speclib, HyperSpecRaster



read. ASD 83

read.ASD Read ASD binary file

Description

Read spectra stored in ASD binary files using the package *asdreader’.

Usage
read.ASD(f, type = "reflectance”, ...)
Arguments
f Vector with files names to be read.
type Character vector, which type of spectra to return. See ?get_spectra for options.
Additional arguments passed to get_spectra. Currently ignored.
Value

Object of class Speclib.

Author(s)

Lukas Lehnert

See Also
speclib

read_header Get reflectance values

Description

Read ENVI header file

Usage
read_header(file, ...)

Arguments

file Path of file to be read.

Arguments to be passed to specific functions. Currently ignored.



84 rededge

Value

A named list containing the information in the header file

Author(s)

Lukas Lehnert

rededge Red edge parameter

Description

Derive red edge parameters from hyperspectral data. Red edge is the sharp increase of reflectance
values in the near infrared.

Usage

rededge (x)

Arguments

X List of class Speclib

Details

Shape and location of the red edge are commonly described by four parameters:

* )\0: wavelength of the minimum reflectance in the red spectrum

* \p: wavelength of the inflection point

* \s: wavelength of the reflectance shoulder

* RO: reflectance at 10

* Rp: Reflectance at Ip

* Rs: Reflectance at Is
The red edge parameters are calculated as proposed in Bach (1995) from the spectral area between
550 and 900 nm. A0 is calculated as the last root before the maximum value of the 2nd derivation.
The minimum reflectance is the reflectance at (A0). The inflection point is the root of the 2nd
derivative function between the maximum value and the minimum value. The shoulder wavelength

is the first root beyond the minimum value of the 2nd derivation. The following figure shows the
locaqtion of the red edge parameters in an example second derivation and reflectance spectrum.



rededge 85

0.03
|

Is/Rs,

0.01
|

Ip/Rp

-0.01
10 20 30 40 50
|

Second derivation
|
Reflectance (%)

10
T T T T T T T T T T
500 600 700 800 900 500 600 700 800 900

L
0
L

-0.03

Wavelength (nm) Wavelength (nm)

Value

A data frame containing parameters for each spectrum.

Author(s)

Hanna Meyer

References

Bach, H. (1995): Die Bestimmung hydrologischer und landwirtschaftlicher Oberflacchenparame-
ter aus hyperspektralen Fernerkundungsdaten. Muenchner Geographische Abhandlungen Reihe B,
Band B21.

See Also

vegindex, derivative.speclib, noiseFiltering

Examples

# compare RO for spectra taken in different seasons
data(spectral_data)

rd <- rededge(spectral_data)

boxplot(rd$R@ ~ SI(spectral_data)$season, ylab = "R@")

# visualize red edge parameter of one spectrum
plot(spectral_datal[1,],x1im=c(500,900),ylim=c(0,50))
plot(spectral_data[1,],x1im=c(500,900),ylim=c(@,50))
x <= c(rd$le[1], rd$lpl[1], rd$ls[1])

y <= c(rd$Ro[1], rd$Rp[1], rd$Rs[1])

points(x, y)

text(x, y, c("le", "lp", "1ls"), pos = 3, offset = 1)



86 SI

SI Handling supplementary information (SI) of spectra

Description

Supplementary information (SI) can be any additional data available for each spectrum in a Speclib-
or Nri-object. These functions are used to set or return SI-data of a Speclib or Nri-object. Note
that SI-data is automatically subsetted if indexing and extracting single spectra from a Speclib- or
Nri-object. SI-data may encompass (several) raster files which must have the same extent, resolu-
tion and x- and y-dimensions as the raster file used as spectral information.

Usage

## S4 method for signature 'Speclib'’
SI(object, i, j)

## S4 replacement method for signature 'Speclib,data.frame'’
SI(object) <- value
## S4 replacement method for signature 'Speclib,matrix'
SI(object) <- value

## S4 method for signature 'Nri'

SI(object)

## S4 replacement method for signature 'Nri,data.frame'’
SI(object) <- value

## S4 replacement method for signature 'Nri,matrix’
SI(object) <- value

Arguments

object Object of class Speclib or Nri.

i Index of rows to keep. Note that in combination with raster files in the SI, it
is MUCH faster to pass row index instead of cutting the resulting data frame.
Thus, SI(object, i) should be used instead of SI(object)[i,].

J Index of columns to keep. See comment above for usage with raster files in the
SI.

value Data frame with nrow(value) == nspectra(object), NULL or vector with

length nspectra(object). Alternatively, objects of class RasterLayer are ac-
cepted. Please note that the function does not check for integrity in the latter
case (e.g., no error will occur if number of spectra does not match number of
pixel in the RasterLayer-object).



SI 87

Details

Names of items in SI are used within the function subset to select/deselect spectra via logical
expression. Values can be accessed via the "\$"-sign (see examples). Note that the function does
not check the integrity of the data stored in the SI (e.g., if there are values for each spectrum).

Value

For SI<-, the updated object. SI returns a data frame with SI data.

Author(s)

Lukas Lehnert

See Also

Speclib, Nri

Examples

data(spectral_data)

## Returning SI
si_spec <- SI(spectral_data)
head(si_spec)

## Adding new SI item
SI(spectral_data)$MeasurementID <- c(1:nspectra(spectral_data))
head(SI(spectral_data))

## Replacing SI
SI(spectral_data) <- SI(spectral_data)[,c(1:3)]
head(SI(spectral_data))

## Adding SI to a Speclib without SI

spec_new <- speclib(spectra(spectral_data), wavelength(spectral_data))
## This throws an error

#SI(spec_new)$NewColumn <- 1:nspectra(spec_new)

## This works:

SI(spec_new) <- data.frame(NewColumn = 1:nspectra(spec_new))

## Now, you can add a column as explained above:
SI(spec_new)$SecondCol <- c(1:nspectra(spec_new))*100

## Print SI

SI(spec_new)

## Not run:
## Example for raster file in SI

## Create raster file using PROSAIL
## Run PROSAIL
parameter <- data.frame(N = c(rep.int(seq(0.5, 1.4, 0.1), 6)),
LAI = c(rep.int(@.5, 10), rep.int(1, 10),
rep.int(1.5, 10), rep.int(2, 10),



88 smgm

rep.int(2.5, 10), rep.int(3, 10)))
spectra <- PROSAIL(parameterList = parameter)

## Create SpatialPixelsDataFrame and fill data with spectra from
## PROSAIL
rows <- round(nspectra(spectra)/10, 0)
cols <- ceiling(nspectra(spectra)/rows)
grd <- SpatialGrid(GridTopology(cellcentre.offset = c(1,1,1),
cellsize = ¢c(1,1,1),
cells.dim = c(cols, rows, 1)))
x <- SpatialPixelsDataFrame(grd,
data = as.data.frame(spectra(spectra)))

## Write data to example file (example_in.tif) in workingdirectory
writeGDAL(x, fname = "example_in.tif", drivername = "GTiff")

infile <- "example_in.tif"
wavelength <- wavelength(spectra)
ra <- speclib(infile, wavelength)
tr <- blockSize(ra)

## Write LAI to separate raster file

LAI <- SI(spectra)$LAI

SI_file <- "example_SI.tif"

SI_raster <- setValues(raster(infile), LAI)
SI_raster <- writeRaster(SI_raster, SI_file)

## Read LAI file and calculate NDVI for each pixel where LAI >= 1
outfile <- "example_result_ndvi.tif"
SI(ra) <- raster(SI_file)
names(SI(ra)) <- "LAI"
res <- writeStart(ra, outfile, overwrite = TRUE, nl = 1)
for (i in 1:tr$n)
{
v <- getValuesBlock(ra, row=tr$row[i], nrows=tr$nrows[i])
mask(v) <- c(1350, 1450)
LAI <- SI(v)$LAI
v <- as.matrix(vegindex(v, index="NDVI"))
VLLAL <= 1] <- NA
res <- writeValues(res, v, tr$row[i])
3

res <- writeStop(res)

## End(Not run)

smgm SMGM

Description

Calculate Gaussian model on soil spectra



smgm 89

Usage

smgm(x, percentage = TRUE, gridsize = 50)

Arguments
X Object of class Speclib.
percentage Flag if spectra in x are in range [0, 100]. If FALSE, the spectra are scaled to
[0,100].
gridsize Size of the grid used to perform least squares approximation.
Details

The algorithm fits a Gaussian function to the continuum points of the spectra in the spectral region
between approx. 1500 to 2500 nm. The continuum points are derived constructing the convex hull
of the spectra (see transformSpeclib). The Gaussian function requires three parameter: (1) the
mean values which is set to the water fundamental of 2800 nm, (2) the absorption depth at 2800 nm,
and (3) the distance to the inflection point of the function. The latter two parameters are iteratively
chosen using a grid search. The mesh size of the grid can be adjusted with the gridsize parameter.
Note that the function requires the spectral reflectance values to be in interval [0, 100].

Value

Object of class Speclib containing the fitted Gaussian spectra and the parameters derived from
the Gaussian curve. The three parameters (absorption depth, RO; distance to the inflection point,
sigma; area between the curve and 100 % reflectance, area) are stored in the SI of the new Speclib.
Additionally, the function returns the final root mean square error of the Gaussian fit.

Note

The code is based on the IDL functions written by Michael L. Whiting.

Author(s)

Lukas Lehnert

References
Whiting, M. L., Li, L. and Ustin, S. L. (2004): Predicting water content using Gaussian model on
soil spectra. Remote Sensing of Environment, 89, 535-552.

See Also

soilindex, Speclib



90 soilindex

Examples

## Use PROSAIL to simulate spectra with different soil moisture content
Spektr.lib <- noiseFiltering(PROSAIL (parameterList = data.frame(psoil = seq(0,1,0.1),

LAL = 0)))
smgm_val <- smgm(Spektr.lib)
for (i in 1:nspectra(smgm_val))
plot(smgm_val, FUN = i, new = i==1, col = i)
SI(smgm_val)
soilindex soilindex
Description
Function calculates a variety of hyperspectral soil indices
Usage
soilindex(x, index, returnHCR = "auto”, weighted = TRUE, ...)
Arguments
X Object of class Speclib
index Character string. Name or definition of index or vector with names/definitions
of indices to calculate. See Details section for further information.
returnHCR If TRUE, the result will be of class HyperSpecRaster, otherwise it is a data
frame. If "auto", the class is automatically determined by passed Speclib.
weighted Logical indicating if reflectance values should be interpolated to fit wavelength
position. If FALSE the reflectance values of nearest neighbour to passed position
are returned. See get_reflectance for further explanation.
Further arguments passed to derivative functions. Only used for indices requir-
ing derivations.
Details

Index must be a charater vector containing pre-defined indices (selected by their name) or self
defined indices or any combination of pre- and self-defined indices.

Pre-defined indices: The following indices are available:

Name Formula Reference*

BLTM  ((TM_1%2 + TM_2% + TM_32)/3)0-5%x Mathieu et al. (1998)



soilindex 91

CI_T™M (TM_3—-TM_2)/(TM_3+ TM_2)** Escadafal and Huete
(1991)

HI_TM (2-TM 3-TM 2-TM_1)/(TM_2—TM_1)** Escadafal et al. (1994)

NDI (Rga0 — Ri650)/(Rsa0 + Ries0) McNairn, H. and Protz, R.
(1993)

NSMI (ngoo — R2119>/(R1800 + Rgug) Haubrock et al. (2008)

RI Rys/(Raar - R3) Ben-Dor et al. (2006)

RI_TM TM_32/(TM_1-TM_23)** Madeira et al. (1997),
Mathieu et al. (1998)

SI_T™™ (TM_ 3—-TM_1)/(TM_3+TM_1)** Escadafal et al. (1994)

SWIR SI  —41.59 - (R2210 — R2090)+ Lobell et al. (2001)

1.24 - (RQQgO — Rgogo) + 0.64

* For references please type: hsdardocs("References.pdf”).

** TM_1 denotes the first band of Landsat Thematic Mapper. Consequently, the hyperspectral
data is resmapled to Landsat TM using spectralResampling prior to the calculation of the index.
For resampling, the spectral response function is used.

Self-defining indices:
Self-defined indices may be passed using the following syntax:

* Rxxx: Reflectance at wavelength *xxx’. Note that R must be upper case.

» Dxxx: First derivation of reflectance values at wavelength xxx’. Note that D must be upper
case.

Using this syntax, complex indices can be easily defined. Note that the entire definition of the
index must be passed as one character string. Consequently, the NSMI would be written as
"(R1800-R2119)/(R1800+R2119)".

Value

A vector containing indices values. If index is a vector with length > 1, a data frame with ncol =
length(index) and nrow = number of spectra in X is returned.

If function is called without any arguments, return value will be a vector containing all available
indices in alphabetical order.

Author(s)

Lukas Lehnert

References

See hsdardocs("References.pdf")

See Also

vegindex, get_reflectance



92 specfeat

Examples

data(spectral_data)
## Example calculating all available indices
## Get available indices

avl <- soilindex()
vi <- soilindex(spectral_data, avl)

specfeat Function to isolate absorption features

Description

Function isolates absorption features from band depth or ratio transformed reflectance spectra.

Usage
specfeat(x, FWL, tol = 1.0e-7)

Arguments

X Object of class Speclib containing the band depth or ratio transformed re-
flectance spectra.

FWL A vector containing one wavelength included in each feature to be isolated, e.g.
the major absorption features. Features which include these specified wave-
lengths will be isolated.

tol The tolerance of the band depth which defines a wavelength as a start or end
point of a feature. Usually a band depth of O or a ratio of 1 indicates feature lim-
its, however, better results are achieved if slightly deviating values are tolerated.

Details

A feature is defined as the part of the spectrum between two fix points in the transformed spectra
(band depth values of 0). This function separates features at wavelengths of interest according
to this rule. Hence it allows a subsequent characterization of the features of interest, e.g. via
feature_properties or visual inspection via plot.Specfeat. The typical workflow to obtain
feature properties is to first calculate the band depth transformSpeclib, then isolate the absorption
features specfeat. Optionally, cut_specfeat allows to cut the features at specified wavelengths.
Finally use feature_properties to retrieve characteristics of the features.

Value

An object of class Specfeat containing the isolated features.

Author(s)

Hanna Meyer and Lukas Lehnert



Specteat-class 93

See Also

transformSpeclib, cut_specfeat, Specfeat, plot.Specfeat, feature_properties

Examples

data(spectral_data)

## Transform speclib
bd <- transformSpeclib(spectral_data, method = "sh”, out = "bd")

##Example to isolate the features around 450nm, 700nm, 120@nm and 1500nm.
featureSelection <- specfeat(bd, c(450,700,1200,1500))

## Plot features
plot(featureSelection)

## Advanced plotting example
plot(featureSelection, 1:2, stylebysubset = "season")

plot(featureSelection, 1:2, stylebysubset = "season”, changecol = FALSE,
changetype = TRUE)

Specfeat-class * Specfeat class

Description

Class to handle spectral feature data. Spectral features are absorption (transmission or reflection)
bands defined e.g. by continuum removal (see transformSpeclib).

Details
Class extends Speclib-class and adds two additional slots:

* features: List containing the spectra according to the features.
* featureLimits: List containing limits of features defined by specfeat.

Note

See figure in hsdar-package for an overview of classes in hsdar.

Author(s)

Lukas Lehnert

See Also
Speclib, specfeat



94

speclib

speclib

Methods to create objects of class Speclib

Description

Methods to create objects of class Speclib from various data sources suc

files (e.g. GeoTiff).

Usage

## S4 method for
speclib(spectra,

## S4 method for
speclib(spectra,

## S4 method for
speclib(spectra,

## S4 method for
speclib(spectra,

## S4 method for
speclib(spectra,

## S4 method for
speclib(spectra,

## S4 method for
speclib(spectra,

## S4 method for
speclib(spectra,

## S4 method for
speclib(spectra,

## S4 method for
speclib(spectra,

## S4 method for
speclib(spectra,

## S4 method for
print(x)

signature 'matrix,numeric’
wavelength, ...)

signature 'SpatialGridDataFrame,numeric'’
wavelength, ...)

signature 'numeric,numeric’
wavelength, ...)

signature 'matrix,data.frame’
wavelength, ...)

signature 'SpatialGridDataFrame,data.frame'
wavelength, ...)

signature 'numeric,data.frame’
wavelength, ...)

signature 'matrix,matrix’
wavelength, ...)

signature 'SpatialGridDataFrame,matrix’
wavelength, ...)

signature 'numeric,matrix’
wavelength, ...)

signature 'character,numeric'
wavelength, ...)

signature 'Speclib,numeric'
wavelength, ...)

signature 'Speclib’

h as matrixes and raster



speclib 95

## S4 method for signature 'Speclib'’
show(object)

is.speclib(x)

Arguments

spectra Data frame, matrix of raster object of class *RasterBrick’ or ’SpatialGridDataFrame’
with spectral data. Alternatively, spectra may be the path to a raster file contain-
ing hyperspectral data.

x,object Object to be converted to or from Speclib. For conversion to Speclib it can be
a of class 'data frame', 'matrix', 'list' or 'character string'. In the
latter case x is interpreted as path to raster object and read by readGDAL. For
conversion from Speclib the object must be of class Speclib.

wavelength Vector with corresponding wavelength for each band. A matrix or data.frame
may be passed giving the upper and lower limit of each band. In this case, the
first column is used as lower band limit and the second as upper limit, respec-
tively.

Further arguments passed to specific (generic) functions. Theey encompass par-
ticularly the following additional parameters:

* fwhm: Vector containing full-width-half-max values for each band. Default:
NULL

* SI: Data frame with supplementary information to each spectrum. Default:
NULL

* transformation: Kind of transformation applied to spectral data (charac-
ter). See transformSpeclib for available ones. If transformation = NULL,
no transformation is assumed (default).

* usagehistory: Character string or vector used for history of usage. De-
fault: NULL

e continuousdata: Flag indicating if spectra are quasi continuous or dis-
crete sensor spectra (deprecated). Default: "auto"

e wlunit: Unit of wavelength in spectra. Default: "nm". See datails how
other units are treated.

* xlabel: Label of wavelength data to be used for plots etc. Default: "Wave-
length"

» ylabel: Label of spectral signal to be used for plots etc. Default: "Re-
flectance”

* rastermeta: List of meta information for SpatialGridDataFrame. If miss-

ing, meta data in speclib is used. Use function rastermeta to create valid
objects. Default: NULL

Details

Spectral data: The spectral data (usually reflectance values) are stored in an object of class
".Spectra'. This object may eiter contain the spectral data as a RasterBrick or as a matrix



96

Value

speclib

with columns indicating spectral bands and rows different samples, respectively. The Speclib-
class provides converting routines to and from RasterBrick-class allowing to read and write
geographic raster data via brick. Since R is in general not intended to be used for VERY large
data sets, this functionality should be handled with care. If raster files are large, one should split
them in multiple smaller ones and process each of the small files, separately. See the excellent
tutorial *Writing functions for large raster files’ available on https://CRAN.R-project.org/
package=raster and section ’2.2.2 Speclibs from raster files’ in hsdar-intro.pdf’.

Spectral information: Speclib contains wavelength information for each band in spectral data.
This information is used for spectral resampling, vegetation indices and plotting etc. Since spectra
can be handled either as continuous lines or as discrete values like for satellite bands, spectral
information is handled in two principle ways:

» Continuous spectra: Data of spectrometers or hyperspectral (satellite) sensors. This data is
plotted as lines with dotted lines indicating standard deviations by default.
* Non-continuous spectra: Data of multispectral satellite sensors. Here, data is plotted as solid

lines and error bars at the mean position of each waveband indicating standard deviations by
default.

The kind of data may be chosen by the user by setting the flag "continuousdata” (attr(x,
"continuousdata”)) or passing continuousdata = TRUE/FALSE, when initially converting
data to Speclib-class. Take care of doing so, because some functions as spectralResampling
may only work correctly with continuous data!

The internal and recommended wavelength unit is nm. If Speclibs are created with wavelength
values in other units than nm as passed by wlunit-argument, wavelength values are automatically
converted to nm. In this case, functions requiring to pass wavelength information (e.g., mask etc)
expect the unit to match the one initially set. The only exception is the Nri-class which always
uses and expects nm as unit of passed wavelength values. The following units are automatically
detected: mu, um, nm, mm, cm, dm, m.

Technical description: An object of class Speclib contains the following slots:

» wavelength: Vector with wavelength information. Always stored in nm.

e fwhm: Vector or single numerical value giving the full-width-half-max value(s) for each
band.

* spectra: Object of class *.Spectra’ with three slots:
— fromRaster: logical, indicating if spectral data is read from a RasterBrick-object.
— spectra_ma: Matrix with ncol = number of bands and nrow = number. Used if fromRaster
== FALSE
— spectra_ra: RasterBrick-object which is used if fromRaster == TRUE.
Contains reflectance, transmittance or absorbance values. Handle with function spectra.
 SI: Data frame containing additional data to each spectrum. May be used for linear regression
etc. Handle with function SI.
* usagehistory: Vector giving information on history of usage of speclib. Handle with function
usagehistory.

An object of class Speclib containing the following slots is returned:


https://CRAN.R-project.org/package=raster
https://CRAN.R-project.org/package=raster

Speclib-class 97

» wavelength: Vector with wavelength information. Always stored in nm.
» fwhm: Vector or single numerical value giving the full-width-half-max value(s) for each band.
* spectra: Object of class *.Spectra’ with three slots:

— fromRaster: logical, indicating if spectral data is read from a RasterBrick-object.

— spectra_ma: Matrix with ncol = number of bands and nrow = number. Used if fromRaster
==FALSE

— spectra_ra: RasterBrick-object which is used if fromRaster == TRUE.
Contains reflectance, transmittance or absorbance values. Handle with function spectra.

 SI: Data frame containing additional data to each spectrum. May be used for linear regression
etc. Handle with function SI.

* usagehistory: Vector giving information on history of usage of speclib. Handle with function
usagehistory.

* rastermeta: List containing meta information to create *Raster objects from Speclib. Handle
with function rastermeta.

Author(s)

Lukas Lehnert

See Also

Speclib, plot, readGDAL, mask,
idSpeclib, dim, spectra,

SI

Examples

data(spectral_data)
spectra <- spectra(spectral_data)
wavelength <- spectral_data$wavelength

spectra <- speclib(spectra,wavelength)

Speclib-class * Speclib class

Description

Class to store and handle hyperspectral data in R



98 Speclib-class

Details

Spectral data: The spectral data (usually reflectance values) are stored in an object of class
'.Spectra'. This object may eiter contain the spectral data as a RasterBrick or as a matrix
with columns indicating spectral bands and rows different samples, respectively. The Speclib-
class provides converting routines to and from RasterBrick-class allowing to read and write
geographic raster data via brick. Since R is in general not intended to be used for VERY large
data sets, this functionality should be handled with care. If raster files are large, one should split
them in multiple smaller ones and process each of the small files, separately. See the excellent
tutorial *Writing functions for large raster files’ available on https://CRAN.R-project.org/
package=raster and section 2.2.2 Speclibs from raster files’ in "hsdar-intro.pdf’.

Spectral information: Speclib contains wavelength information for each band in spectral data.
This information is used for spectral resampling, vegetation indices and plotting etc. Since spectra
can be handled either as continuous lines or as discrete values like for satellite bands, spectral
information is handled in two principle ways:

» Continuous spectra: Data of spectrometers or hyperspectral (satellite) sensors. This data is
plotted as lines with dotted lines indicating standard deviations by default.
» Non-continuous spectra: Data of multispectral satellite sensors. Here, data is plotted as solid

lines and error bars at the mean position of each waveband indicating standard deviations by
default.

The kind of data may be chosen by the user by setting the flag "continuousdata” (attr(x,
"continuousdata”)) or passing continuousdata = TRUE/FALSE, when initially converting
data to Speclib-class. Take care of doing so, because some functions as spectralResampling
may only work correctly with continuous data!

The internal and recommended wavelength unit is nm. If Speclibs are created with wavelength
values in other units than nm as passed by wlunit-argument, wavelength values are automatically
converted to nm. In this case, functions requiring to pass wavelength information (e.g., mask etc)
expect the unit to match the one initially set. The only exception is the Nri-class which always
uses and expects nm as unit of passed wavelength values. The following units are automatically
detected: mu, um, nm, mm, cm, dm, m.

Technical description: An object of class Speclib contains the following slots:

» wavelength: Vector with wavelength information. Always stored in nm.

e fwhm: Vector or single numerical value giving the full-width-half-max value(s) for each
band.

* spectra: Object of class *.Spectra’ with three slots:
— fromRaster: logical, indicating if spectral data is read from a RasterBrick-object.

— spectra_ma: Matrix with ncol = number of bands and nrow = number. Used if fromRaster
== FALSE

— spectra_ra: RasterBrick-object which is used if fromRaster == TRUE.
Contains reflectance, transmittance or absorbance values. Handle with function spectra.
 SI: Data frame containing additional data to each spectrum. May be used for linear regression
etc. Handle with function SI.
* usagehistory: Vector giving information on history of usage of speclib. Handle with function
usagehistory.


https://CRAN.R-project.org/package=raster
https://CRAN.R-project.org/package=raster

speclib_raster-methods 99

Note

See figure in hsdar-package for an overview of classes in hsdar.

Author(s)

Lukas Lehnert

See Also

plot, readGDAL, mask, idSpeclib,

dim, spectra, SI

speclib_raster-methods
Functions for processing large hyperspectral raster files

Description

Functions for processing large hyperspectral raster files using the low-level functions provided by
the raster-package. For a detailed overview see the vignette "Writing functions for large raster
files" shipped along with the raster-package.

Usage

## S4 method for signature 'Speclib'’
blockSize(x)

## S4 method for signature 'Speclib,character’
writeStart(x, filename, ...)

## S4 method for signature 'Speclib'’
getValuesBlock(x, ...)

## S4 method for signature 'Speclib,Speclib’
writeValues(x, v, start)

## S4 method for signature 'Speclib,matrix’
writeValues(x, v, start)

## S4 method for signature 'Speclib,numeric’
writeValues(x, v, start)

## S4 method for signature 'Speclib'’
writeStop(x)



100 speclib_raster-methods

Arguments
X Object of class Speclib.
filename Name of the new file to create.
v Object to write the data to file. May be one of the following classes: "Speclib",
"matrix" or "numeric".
start Integer. Row number (counting starts at 1) from where to start writing v.
Further arguements passed to respective functions in the raster-packages.
Author(s)
Lukas Lehnert
Examples
## Not run:

## Create raster file using PROSAIL
## Run PROSAIL
parameter <- data.frame(N = c(rep.int(seq(0.5, 1.4, 0.1), 6)),
LAI = c(rep.int(0.5, 10), rep.int(1, 10),
rep.int(1.5, 10), rep.int(2, 10),
rep.int(2.5, 10), rep.int(3, 10)))
spectra <- PROSAIL(parameterList = parameter)

## Create SpatialPixelsDataFrame and fill data with spectra from PROSAIL
rows <- round(nspectra(spectra)/10, 0)
cols <- ceiling(nspectra(spectra)/rows)
grd <- SpatialGrid(GridTopology(cellcentre.offset = c(1,1,1),
cellsize = c(1,1,1),
cells.dim = c(cols, rows, 1)))
x <- SpatialPixelsDataFrame(grd, data = as.data.frame(spectra(spectra)))

## Write data to example file (example_in.tif) in workingdirectory
writeGDAL(x, fname = "example_in.tif", drivername = "GTiff")

## Examples for Speclib using file example_in.tif
## Example 1:

## Noise reduction in spectra

infile <- "example_in.tif"

outfile <- "example_result_1.tif"

wavelength <- spectra$wavelength

ra <- speclib(infile, wavelength)
tr <- blockSize(ra)

res <- writeStart(ra, outfile, overwrite = TRUE)

for (i in 1:tr$n)

{
v <- getValuesBlock(ra, row=tr$row[i], nrows=tr$nrows[i])
v <- noiseFiltering(v, method="sgolay"”, n=25)



spectra 101

res <- writeValues(res, v, tr$row[i])

}

res <- writeStop(res)

## Example 2:
## masking spectra and calculating vegetation indices
outfile <- "example_result_2.tif"
n_veg <- as.numeric(length(vegindex()))
res <- writeStart(ra, outfile, overwrite = TRUE, nl = n_veg)
for (i in 1:tr$n)
{
v <- getValuesBlock(ra, row=tr$row[i], nrows=tr$nrows[i])
mask(v) <- c(1350, 1450)
v <- as.matrix(vegindex(v, index=vegindex()))
res <- writeValues(res, v, tr$row[i])
}

res <- writeStop(res)

## End(Not run)

spectra Handling spectra

Description

Returning and setting spectra in Speclib

Usage

## S4 method for signature 'Speclib’
spectra(object, i, j, ...)

## S4 replacement method for signature 'Speclib,data.frame'’
spectra(object) <- value

## S4 replacement method for signature 'Speclib,matrix’
spectra(object) <- value

## S4 replacement method for signature 'Speclib,numeric’
spectra(object) <- value

## S4 replacement method for signature 'Speclib,RasterBrick'
spectra(object) <- value
Arguments

object Object of class Speclib.

i Index of spectra to return. If missing all spectra are returned.



102 spectrallnterpolation

j Index of bands to return. If missing all bands are returned.

Passed to internal function. Currently only one parameter is accepted: return_names:
Logical indicating, if names of columns and rows should be set to bandnames
and idSpeclib.

value Matrix or RasterBrick-object containing spectral values. If value is a matrix,
columns are band values and rows are spectra.

Details
For spectra<-, the function does not check if dimensions of spectra match dimensions of Speclib.
Additionally, no conversion into matrix is performed! If spectra are not correctly stored, errors in
other functions may arise. Thus check always carefully, if spectra are modified by hand.

Value

For spectra<-, the updated object. Otherwise a matrix of the spectra in x is returned.

Author(s)

Lukas Lehnert

See Also
Speclib

Examples
data(spectral_data)

## Manual plot of the first spectrum
plot(wavelength(spectral_data), spectra(spectral_data)[1,], type="1")

spectrallnterpolation Interpolate spectra

Description

Interpolate spectra to user defined bands. Currently, only a linear interpolation is supported

Usage

spectrallnterpolation(x, sensor)

Arguments
X Object of class Speclib.
sensor data. frame containing definition of sensor characteristics. See details section

for further information.



spectralResampling 103

Details

The characteristics must be passed as a data.frame with two columns: first column with lower
bounds of channels and second column with upper bounds. Alternatively, the data.frame may
encompass band centre wavelength and full-width-half-maximum values of the sensor. Function
will check the kind of data passed by partially matching the names of the data frame: If any column
is named "fwhm” or "center”, it is assumed that data are band centre and full-width-half-maximum
values.

Value

Object of class Speclib containing the updated version of x.

Author(s)

Lukas Lehnert

See Also

spectralResampling

Examples

## Load example data
data(spectral_data)
## Create sensor featuring 10 times higher spectral resolution
bounds <- seq(min(wavelength(spectral_data)),
max (wavelength(spectral_data)),
length.out = nbands(spectral_data)*10)
sensor <- data.frame(lb = bounds[-1%100 + 1], ub = bounds[-1])
## Interpolate first spectrum
inter <- spectrallnterpolation(spectral_data[1,], sensor = sensor)

spectralResampling Spectral resampling

Description

Resample spectra to (satellite) sensors

Usage

spectralResampling(x, sensor, rm.NA = TRUE, continuousdata = "auto",
response_function = TRUE)



spectralResampling

Arguments
X Object of class Speclib. Data to be spectrally resampled.
sensor Character or data.frame containing definition of sensor characteristics. See
details section for further information.
rm.NA If TRUE, channels which are not covered by input data wavelength are removed

continuousdata Definition if returned Speclib is containing continuous data or not.
response_function
If TRUE, the spectral response function of the sensor is used for integration, if

FALSE a Gaussian distribution is assumed and if NA the mean value of spectralmin(ch) :max(ch)]

is calculated. If response_function is an object of class Speclib the function
assumes that the spectra in the object are spectral response values. In this case
the wavelength dimension determines the spectral response values for the re-
spective wavelength and the sample dimension separates between the different
bands. Note that if response_function is an object of class Speclib, sensor
may be missing. In this case the function calculates the central wavelength and
the fwhm-values from the spectral response functions.

Details

The characteristics of (satellite) sensor to integrate spectra can be chosen from a list of already
implemented sensors. See get.sensor.characteristics for available sensors.

Otherwise the characteristics can be passed as a data. frame with two columns: first column with
lower bounds of channels and second column with upper bounds. Alternatively, the data. frame
may encompass band centre wavelength and full-width-half-maximum values of the sensor. Func-
tion will check the kind of data passed by partially matching the names of the data frame: If any
column is named "fwhm"” or "center”, it is assumed that data are band centre and full-width-half-
maximum values.

The third option is to use a Speclib containing the spectral response values instead of reflectances.
In this case, the sensor-argument may be missing and the function automatically determines the
sensor’s central wavelength and the fwhm-values based on the spectral response values. See exam-
ples.

If sensor characteristics are defined manually and no Speclib with spectral response values is
passed, a Gaussian response is assumed.

Value

Object of class Speclib

Note

The spectral response functions are kindly provided by the operators of the satellites. See hsdardocs("Copyright")

for copyright information on spectral response functions.
* Quickbird: Copyright by DigitalGlobe, Inc. All Rights Reserved
» RapidEye: Copyright by RapidEye AG
* WorldView-2: Copyright by DigitalGlobe, Inc. All Rights Reserved



spectralResampling 105

Author(s)

Lukas Lehnert

See Also

get.sensor.characteristics, get.gaussian.response

Examples

## Load example data
data(spectral_data)

## Resample to RapidEye
data_RE <- spectralResampling(spectral_data, "RapidEye”,
response_function = TRUE)

## Plot resampled spectra
plot(data_RE)

## Compare different methods of spectral resampling

par(mfrow=c(1,3))

ga <- spectralResampling(spectral_data, "RapidEye”,
response_function = FALSE)

plot(ga)

re <- spectralResampling(spectral_data, "RapidEye",
response_function = TRUE)

plot(re)

no <- spectralResampling(spectral_data, "RapidEye",
response_function = NA)

plot(no)

## Usage of Speclib with spectral response values
## Define 3 bands (RGB)

center <- c(460, 530, 600)

fwhm <- 70

wl <- ¢c(310:750)

## Create spectral response with gaussian density function
response <- speclib(t(sapply(center, function(center, wl, fwhm)
{

a <- dnorm(wl, mean = center, sd = fwhm/2)

a <- (a-min(a))/(max(a) - min(a))

return(a)
3, wl, fwhm)), wl)

## Plot response functions
for (i in 1:3)
plot(response[i,], new = i == 1, col = c("blue”, "green", "red")[i])

## Perform resampling
rgb_data <- spectralResampling(spectral_data, response_function = response)



106 sr

spectral_data Hyperspectral samples

Description

Hyperspectral samples from a FACE experiment in Germany

Usage

data(spectral_data)

Format

An object of class Speclib

Details

Data has been sampled during vegetation period 2014 in spring and summer. Measurements were
taken with a HandySpec Field portable spectrometer (tec5 AG Oberursel, Germany). This device
has two channels measuring incoming and reflected radiation simultaneously between 305 and 1705
nm in 1 nm steps.

Author(s)

Wolfgang A. Obermeier, Lukas Lehnert, Hanna Meyer

sr Simple ratio index

Description

Calculate simple ratio index (sr) for a single given band combination or for all possible band com-
binations. Calculating sr is a frequently used method to standardize reflectance values and to find
relationships between properties of the objects and their spectral data.

Usage

sr(x, b1, b2, recursive = FALSE, bywavelength = TRUE)

Arguments
X List of class Speclib or of class Nri for print and as.matrix methods.
b1 Band 1 given as band number or wavelength.
b2 Band 2 given as band number or wavelength.
recursive If TRUE indices for all possible band combinations are calculated. If FALSE,

only a single sr for the given bands in b1 and b2 is calculated.

bywavelength Flag to determine if bl and b2 are band number (bywavelength = FALSE) or
wavelength (bywavelength = TRUE) values.



subset.nri 107

Details

Function performs the following calculation:

Rp1

nriB1, B2 = & —;
' Rpa

with R being reflectance values at wavelength B1 and B2, respectively.

If recursive = TRUE, all possible band combinations are calculated.

Value

If recursive = FALSE, a data frame with index values is returned. Otherwise result is an object of
class Nri. See glm.nri for applying a generalised linear model to an array of simple ratio indices.

Author(s)

Lukas Lehnert

See Also

nri, glm.nri, glm, Speclib, Nri

Examples

data(spectral_data)

## Calculate SR of Jordan (1969) (R_{800}/R_{680})
Sr_600_680 <- sr(spectral_data, b1=800, b2=680)

## Calculate all possible combinations for WorldView-2-8

spec_WV <- spectralResampling(spectral_data, "WorldView2-8",
response_function = FALSE)

sr_WV <- sr(spec_WV, recursive = TRUE)

Sr_Wv

subset.nri Subsetting Nri-objects

Description

Return subsets of Nri-objects which meet conditions.

Usage

## S4 method for signature 'Nri'
subset(x, subset, ...)



108 subset.nri

Arguments
X Object of class *Nri’.
subset Logical expression indicating spectra to keep: missing values are taken as false.
See details section.
Further arguments passed to agrep.
Details

Matchable objects are SI data. Use column names to identify the respectrive SI. See SI to access SI
of aNri. IDs of samples may be accessed using "id.nri" as variable name.
Value

Object of class Nri.

Author(s)

Lukas Lehnert

See Also

Nri, SI

Examples

data(spectral_data)

## Calculate all possible combinations for WorldView-2-8
spec_WV <- spectralResampling(spectral_data, "WorldView2-8",

response_function = FALSE)
nri_WV <- nri(spec_WV, recursive = TRUE)

## Return names of SI data
names(SI(nri_WV))

## Divide into both seasons
sp_summer <- subset(nri_WV, season == "summer")
sp_spring <- subset(nri_WV, season == "spring")

## Print both Nri-objects
sp_summer
sp_spring

## Divide into both seasons and years
sp_summer_14 <- subset(nri_WV, season == "summer" & year == 2014)
sp_spring_14 <- subset(nri_WV, season == "spring" & year == 2014)

## Print both Nri-objects
sp_summer_14
sp_spring_14



subset.speclib 109

subset.speclib Subsetting speclibs

Description

Function to return subsets of Speclibs by defined conditions.

Usage
## S4 method for signature 'Speclib'’
subset(x, subset, ...)
Arguments
X Object of class ’Speclib’.
subset Logical expression indicating spectra to keep: missing values are taken as false.

Multiple expressions can be applied using logical operators AND and OR. See
details section.

Further arguments passed to agrep.

Details
Matchable objects are SI data. Use column names to identify the respective SI. See SI to access SI
of a Speclib. IDs of spectra may be accessed using "id.speclib" as variable name. To subset certain
wavelength ranges of a Speclib refer to mask.

Value

Object of class Speclib.

Author(s)

Lukas Lehnert, Wolfgang Obermeier

See Also

Speclib, SI, mask



110 t.test

Examples

data(spectral_data)

## Return names of SI data
names (SI(spectral_data))

## Divide into both seasons
sp_summer <- subset(spectral_data, season == "summer")
sp_spring <- subset(spectral_data, season == "spring")

## Divide into both seasons and years
sp_summer_14 <- subset(spectral_data, season == "summer" & year == 2014)
sp_spring_14 <- subset(spectral_data, season == "spring"” & year == 2014)

## Plot all speclibs
plot(sp_spring_14, col="green", ylim = c(90,80))
plot(sp_summer_14, col="red"”, new = FALSE)

t.test t-test for nri values

Description

Performs Student’s t-tests for normalized ratio index values.

Usage
## S4 method for signature 'Nri'
t.test(x, ...)
Arguments
X Object of class 'nri'.
Arguments to be passed to t. test.
Value

An object of class "data.frame"

Author(s)
Lukas Lehnert & Hanna Meyer



transformSpeclib 111

See Also

t.test, cor.test,Nri-method, Nri

Examples

data(spectral_data)

## Calculate nri-values for WorldView-2-8

spec_WV <- spectralResampling(spectral_data, "WorldView2-8",
response_function = FALSE)

nri_WV <- nri(spec_WV, recursive = TRUE)

## Perform t.tests between nri-values of both sites

season <- SI(spec_WV)$season

ttestres <- t.test(x = nri_WV, y = season, alternative = "two.sided")
ttestres

## Plot p.values of t.tests
plot(ttestres)

transformSpeclib Transform spectra

Description

Transform spectra by using convex hull or segmented upper hull

Usage
transformSpeclib(data, ..., method = "ch”, out = "bd")

Arguments

data Speclib to be transformed

method Method to be used. See details section.

out Kind of value to be returned. See details section.

Further arguments passed to generic functions. Currently ignored.

Details

Function performs a continuum removal transformation by firstly establishing a continuum line/hull
which connects the local maxima of the reflectance spectrum. Two kinds of this hull are well
established in scientific community: the convex hull (e.g. Mutanga et al. 2004) and the segmented
hull (e.g. Clark et al. 1987). Both hulls are established by connecting the local maxima, however,



112 transformSpeclib

the precondition of the convex hull is that the resulting continuum line must be convex whereas
considering the segmented hull it might be concave or convex but the algebraic sign of the slope
is not allowed to change from the global maximum of the spectrum downwards to the sides. In
contrast to a convex hull, the segmented hull is able to identify small absorption features.

Specify method = "ch" for the convex hull and method = "sh" for the segmented hull. The output
might be "raw”, "bd"” or "ratio":

e "raw": the continuum line is returned

* "bd": the spectra are transformed to band depth by

Ry

BDy=1- -2
A CV)\’

where BD is the band depth, R is the reflectance and C'V is the continuum value at the
wavelength .

* "ratio": the spectra are transformed by

R
CVy'

ratioy =

In some cases it might be useful to apply noiseFiltering before the transformation if too many
small local maxima are present in the spectra. Anyway, a manual improvement of the continuum
line is possible using addcp and deletecp.

Value
If out != "raw” an object of class Speclib containing transformed spectra is returned. Otherwise
the return object will be of class Clman.

Note
For large Speclibs, it may be feasible to run the function on multiple cores. See hsdar_parallel()
for further information.

Author(s)

Hanna Meyer and Lukas Lehnert

References

Clark, R. N., King, T. V. V. and Gorelick, N. S. (1987): Automatic continuum analysis of reflectance
spectra. Proceedings of the Third Airborne Imaging Spectrometer Data Analysis Workshop, 30.
138-142.

Mutanga, O. and Skidmore, A. K. (2004): Hyperspectral band depth analysis for a better estimation
of grass biomass (Cenchrus ciliaris) measured under controlled laboratory conditions International
Journal of applied Earth Observation and Geoinformation, 5, 87-96.

See Also
Clman, addcp, deletecp, checkhull



unmix 113

Examples

## Example spectrum for wavelength values
## between 400 and 1000 nm
example_spectrum <- PROSPECT()[,c(1:600)]

## Default (convex hull and band depth)
ch_bd <- transformSpeclib(example_spectrum)

## Construct convex hull but calculate ratios
ch_ratio <- transformSpeclib(example_spectrum, out = "ratio")

## Return continuum line of convex hull
ch_raw <- transformSpeclib(example_spectrum, out = "raw")

## Plot results

par(mfrow=c(2,2))

plot(example_spectrum)

plot(ch_raw, ispec = 1, main = "Continuum line",
ylim = ¢(0,0.5))

plot(ch_bd, main = "Band depth”)

plot(ch_ratio, main = "Ratio")

## Same example but with segmented hull

## Segmented hull and band depth
sh_bd <- transformSpeclib(example_spectrum, method = "sh",
out = "bd")

## Segmented hull and ratios
sh_ratio <- transformSpeclib(example_spectrum, method = "sh",
out = "ratio”)

## Return continuum line of segmented hull
sh_raw <- transformSpeclib(example_spectrum, method = "sh",
out = "raw")

## Plot results

par(mfrow=c(2,2))

plot(example_spectrum)

plot(sh_raw, ispec = 1, main = "Continuum line",
ylim = ¢(0,0.5))

plot(sh_bd, main = "Band depth”)

plot(sh_ratio, main = "Ratio")
unmix Unmix spectra
Description

Perform linear spectral unmixing on hyperspectral data or spectra resampled to satellite bands using
endmember spectra.



114 unmix

Usage
unmix(spectra, endmember, returnHCR = "auto"”, scale = FALSE, ...)
Arguments
spectra Input spectra of class ’Speclib’
endmember Endmember spectra of class *Speclib’
returnHCR Set class of value. If TRUE, value will be of class ’HyperSpecRaster’, other-
wise a list is returned. If auto, function will switch to mode depending on input
data characteristics.
scale Flag to scale spectra to [0,1] if necessary.
Further arguments passed to HyperSpecRaster (ignored if returnHCR = FALSE).
Details

Linear spectral unmixing is a frequently used method to calculate fractions of land-cover classes
(endmembers) within the footprint of pixels. This approach has originally been intended to be used
for multispectral satellite images. The basic assumption is that the signal received at the sensor
(Pmiz) 18 a linear combination of n pure endmember signals (p;) and their cover fractions (f;):

n
Pmiz = Z Pifi>
1=1

where f1, fa, ..., fn >=0and Y ., f; = 1 to fulfill two constraints:

1. All fractions must be greater or equal 0

2. The sum of all fractions must be 1
Since this linear equation system is usually over-determined, a least square solution is performed.
The error between the final approximation and the observed pixel vector is returned as vector
(error)in list (returnSpatialGrid = FALSE) or as last band if returnSpatialGrid = TRUE.
Value
A list containing the fraction of each endmember in each spectrum and an error value giving the
euclidean norm of the error vector after least square error minimisation.
Note

Unmixing code is based on "i.spec.unmix" for GRASS 5 written by Markus Neteler (1999).

Author(s)

Lukas Lehnert

References

Sohn, Y. S. & McCoy, R. M. (1997): Mapping desert shrub rangeland using spectral unmixing and
modeling spectral mixtures with TM data. Photogrammetric Engineering and Remote Sensing, 63,
707-716



updatecl 115

Examples

## Not run:

## Use PROSAIL to generate some vegetation spectra with different LAI
parameter <- data.frame(LAI = seq(@, 1, 0.01))

spectral_data <- PROSAIL(parameterList = parameter)

## Get endmember spectra
## Retrieve all available spectra
avl <- USGS_get_available_files()

## Download all spectra matching "grass-fescue”
grass_spectra <- USGS_retrieve_files(avl = avl, pattern = "grass-fescue")
limestone <- USGS_retrieve_files(avl = avl, pattern = "limestone"”)

## Integrate all spectra to Quickbird

grass_spectra_gb <- spectralResampling(grass_spectral1,], "Quickbird")
limestone_gb <- spectralResampling(limestone, "Quickbird")
spectral_data_gb <- spectralResampling(spectral_data, "Quickbird")

em <- speclib(spectra = rbind(spectra(grass_spectra_gb),
spectra(limestone_qgb))/100,
wavelength = wavelength(limestone_gb))

## Unmix
unmix_res <- unmix(spectral_data_gb, em)

unmix_res

plot(unmix_res$fractions[1,] ~ SI(spectral_data_gb)$LAI, type = "1",
xlab = "LAI", ylab = "Unmixed fraction of vegetation")

## End(Not run)

updatecl Check transformed Speclib

Description

Update a transformed Speclib with a re-calculated hull

Usage
updatecl(x, hull)

Arguments

X Object of class Speclib transformed by transformSpeclib.
hull Hull to be applied to x. Output of function makehull.



116 updatecl

Details

In some cases, it might be desirable to manually adapt automatically constructed segmended hulls
(transformSpeclib). For example local maxima could be removed because they are very small
and maybe afflicted with uncertainties which might legitimate it to manipulate the continuum line.
Therefore, hsdar provides functions to remove and add "continuum points" from or to a continuum
line. Manually adapted continuum lines can then be used to update band depth or ratio transfor-
mation. Handle these functions with care to avoid continuum lines too much build by subjective
decisions. In the typical workflow, spectra are first transformed (transformSpeclib). Contin-
uum points can then be retrieved (getcp) and manually adapted by adding addcp and deleting
(deletecp) of points. Use checkhull to check for errors. If all uncertainties are removed, re-
calculate the hull (makehull) and update the transformed spectrum (updatecl).

Value

Object of class Speclib.

Author(s)

Lukas Lehnert and Hanna Meyer

See Also

transformSpeclib, makehull, Speclib

Examples

## Model spectra using PROSAIL
parameter <- data.frame(N = rep.int(c(1, 1.5),2), LAI = c(1,1,3,3))
spec <- PROSAIL (parameterList=parameter)

## Transform spectra
spec_clman <- transformSpeclib(spec, method = "sh"”, out = "raw")

## Plot original line
par(mfrow = c(1,2))
plot(spec_clman, ispec = 1, xlim = c(2480, 2500), ylim=c(0.022,0.024))

## Add fix point at 4595 nm to continuum line of first spectrum
spec_clman <- addcp(spec_clman, 1, 2495)

## Plot new line
plot(spec_clman, ispec = 1, xlim = c(2480, 2500), ylim=c(0.022,0.024))

## Check new hull
hull <- checkhull(spec_clman, 1)

hull$error

## Add fix point at 4596 nm to continuum line of first spectrum
spec_clman <- addcp(spec_clman, 1, 2496)

## Check new hull



usagehistory 117

hull <- checkhull(spec_clman, 1)
hull$error

## Re-calculate hull
hull <- makehull(spec_clman, 1)

## Transform spectra using band depth
spec_bd <- transformSpeclib(spec, method = "sh”, out = "bd")

## Update continuum line of first spectrum
spec_bd <- updatecl(spec_bd, hull)

## Plot modified transformed spectrum
plot(spec_bd, FUN = 1)

usagehistory History of usage

Description

Function to read and write history of usage for Speclibs. Similar to a log file, the history of usage
records processing steps applied to a Speclib.

Usage

usagehistory(x)
usagehistory(x) <- value

Arguments
X Object of class Speclib
value Character string to be added to usagehistory or NULL, if usagehistory should be
deleted.
Value

For usagehistory<-, the updated object. Otherwise a vector containing the history of usage of
Speclib is returned.

Author(s)

Lukas Lehnert

See Also

Speclib



118 vegindex

Examples

data(spectral_data)

## Return history of usage
usagehistory(spectral_data)

## Deleting history of usage
usagehistory(spectral_data) <- NULL
spectral_data

## Adding entries

usagehistory(spectral_data) <- "New entry” ## Adding new entry
usagehistory(spectral_data) <- "New entry 2" ## Adding second entry
spectral_data

vegindex vegindex

Description

Function calculates a variety of hyperspectral vegetation indices

Usage
vegindex(x, index, returnHCR = "auto"”, L = 0.5,
weighted = TRUE, ...)
Arguments
X Object of class Speclib
index Character string. Name or definition of index or vector with names/definitions
of indices to calculate. See Details section for further information.
returnHCR If TRUE, the result will be of class HyperSpecRaster, otherwise it is a data
frame. If "auto", the class is automatically determined by passed Speclib.
L Factor for SAVI index. Unused for other indices.
weighted Logical indicating if reflectance values should be interpolated to fit wavelength
position. If FALSE the reflectance values of nearest neighbour to passed position
are returned. See get_reflectance for further explanation.
Further arguments passed to derivative functions. Only used for indices requir-
ing derivations.
Details

Index must be a charater vector containing pre-defined indices (selected by their name) or self
defined indices or any combination of pre- and self-defined indices.

Pre-defined indices: The following indices are available:



vegindex

Name

Boochs
Boochs?2
CAI
CARI

Carter
Carter2
Carter3
Carter4
Carter5
Carter6
CI

CI2
ClAInt

CRI1
CRI2
CRI3
CRI4
D1

D2

Datt
Datt2
Datt3
Datt4
Datt5
Datt6
Datt7
Datt8
DD
DDn
DPI

DWSI1
DWSI2
DWSI3
DWSI4
DWSI5
EGFN

Formula

Dro3

Dry

0.5 - (Ra000 + Ra2200) — R2100
a = (R0 — Rs50)/150

b= R550 — (a . 550)

R0 - abs(a <670 + Rgro + b)/Rmo-

(a® +1)03
Re9s/ Ra20
Re9s/ Rre0
Reos/ Rreo
R710/R7e0
Reos/ Rero

Rss0

Re7s - Reoo/Rigs

R760/R700 — 1
735nm R

600nm

1/Rs515 — 1/ Rss50
1/Rs15 — 1/ Rero
1/Rs515 — 1/ Rss0 - Rrro
1/Rs515 — 1/ Rro0 - Rero
D30/ Dro6

D105/ D722

(Rgs0 — Rr10)/(Rgs0 — Reso)
Rgs0/R710

Dr54/Dro4

Re72/(Rs50 - R7os)

Re72/ Rss0

(Rs60)/(Rs50 - Rros)

(Rgso — R2218)/(Rsso — Rig2s)
(Rgso — Ri7ss)/(Rsso — Rig2s)
(R749 — Rr20) — (R701 — Rer2)
2 (R710 — Reso — Rre0)

(Dess - Dr10)/ Doz

Rsoo/ Ri660

Ri660/ Rs50

Ri660/ Reso

Rs50/ Reso

(Rsoo + Rs50)/(Rie60 + Reso)

(max(Degso:750) — max(Dso0:550))/
(max(Degs0:750) + max(Dso0:550))

119

Reference*

Boochs et al. (1990)
Boochs et al. (1990)
Nagler et al. (2003)
Kim et al. (1994)

Carter (1994)

Carter (1994)

Carter (1994)

Carter (1994)

Carter (1994)

Carter (1994)
Zarco-Tejada et al.
(2003)

Gitelson et al. (2003)

Oppelt and Mauser
(2004)

Gitelson et al. (2003)
Gitelson et al. (2003)
Gitelson et al. (2003)
Gitelson et al. (2003)
Zarco-Tejada et al.
(2003)

Zarco-Tejada et al.
(2003)

Datt (1999b)

Datt (1999b)

Datt (1999b)

Datt (1998)

Datt (1998)

Datt (1998)

Datt (1999a)

Datt (1999a)

le Maire et al. (2004)
le Maire et al. (2008)
Zarco-Tejada et al.
(2003)

Apan et al. (2004)
Apan et al. (2004)
Apan et al. (2004)
Apan et al. (2004)
Apan et al. (2004)
Penuelas et al.
(1994)



120

EGFR
EVI

GDVI

GI
Gitelson
Gitelson2
GMI1
GMI2
Green NDVI
LWVIL_1
LWVI_2
Maccioni
MCARI

MCARI/OSAVI
MCARI2

MCARI2/OSAVI2
mND705

mNDVI

MPRI

mREIP
MSAVI

MSI
mSR
mSR2
mSR705
MTCI
MTVI

NDLI
NDNI

NDVI
NDVI2

NDVI3
NDWI
NPCI
OSAVI
OSAVI2

PARS

max(Degso:750)/ max(Dso0:550)

2.5 - ((Rsoo — Re70)/

(Rsoo — (6 - Rgro) — (7.5 Razs) + 1))
(R0 — Rso)/ (Rgoo + Rgo) ™™
Rss4/Rerr

1/R700

(R750 — Rgoo/Reos — Rrao) — 1
Rzs0/ Rss0

Rz50/Raoo

(Rsoo — Rs50)/(Rsoo + Rss0)

(R1094 — Ross)/(Rio94 + Ross)
(R1094 — R1205)/(R1094 4+ R1205)
(R7s0 — Rr10)/(R7so — Resgo)

((R700 — Re70) — 0.2 - (R700 — Rs550))-
(R700/Re70)

((R750 — R705) — 0.2 - (R750 — Rs50))-
(R7s50/ R7o05)

(R7s50 — Rro5)/(R7s0 + Rros — 2 - Raas)
(Rso0 — Reso)/(Rsoo + Reso — 2 - Raas)

(Rs15 — Rs30)/(Rs15 + Rs30)

Red-edge inflection point using Gaussain fit

0.5- (2 - Rgoo + 1—
((2- Rsoo +1)* = 8- (Rso0 — Re0))"?)
Ri600/Rs17

(Rsoo — Ruas)/(Reso — Raas)
(R7s0/Rr05) — 1/(Rzs0/ Rros +1)%°
(R7s50 — Raas)/(Rros — Raas)
(R754 — R709)/(R709 — Res1)
1.2 (1.2 - (Rgoo — Rs50)—

2.5 (Re70 — Rs50))

(log(1/ Ri754) — log(1/ Rieso))/
(log(1/Ri754) + log(1/ Rieso))
(log(1/R1s10) — log(1/Ri6g0))/
(log(1/Ry510) + log(1/Ri6s0))
(Rsoo — Reso)/(Rsoo + Reso)
(R750 — Rr05)/(R7s0 + R7o5)

(Res2 — Rs53)/(Res2 + Rss3)
(Rgso — R1240)/(Rseo + Ri240)
(Reso — Ru30)/(Reso + Raszo)
(1 + 0.16) . (Rgoo — R670>/
(Rsoo + Rg7o + 0.16)
(140.16) - (R750 — R705)/
(R750 + Rro5 + 0.16)
R746/Rs13

vegindex

Penuelas et al. (1994)
Huete et al. (1997)

Wu (2014)

Smith et al. (1995)
Gitelson et al. (1999)
Gitelson et al. (2003)
Gitelson et al. (2003)
Gitelson et al. (2003)
Gitelson et al. (1996)
Galvao et al. (2005)
Galvao et al. (2005)
Maccioni et al. (2001)
Daughtry et al. (2000)

Daughtry et al. (2000)
Wau et al. (2008)

Wu et al. (2008)

Sims and Gamon (2002)
Sims and Gamon (2002)
Hernandez-Clemente et al.
(2011)

Miller et al. (1990)
Qietal. (1994)

Hunt and Rock (1989)
Sims and Gamon (2002)
Chen (1996)

Sims and Gamon (2002)
Dash and Curran (2004)
Haboudane et al.

(2004)

Serrano et al. (2002)

Serrano et al. (2002)

Tucker (1979)
Gitelson and Merzlyak
(1994)

Gandia et al. (2004)
Gao (1996)

Penuelas et al. (1994)
Rondeaux et al.

(1996)

Wu et al. (2008)

Chappelle et al. (1992)



vegindex

PRI
PRI_norm

PRI*CI2
PSRI
PSSR
PSND
PWI
RDVI
REP_LE
REP_Li

SAVI
SIPI

SPVI

SR
SR1

SR2
SR3
SR4
SR5
SR6

SR7
SR8

SRPI
SRWI

Sum_Drl
Sum_Dr2

SWIR FI
SWIR LI

SWIR SI
SWIR VI
TCARI

TCARI/OSAVI
TCARI2

(Rs31 — Rs70)/(Rs31 + Rs70)
PRI - (—1)/(RDVI . R700/R670)

PRI - CI2

(Re7s — Rs00/R7s0
Rsoo/Re3s

(Rsoo — Ra70)/(Rsoo — Raro)
Rgoo/Raro

(Rsoo — Re70)/v/ Rsoo + Rero

Red-edge position through linear extrapolation.

Rye = (Re70 + R7s0)/2
700 +40 - ((Rye — R700)/(R740 — R700))

(14 L) - (Rsoo — Re70)/(Rsoo + Rero + L)

(Rsoo — Raas)/(Rsoo — Reso)

04-3.7- (Rgoo — R670) —1.2-
((Rs30 — Re70)?)%5

Rsoo/ Reso

R750/ Rro0

Rz52/ Rego
Rz50/ Rss0

R700/Re70
Re7s/ Rroo
Rzs50/Rr10

Rus0/Re9o
Rs15/Rs50

Ra30/ Reso
Rgs0/Ri240

795
Liggeo D
Zz’=680 D1;

R3155/(Ra225 - Risgg

3.87 - (R2210 — R2090)—

27.51 - (Raasp — Raooo) — 0.2

—41.59 - (Rzglo - R2090)+

1.24 - (Ra280 — R2090) + 0.64

37.72 - (Ra210 — R2090)+

26.27 - (Rgggo — Rgogo) +0.57

3+ ((R700 — Re70) — 0.2 - (R700 — Rs50)-
(R700/Re70))

TCARI/OSAVI

3 ((R7s0 — R705) — 0.2 - (R750 — Rss0)-

121

Gamon et al. (1992)
Zarco-Tejada et al.

(2013)

Garrity et al. (2011)
Merzlyak et al. (1999)
Blackburn (1998)
Blackburn (1998)
Penuelas et al. (1997)
Roujean and Breon (1995)
Cho and Skidmore (2006)
Guyot and Baret (1988)

Huete (1988)

Penuelas et al. (1995),
Penuelas et al. (1995a)
Vincini et al. (2006)

Jordan (1969)

Gitelson and Merzlyak
(1997)

Gitelson and Merzlyak
(1997)

Gitelson and Merzlyak
(1997)

McMurtrey et al. (1994)
Chappelle et al. (1992)
Zarco-Tejada and Miller
(1999)

Lichtenthaler et al. (1996)
Hernandez-Clemente et al.
(2012)

Penuelas et al. (1995)
Zarco-Tejada et al.
(2003)

Elvidge and Chen (1995)
Filella and Penuelas
(1994)

Levin et al. (2007)
Lobell et al. (2001)

Lobell et al. (2001)
Lobell et al. (2001)
Haboudane et al. (2002)

Haboudane et al. (2002)
Wu et al. (2008)



122 vegindex
(R7s50/ R705))
TCARI2/OSAVI2 TCARI2/OSAVI2 Wau et al. (2008)
TGI *O5(190(R670 - R550) - 120(R670 - R480>) Hunt et al. (2013)
TVI 0.5 (120 - (R750 — Rs50)— Broge and Leblanc
200 - (Re70 — Rs50)) (2000)
Vogelmann Rr40/Rrao Vogelmann et al. (1993)
Vogelmann?2 (R734 — Rra7)/(Rr15 + Rr2e) Vogelmann et al. (1993)
Vogelmann3 D715/ Dros Vogelmann et al. (1993)
Vogelmann4 (R734 — R7a7)/(R715 + R720) Vogelmann et al. (1993)
* For references please type: hsdardocs("References.pdf”).
** For GDVI n must be defined appending an underscore and the intended exponent to the index
name. E.g., for n = 2, the correct index name would be "GDVI_2". Note that GDVI-indices with
n =2, 3, 4 will be derived if all available indices are calculated.
Self-defining indices:
Self-defined indices may be passed using the following syntax:
* Rxxx: Reflectance at wavelength *xxx’. Note that R must be upper case.
» Dxxx: First derivation of reflectance values at wavelength xxx’. Note that D must be upper
case.
* Sxxx: Second derivation of reflectance values at wavelength *xxx’. Note that S must be upper
case.
Using this syntax, complex indices can be easily defined. Note that the entire definition of the
index must be passed as one character string. Consequently, the NDVI would be written as
"(R800-R680)/(R800+R680)".
Value

A vector containing indices values. If index is a vector with length > 1, a data frame with ncol =
length(index) and nrow = number of spectra in X is returned.

If function is called without any arguments, return value will be a vector containing all available
indices in alphabetical order.

Author(s)

Hanna Meyer and Lukas Lehnert

References

See hsdardocs("References.pdf")

See Also

soilindex, derivative.speclib, rededge, get_reflectance



wavelength 123

Examples

## Example calculating NDVI
data(spectral_data)
ndvi <- vegindex(spectral_data, "NDVI")

## Example calculating all available indices
## Get available indices

avl <- vegindex()

vi <- vegindex(spectral_data, avl)

## Self-defined indices
## NDVI
vi <- vegindex(spectral_data, "(R800-R680)/(R800+R680)")
## NDNI
vi <- vegindex(spectral_data,
"(log(1/R1510) - log(1/R1680))/(log(1/R1510) + log(1/R1680))")
## D1
vi <- vegindex(spectral_data, "D730/D706")
## Example using second derivative spectra
vi <- vegindex(spectral_data, "(S930-S710)/(S930+S710)")

wavelength Handling wavelength and fwhm

Description

Methods to access and set wavelength (band center) and full-width-half-max (fwhm) values for
class Speclib.

Usage

## S4 method for signature 'Speclib'’
wavelength(object)

## S4 replacement method for signature 'Speclib,data.frame'’
wavelength(object) <- value

## S4 replacement method for signature 'Speclib,numeric’
wavelength(object) <- value

## S4 method for signature 'Speclib’
fwhm(object)

## S4 replacement method for signature 'Speclib,numeric’
fwhm(object) <- value



124 wavelength

Arguments
object Object of class Speclib.
value Numeric vector or data.frame containing wavelength values. Must always be in
nm!
Details

Wavelength (band center) and full-width-half-max (fwhm) values are given for each spectral band.
The wavelength is mandatory for creation of Speclib and is used within the whole functionality of
the package (e.g., noiseFiltering, spectralResampling, vegindex, nri, plot.Speclib, mask).
Value
For wavelength<- and fwhm<-, the updated object. Otherwise a numeric vector of the wavelength
and fwhm-values in nm is returned.
Author(s)

Lukas Lehnert

See Also
Speclib

Examples

data(spectral_data)

wavelength(spectral_data)



Index

+Topic aplot feature_properties, 41
clman, 25 getNRI, 47
plot.Nri, 67 glm.nri, 49
plot.Specfeat, 69 import_USGS, 55
plot.Speclib, 71 nri, 63
specfeat, 92 nri_best_performance, 66
*Topic classes rededge, 84
Clman-class, 27 soilindex, 90
distMat3D, 37 spectralResampling, 103
DistMat3D-class, 39 sr, 106
HyperSpecRaster-class, 54 transformSpeclib, 111
Nri-class, 64 unmix, 113
specfeat, 92 vegindex, 118
Specfeat-class, 93 +Topic package
speclib, 94 hsdar-package, 3
Speclib-class, 97 *Topic smooth
*Topic datasets meanfilter, 59
cancer_spectra, 13 noiseFiltering, 61
spectral_data, 106 *Topic spatial
+Topic documentation HyperSpecRaster, 52
hsdardocs, 50 HyperSpecRaster-class, 54
*Topic methods Raster-methods, 80
Boruta: :Boruta, 11 xTopic utilities
caret: :createDataPartition-methods, addcp, 5
14 apply.DistMat3D, 6
caret::createFolds-methods, 14 apply.Speclib, 8
caret::createResample-methods, 14 bandnames, 9
caret: :featurePlot-methods, 15 bdri, 10
caret::gafs, 15 checkhull, 24
caret: :preProcess-methods, 16 cubePlot, 29
caret::rfe, 17 deletecp, 32
caret::safs, 18 derivative.speclib, 33
caret: :sbf, 19 dim.speclib, 35
caret::setPredictor, 21 Extract Speclib by index, 40
caret::setResponse, 22 get.gaussian.response, 43
caret::train-methods, 24 get.sensor.characteristics, 44
HyperSpecRaster, 52 getcp, 46
Raster-methods, 80 hsdar_parallel, 51
xTopic multivariate hsdardocs, 50

125



126

idSpeclib, 54
makehull, 56
mask, 58
merge, 60
postprocessASD, 72
predictHyperspec, 73
read.ASD, 83
SI, 86
spectra, 101
spectrallnterpolation, 102
subset.nri, 107
subset.speclib, 109
updatecl, 115
usagehistory, 117
wavelength, 123
(g)1lm.nri, 65
<,ANY,DistMat3D-method (distMat3D), 37
<,DistMat3D,ANY-method (distMat3D), 37
<,DistMat3D,DistMat3D-method
(distMat3D), 37
<=,ANY,DistMat3D-method (distMat3D), 37
<=,DistMat3D,ANY-method (distMat3D), 37
<=,DistMat3D,DistMat3D-method
(distMat3D), 37
==,ANY,DistMat3D-method (distMat3D), 37
==,DistMat3D,ANY-method (distMat3D), 37
==,DistMat3D,DistMat3D-method
(distMat3D), 37
>, ANY,DistMat3D-method (distMat3D), 37
> DistMat3D,ANY-method (distMat3D), 37
> DistMat3D,DistMat3D-method
(distMat3D), 37
>=,ANY,DistMat3D-method (distMat3D), 37
>=,DistMat3D,ANY-method (distMat3D), 37
>= DistMat3D,DistMat3D-method
(distMat3D), 37
[,.SI,ANY,ANY,ANY-method (SI), 86
[,.Spectra, ANY,ANY, ANY-method
(spectra), 101
[,DistMat3D,ANY,ANY,ANY-method
(distMat3D), 37
[,DistMat3D,ANY,ANY-method (distMat3D),
37
[,DistMat3D-method (distMat3D), 37
[,Nri, ANY,ANY,ANY-method (Nri-methods),
65
[,Nri,ANY,ANY-method (Nri-methods), 65
[,Specfeat,ANY,ANY, ANY-method

INDEX

(specfeat), 92
[,Speclib,ANY,ANY,ANY-method (Extract
Speclib by index), 40

[,Speclib, ANY,ANY-method (Extract
Speclib by index), 40
[,Speclib-method (Extract Speclib by
index), 40
[<-,DistMat3D, ANY,ANY, ANY-method
(distMat3D), 37
[<-,DistMat3D,ANY,ANY-method
(distMat3D), 37
[<-,DistMat3D-method (distMat3D), 37
$,Nri-method (Nri-methods), 65
$,Speclib-method (speclib), 94

addcp, 5, 5, 24, 25, 27, 28, 32, 33, 46, 56, 57,
112,116

agrep, 108, 109

apply, 3,7, 8, 39

apply,DistMat3D-method
(apply.DistMat3D), 6

apply, Speclib-method (apply.Speclib), 8

apply.DistMat3D, 6, 40

apply.Speclib, 8

as.array,DistMat3D-method (distMat3D),
37

as.data.frame,Nri-method (Nri-methods),
65

as.matrix,DistMat3D-method (distMat3D),
37

as.matrix,Nri-method (Nri-methods), 65

bandnames, 9, 102
bandnames<- (bandnames), 9
bdri, 10
blockSize,Speclib-method
(speclib_raster-methods), 99
Boruta, 12
Boruta,Nri-method (Boruta: :Boruta), 11
Boruta, Specfeat-method
(Boruta: :Boruta), 11
Boruta, Speclib-method (Boruta: :Boruta),
11
Boruta-methods (Boruta: :Boruta), 11
Boruta: :Boruta, 11
brick, 53, 54, 96, 98
brick,Speclib,ANY-method
(HyperSpecRaster), 52



INDEX

brick,Speclib-method (Raster-methods),
80

cancer_spectra, 13

caret::createDataPartition-methods, 14

caret: :createFolds-methods, 14

caret: :createResample-methods, 14

caret::featurePlot-methods, 15

caret::gafs, 15

caret: :preProcess-methods, 16

caret::rfe, 17

caret::safs, 18

caret: :sbf, 19

caret: :setPredictor, 21

caret::setResponse, 22

caret: :showCaretParameters, 23

caret::train-methods, 24

cellFromCol, Speclib-method (spectra),
101

cellFromLine,Speclib-method (spectra),
101

cellFromPolygon, Speclib-method
(spectra), 101

cellFromRow, Speclib-method (spectra),
101

cellFromRowCol, Speclib-method
(spectra), 101

cellFromRowColCombine, Speclib-method
(spectra), 101

cellFromXY,Speclib-method (spectra), 101

checkhull, 5, 24, 24, 32, 33,56, 112,116

Clman, 27, 32,46, 57, 112

Clman (Clman-class), 27

clman, 25

Clman-class, 27

colFromX, Speclib-method (spectra), 101

colorRamp, 68

cor.test, 28, 28, 68

cor.test,Nri-method (cor.test), 28

cor.test.nri (cor.test), 28

createDataPartition, 14

127

14

createFolds, /14

createFolds, .CaretHyperspectral-method
(caret::createFolds-methods),
14

createFolds, ANY-method
(caret::createFolds-methods),
14

createFolds-methods
(caret::createFolds-methods),
14

createMultiFolds, /4

createMultiFolds, .CaretHyperspectral-method

(caret::createFolds-methods),
14

createMultiFolds, ANY-method
(caret::createFolds-methods),
14

createMultiFolds-methods
(caret::createFolds-methods),
14

createResample, /4

createResample, .CaretHyperspectral-method

(caret::createResample-methods),
14

createResample, ANY-method
(caret::createResample-methods),
14

createResample-methods
(caret: :createResample-methods),
14

cubePlot, 29

cut_specfeat, 4, 31, 31, 42, 92, 93

deletecp, 5, 24, 25, 27, 28, 32, 32, 46, 56, 57,
112,116

derivative.speclib, 4, 33, 85, 122

dim, 97, 99

dim,DistMat3D-method (distMat3D), 37

dim,Nri-method (Nri-methods), 65

dim, Speclib-method (dim.speclib), 35

createDataPartition, .CaretHyperspectral-methodim.speclib, 35
(caret::createDataPartition-methods), dist, 36, 37

14
createDataPartition,ANY-method

dist.speclib, 27, 36
DistMat3D, 6, 7, 39, 65

(caret: :createDataPartition-methods), distMat3D, 37, 40

14
createDataPartition-methods

distMat3D,array-method (distMat3D), 37
distMat3D,matrix-method (distMat3D), 37

(caret::createDataPartition-methods), distMat3D,numeric-method (distMat3D), 37



128

DistMat3D-class, 39

Extract Speclib by index, 40
extract,Speclib-method
(Raster-methods), 80

feature_properties, 10, 31, 41, 42, 92, 93
featurePlot, /5

featurePlot, .CaretHyperspectral-method

(caret::featurePlot-methods),
15

featurePlot,ANY-method
(caret: :featurePlot-methods),
15

featurePlot-methods
(caret::featurePlot-methods),
15

fourCellsFromXY, Speclib-method
(spectra), 101

fwhm (wavelength), 123

fwhm, Speclib-method (wavelength), 123

fwhm<- (wavelength), 123

fwhm<-, Speclib, numeric-method
(wavelength), 123

gafs, 12,15, 16
gafs,Nri-method (caret: :gafs), 15
gafs,Specfeat-method (caret: :gafs), 15
gafs,Speclib-method (caret::gafs), 15
gafs-methods (caret: :gafs), 15
get.gaussian.response, 43, 105
get.sensor.characteristics, 43, 44, 104,
105
get_Boruta (Boruta: :Boruta), 11
get_gafs (caret::gafs), 15
get_landsat4_response
(spectralResampling), 103
get_landsat5_response
(spectralResampling), 103
get_landsat7_response
(spectralResampling), 103
get_landsat8_response
(spectralResampling), 103
get_quickbird_response
(spectralResampling), 103
get_reflectance, 48, 90, 91, 118, 122
get_rfe (caret::rfe), 17
get_safs (caret::safs), 18
get_sbf (caret::sbf), 19

INDEX

get_sentinel2_response
(spectralResampling), 103
get_wv2_4_response
(spectralResampling), 103
get_wv2_8_response
(spectralResampling), 103
getcp, 5, 24, 32, 33, 46, 56, 116
getFiniteNri (Nri-methods), 65
getNRI, 28, 47, 49, 50
getValuesBlock,HyperSpecRaster
(HyperSpecRaster), 52
getValuesBlock,HyperSpecRaster-method
(HyperSpecRaster), 52
getValuesBlock, Speclib-method
(speclib_raster-methods), 99
glm, 49, 50, 64, 66-68, 70, 107
glm.nri, 28, 49, 64, 66-68, 70, 107

hecl, 68

hsdar (hsdar-package), 3

hsdar-package, 3

hsdar_parallel, 4,51, 112

hsdardocs, 50, 104

HyperSpecRaster, 52, 82, 114

HyperSpecRaster,character,numeric-method
(HyperSpecRaster), 52

HyperSpecRaster,HyperSpecRaster-method
(HyperSpecRaster), 52

HyperSpecRaster,RasterBrick, numeric-method
(HyperSpecRaster), 52

HyperSpecRaster,RasterLayer,numeric-method
(HyperSpecRaster), 52

HyperSpecRaster, Speclib, ANY-method
(HyperSpecRaster), 52

HyperSpecRaster, Speclib-method
(HyperSpecRaster), 52

HyperSpecRaster-class, 54

idSpeclib, 5, 41, 54, 97, 99, 102
idSpeclib<- (idSpeclib), 54
import_USGS, 55

initialize, .SI-method (SI), 86
initialize,Clman-method (clman), 25
initialize,Speclib-method (speclib), 94
interpolate.mask (mask), 58

is.speclib (speclib), 94

Landsat_4_response
(spectralResampling), 103



INDEX

Landsat_5_response
(spectralResampling), 103

Landsat_7_response
(spectralResampling), 103

Landsat_8_response
(spectralResampling), 103

legendSpeclib (plot.Speclib), 71

lines, 26

list.available.sensors
(get.sensor.characteristics),
44

1m, 49, 50

Im.nri, 28

Im.nri(glm.nri), 49

lowess, 62

makehull, 5, 24, 25, 32, 33, 56, 56, 57, 115,
116

mark_nri_best_performance
(nri_best_performance), 66

mask, 58, 97, 99, 109, 124

mask, Speclib-method (mask), 58

mask<- (mask), 58

mask<-,Speclib,data.frame-method
(mask), 58

mask<-,Speclib,list-method (mask), 58

mask<-,Speclib,matrix-method (mask), 58

mask<-,Speclib, numeric-method (mask), 58

maskSpeclib (mask), 58

match. fun, 6-8

meanfilter, 59, 62

merge, 60

merge, Speclib, Speclib-method (merge), 60

n_features (specfeat), 92

n_features, Specfeat-method (specfeat),
92

names, .SI-method (SI), 86

nbands (dim.speclib), 35

ncol, .SI-method (SI), 86

ncol, .Spectra-method (speclib), 94

ncol,DistMat3D-method (distMat3D), 37

noiseFiltering, 4, 60, 61, 85, 112, 124

Nri, 28, 39,47, 64,87, 107, 108, 111

nri, 4, 39,47, 63, 66, 68, 70, 107, 124

Nri-class, 64

Nri-methods, 65

nri_best_performance, 47, 49, 66

nrow, .SI-method (SI), 86

129

nrow, .Spectra-method (speclib), 94
nrow,DistMat3D-method (distMat3D), 37
nspectra (dim.speclib), 35

optim, 78, 79

plot, 3, 27, 28, 49, 50, 97, 99

plot,Clman,ANY-method (clman), 25

plot,Clman-method (clman), 25

plot,Nri,ANY-method (plot.Nri), 67

plot,Nri-method (plot.Nri), 67

plot,Specfeat, ANY-method
(plot.Specfeat), 69

plot,Specfeat-method (plot.Specfeat), 69

plot,Speclib,ANY-method (plot.Speclib),
71

plot,Speclib-method (plot.Speclib), 71

plot.Nri, 67

plot.Specfeat, 69, 92, 93

plot.Speclib, 71, 124

plotRGB, 29

plotRGB, Speclib-method
(Raster-methods), 80

points, 26

polygon, 66

postprocessASD, 72

predict.train, 73

predictHyperspec, 73

predictHyperspec, train, .CaretHyperspectral, function-method

(predictHyperspec), 73

predictHyperspec, train, .CaretHyperspectral ,missing-method

(predictHyperspec), 73
preProcess, 16
preProcess, .CaretHyperspectral-method

(caret: :preProcess-methods), 16
preProcess,ANY-method

(caret: :preProcess-methods), 16
preProcess-class

(caret: :preProcess-methods), 16
preProcess-methods

(caret: :preProcess-methods), 16
print, .Spectra-method (spectra), 101
print,Nri-method (Nri-methods), 65
print,Speclib-method (speclib), 94
print.default, 49
print.getNRI (getNRI), 47
PROSAIL, 4, 75,79
PROSPECT, 4, 77,77
PROSPECTinvert (PROSPECT), 77



130

Quickbird_response
(spectralResampling), 103

RapidEye_response (spectralResampling),
103

Raster-methods, 80

rastermeta, 82, 95, 97

read.ASD, 83

read_header, 83

readAll, Speclib-method (spectra), 101

readGDAL, 97, 99

rededge, 4, 84, 122

response_functions
(spectralResampling), 103

rfe, 12,17

rfe,Nri-method (caret::rfe), 17

rfe,Specfeat-method (caret: :rfe), 17

rfe,Speclib-method (caret::rfe), 17

rfe-methods (caret::rfe), 17

rowFromY, Speclib-method (spectra), 101

safs, 19

safs,Nri-method (caret: :safs), 18

safs,Specfeat-method (caret: :safs), 18

safs,Speclib-method (caret::safs), 18

safs-methods (caret::safs), 18

sam (dist.speclib), 36

sam_distance (dist.speclib), 36

save, 81

sbf, 20, 23

sbf ,Nri-method (caret: :sbf), 19

sbf,Specfeat-method (caret: :sbf), 19

sbf,Speclib-method (caret: :sbf), 19

sbf-methods (caret: :sbf), 19

Sentinel2A_response
(spectralResampling), 103

Sentinel2B_response
(spectralResampling), 103

setPredictor, 22

setPredictor (caret::setPredictor), 21

INDEX

setResponse-methods
(caret: :setResponse), 22
sgolayfilt, 33, 34, 62
show, .preProcessHyperspectral-method
(caret: :preProcess-methods), 16
show, . Spectra-method (spectra), 101
show,DistMat3D-method (distMat3D), 37
show, HyperSpecRaster-method
(HyperSpecRaster-class), 54
show,Nri-method (Nri-methods), 65
show, Speclib-method (speclib), 94
showCaretParameters, 21, 22
showCaretParameters
(caret::showCaretParameters),
23

showCaretParameters, .CaretHyperspectral-method

(caret::showCaretParameters),

23
SI, 41, 86, 96-99, 108, 109
SI,Nri,ANY,ANY-method (SI), 86
SI,Nri,ANY,missing-method (SI), 86
SI,Nri,missing,ANY-method (SI), 86
SI,Nri,missing,missing-method (SI), 86
SI,Nri-method (SI), 86
SI,Speclib,ANY,ANY-method (SI), 86
SI,Speclib,ANY,missing-method (SI), 86
SI,Speclib,missing,ANY-method (SI), 86
SI,Speclib,missing,missing-method (SI),

86
SI,Speclib-method (SI), 86
SI.speclib (SI), 86
SI<-(SI), 86
SI<-,Nri,ANY-method (SI), 86
SI<-,Nri,data.frame-method (SI), 86
SI<-,Nri,matrix-method (SI), 86
SI<-,Speclib,ANY-method (SI), 86
SI<-,Speclib,data.frame-method (SI), 86
SI<-,Speclib,matrix-method (SI), 86
smgm, 4, 88
smoothSpeclib (noiseFiltering), 61

setPredictor, .CaretHyperspectral, character-mesbbtiindex, 4, 34, 89, 90, 122

(caret::setPredictor), 21
setPredictor-methods
(caret: :setPredictor), 21

Specfeat, 31, 69, 70, 93
specfeat, 11, 31, 42,92,92, 93
Specfeat-class, 93

setResponse, 12, 15,17, 18, 20, 21

setResponse (caret::setResponse), 22

setResponse, .CaretHyperspectral, character-method
(caret: :setResponse), 22

Speclib, 3, 8, 9, 27, 28, 30, 34, 35, 37,41, 52,
54, 55,59, 61,64, 65,71,73,77,79,
82,87, 89,93, 96-98, 102, 104, 107,
109,112, 115-117, 124



INDEX

speclib, 26, 73, 83, 94
speclib, character,numeric-method
(speclib), 94
speclib, hyperSpec,ANY-method (speclib),
94
speclib,HyperSpecRaster,ANY-method
(speclib), 94
speclib,matrix,data.frame-method
(speclib), 94
speclib,matrix,matrix-method (speclib),
94
speclib,matrix,numeric-method
(speclib), 94
speclib,numeric,data.frame-method
(speclib), 94
speclib,numeric,matrix-method
(speclib), 94
speclib,numeric,numeric-method
(speclib), 94
speclib,RasterBrick,data.frame-method
(speclib), 94
speclib,RasterBrick,matrix-method
(speclib), 94
speclib,RasterBrick,numeric-method
(speclib), 94

speclib,SpatialGridDataFrame,data.frame—methoﬁraln’

(speclib), 94

speclib,SpatialGridDataFrame,matrix-method

(speclib), 94

speclib,SpatialGridDataFrame, numeric-method

(speclib), 94
speclib,Speclib,numeric-method

(speclib), 94
Speclib-class, 97
speclib_raster-methods, 99
spectra, 48, 96-99, 101
spectra,Clman-method (clman), 25
spectra, Speclib-method (spectra), 101
spectra.Speclib (spectra), 101
spectra<- (spectra), 101
spectra<-,Clman,data.frame-method

(clman), 25
spectra<-,Clman,matrix-method (clman),
25
spectra<-,Clman,numeric-method (clman),
25

spectra<-,Speclib,data. frame-method
(spectra), 101

131

spectra<-,Speclib,matrix-method
(spectra), 101

spectra<-,Speclib, numeric-method
(spectra), 101

spectra<-,Speclib,RasterBrick-method
(spectra), 101

spectral.resampling
(spectralResampling), 103

spectral_data, 106

spectrallnterpolation, 102

spectralResampling, 4, 43, 45, 91, 96, 98,
103,103, 124

spline, 62

sr, 106

subset, 71, 87

subset,Nri-method (subset.nri), 107

subset,Speclib-method (subset.speclib),
109

subset.nri, 107

subset.speclib, 41, 109

t.test, 68,110,110, 111

t.test,Nri-method (t.test), 110

t.test.nri(t.test), 110

train, 24

.CaretHyperspectral-method

(caret::train-methods), 24

train, ANY-method
(caret::train-methods), 24

train-methods (caret: :train-methods), 24

train.formula, 24

transformSpeclib, 4, 5, 10, 11, 24-28,
31-33,41, 42, 46, 56, 57, 69, 89, 92
93,95, 111,115,116

unmix, 4, 113

updatecl, 5, 24, 25, 27, 28, 32, 33, 56, 57,
115,116

usagehistory, 96-98, 117

usagehistory<- (usagehistory), 117

USGS_get_available_files (import_USGS),
55

USGS_retrieve_files (import_USGS), 55

vegindex, 4, 34, 85,91, 118, 124
wavelength, 123

wavelength,HyperSpecRaster-method
(wavelength), 123



132

wavelength,Nri-method (Nri-methods), 65
wavelength, Speclib-method (wavelength),
123
wavelength<- (wavelength), 123
wavelength<-,HyperSpecRaster,numeric-method
(wavelength), 123
wavelength<-,Speclib,data.frame-method
(wavelength), 123
wavelength<-,Speclib, numeric-method
(wavelength), 123
writeRaster,Speclib,character-method
(Raster-methods), 80
writeStart,HyperSpecRaster,character-method
(HyperSpecRaster), 52
writeStart,HyperSpecRaster,Speclib-method
(HyperSpecRaster), 52
writeStart,Speclib,character-method
(speclib_raster-methods), 99
writeStop, Speclib-method
(speclib_raster-methods), 99
writeValues,HyperSpecRaster, Speclib-method
(HyperSpecRaster), 52
writeValues,RasterBrick,Speclib-method
(HyperSpecRaster), 52
writeValues,RasterLayer,Speclib-method
(HyperSpecRaster), 52
writeValues,Speclib,matrix-method
(speclib_raster-methods), 99
writeValues,Speclib,numeric-method
(speclib_raster-methods), 99
writeValues,Speclib, Speclib-method
(speclib_raster-methods), 99
WV_2_8_response (spectralResampling),
103

INDEX



	hsdar-package
	addcp
	apply.DistMat3D
	apply.Speclib
	bandnames
	bdri
	Boruta::Boruta
	cancer_spectra
	caret::createDataPartition-methods
	caret::createFolds-methods
	caret::createResample-methods
	caret::featurePlot-methods
	caret::gafs
	caret::preProcess-methods
	caret::rfe
	caret::safs
	caret::sbf
	caret::setPredictor
	caret::setResponse
	caret::showCaretParameters
	caret::train-methods
	checkhull
	clman
	Clman-class
	cor.test
	cubePlot
	cut_specfeat
	deletecp
	derivative.speclib
	dim.speclib
	dist.speclib
	distMat3D
	DistMat3D-class
	Extract Speclib by index
	feature_properties
	get.gaussian.response
	get.sensor.characteristics
	getcp
	getNRI
	get_reflectance
	glm.nri
	hsdardocs
	hsdar_parallel
	HyperSpecRaster
	HyperSpecRaster-class
	idSpeclib
	import_USGS
	makehull
	mask
	meanfilter
	merge
	noiseFiltering
	nri
	Nri-class
	Nri-methods
	nri_best_performance
	plot.Nri
	plot.Specfeat
	plot.Speclib
	postprocessASD
	predictHyperspec
	PROSAIL
	PROSPECT
	Raster-methods
	rastermeta
	read.ASD
	read_header
	rededge
	SI
	smgm
	soilindex
	specfeat
	Specfeat-class
	speclib
	Speclib-class
	speclib_raster-methods
	spectra
	spectralInterpolation
	spectralResampling
	spectral_data
	sr
	subset.nri
	subset.speclib
	t.test
	transformSpeclib
	unmix
	updatecl
	usagehistory
	vegindex
	wavelength
	Index

