
Package ‘hpa’
July 1, 2020

Type Package

Title Distributions Hermite Polynomial Approximation

Version 1.1.1

Date 2020-07-01

Author Potanin Bogdan

Maintainer Potanin Bogdan <bogdanpotanin@gmail.com>

Description Multivariate conditional and marginal densities, moments, cumulative distribution func-
tions as well as binary choice and sample selection models based on hermite polynomial approx-
imation which was proposed and described by A. Gallant and D. W. Ny-
chka (1987) <doi:10.2307/1913241>.

License GPL-3

Imports Rcpp (>= 1.0.4), RcppParallel (>= 5.0.0)

LinkingTo Rcpp, RcppArmadillo, RcppParallel

RoxygenNote 7.1.0

Encoding UTF-8

Suggests ggplot2, mvtnorm, titanic, sampleSelection, GA (>= 3.2)

NeedsCompilation yes

SystemRequirements GNU make

Repository CRAN

Date/Publication 2020-07-01 12:00:15 UTC

R topics documented:
AIC.hpaBinary . 3
AIC.hpaML . 3
AIC.hpaSelection . 4
AIC_hpaBinary . 4
AIC_hpaML . 5
AIC_hpaSelection . 5
dhpa . 6

1

2 R topics documented:

dhpaDiff . 8
dnorm_parallel . 10
dtrhpa . 11
ehpa . 13
etrhpa . 16
hpaBinary . 18
hpaML . 23
hpaSelection . 29
ihpa . 35
ihpaDiff . 37
itrhpa . 40
logLik.hpaBinary . 43
logLik.hpaML . 44
logLik.hpaSelection . 44
logLik_hpaBinary . 45
logLik_hpaML . 45
logLik_hpaSelection . 45
mecdf . 46
normalMoment . 46
phpa . 47
plot.hpaBinary . 50
plot.hpaSelection . 50
plot_hpaBinary . 51
plot_hpaSelection . 51
pnorm_parallel . 52
polynomialIndex . 52
predict.hpaBinary . 53
predict.hpaML . 54
predict.hpaSelection . 54
predict_hpaBinary . 55
predict_hpaML . 56
predict_hpaSelection . 57
print.summary.hpaBinary . 58
print.summary.hpaML . 58
print.summary.hpaSelection . 59
printPolynomial . 59
print_summary_hpaBinary . 60
print_summary_hpaML . 60
print_summary_hpaSelection . 61
summary.hpaBinary . 61
summary.hpaML . 62
summary.hpaSelection . 62
summary_hpaBinary . 63
summary_hpaML . 63
summary_hpaSelection . 64
truncatedNormalMoment . 64

Index 67

AIC.hpaBinary 3

AIC.hpaBinary Calculates AIC for "hpaBinary" object

Description

This function calculates AIC for "hpaBinary" object

Usage

S3 method for class 'hpaBinary'
AIC(object, ..., k = 2)

Arguments

object Object of class "hpaBinary"

... further arguments (currently ignored)

k numeric, the penalty per parameter to be used; the default k = 2 is the classical
AIC.

AIC.hpaML Calculates AIC for "hpaML" object

Description

This function calculates AIC for "hpaML" object

Usage

S3 method for class 'hpaML'
AIC(object, ..., k = 2)

Arguments

object Object of class "hpaML"

... further arguments (currently ignored)

k numeric, the penalty per parameter to be used; the default k = 2 is the classical
AIC.

4 AIC_hpaBinary

AIC.hpaSelection Calculates AIC for "hpaSelection" object

Description

This function calculates AIC for "hpaSelection" object

Usage

S3 method for class 'hpaSelection'
AIC(object, ..., k = 2)

Arguments

object Object of class "hpaSelection"

... further arguments (currently ignored)

k numeric, the penalty per parameter to be used; the default k = 2 is the classical
AIC.

AIC_hpaBinary Calculates AIC for "hpaBinary" object

Description

This function calculates AIC for "hpaBinary" object

Usage

AIC_hpaBinary(object, k = 2)

Arguments

object Object of class "hpaBinary"

k numeric, the penalty per parameter to be used; the default k = 2 is the classical
AIC.

AIC_hpaML 5

AIC_hpaML Calculates AIC for "hpaML" object

Description

This function calculates AIC for "hpaML" object

Usage

AIC_hpaML(object, k = 2)

Arguments

object Object of class "hpaML"

k numeric, the penalty per parameter to be used; the default k = 2 is the classical
AIC.

AIC_hpaSelection Calculates AIC for "hpaSelection" object

Description

This function calculates AIC for "hpaSelection" object

Usage

AIC_hpaSelection(object, k = 2)

Arguments

object Object of class "hpaSelection"

k numeric, the penalty per parameter to be used; the default k = 2 is the classical
AIC.

6 dhpa

dhpa Density function hermite polynomial approximation

Description

This function calculates density function hermite polynomial approximation.

Usage

dhpa(
x = matrix(1, 1),
pol_coefficients = numeric(0),
pol_degrees = numeric(0),
given_ind = logical(0),
omit_ind = logical(0),
mean = numeric(0),
sd = numeric(0),
is_parallel = FALSE

)

Arguments

x numeric matrix of density function arguments. Note that x rows are observations
while variables are columns.

pol_coefficients

numeric vector of polynomial coefficients.
pol_degrees non-negative integer vector of polynomial degrees.
given_ind logical vector indicating wheather corresponding component is conditioned. By

default it is a logical vector of FALSE values.
omit_ind logical vector indicating wheather corresponding component is omitted. By de-

fault it is a logical vector of FALSE values.
mean numeric vector of expected values.
sd positive numeric vector of standard deviations.
is_parallel if TRUE then multiple cores will be used for some calculations. It usually pro-

vides speed advantage for large enough samples (about more than 1000 obser-
vations).

Details

Densities hermite polynomial approximation approach has been proposed by A. Gallant and D.
W. Nychka in 1987. The main idea is to approximate unknown distribution density with hermite
polynomial of degree pol_degree. In this framework hermite polynomial represents adjusted (to
insure integration to 1) product of squared polynomial and normal distribution densities. Parameters
mean and sd determine means and standard deviations of normal distribution density functions
which are parts of this polynomial. For more information please refer to the literature listed below.

Parameters mean, sd, given_ind, omit_ind should have the same length as pol_degrees parame-
ter.

dhpa 7

Value

This function returns density function hermite polynomial approximation at point x.

References

A. Gallant and D. W. Nychka (1987) <doi:10.2307/1913241>

Examples

Let's approximate some three random variables joint density function
at point (0,1, 0.2, 0.3) with hermite polynomial of (1,2,3) degrees which polynomial
coefficients equals 1 except coefficient related to x1*(x^3) polynomial element
which equals 2. Also suppose that normal density related mean vector
equals (1.1, 1.2, 1.3) while standard deviations vector is (2.1, 2.2, 2.3).

Prepare initial values
x <- matrix(c(0.1, 0.2, 0.3), nrow=1)
mean <- c(1.1, 1.2, 1.3)
sd <- c(2.1, 2.2, 2.3)
pol_degrees <- c(1, 2, 3)

Create polynomial powers and indexes correspondence matrix
pol_ind <- polynomialIndex(pol_degrees)
Set all polynomial coefficients to 1
pol_coefficients <- rep(1, ncol(pol_ind))
pol_degrees_n <- length(pol_degrees)

Assign coefficient 2 to the polynomial element(x1 ^ 1)*(x2 ^ 0)*(x3 ^ 2)
pol_coefficients[which(colSums(pol_ind == c(1, 0, 2)) == pol_degrees_n)] <- 2

Visualize correspondence between polynomial elements and their coefficients
as.data.frame(rbind(pol_ind, pol_coefficients),
row.names = c("x1 power", "x2 power", "x3 power", "coefficients"),
optional = TRUE)
printPolynomial(pol_degrees, pol_coefficients)

Calculate density approximation at point x
dhpa(x = x,
pol_coefficients = pol_coefficients, pol_degrees = pol_degrees,
mean = mean, sd = sd)

Condition second component to be 0.5
Substitute x second component with conditional value 0.5
x <- matrix(c(0.1, 0.5, 0.3), nrow = 1)
#Set TRUE to the second component indicating that it is conditioned
given_ind <- c(FALSE, TRUE, FALSE)

Calculate conditional (on x2=0.5) density approximation at point x
dhpa(x = x,
pol_coefficients = pol_coefficients, pol_degrees = pol_degrees,
mean = mean, sd = sd,
given_ind = given_ind)

8 dhpaDiff

Consider third component marginal distribution
conditioned on the second component 0.5 value
Set TRUE to the first component indicating that it is omitted
omit_ind <- c(TRUE, FALSE, FALSE)

Calculate conditional (on x2=0.5) marginal (for x3) density approximation
at point x
dhpa(x = x,
pol_coefficients = pol_coefficients, pol_degrees = pol_degrees,
mean = mean, sd = sd,
given_ind = given_ind, omit_ind = omit_ind)

dhpaDiff Calculate gradient of density function hermite polynomial approxima-
tion

Description

This function calculates gradient of density function hermite polynomial approximation.

Usage

dhpaDiff(
x = matrix(1, 1),
pol_coefficients = numeric(0),
pol_degrees = numeric(0),
given_ind = logical(0),
omit_ind = logical(0),
mean = numeric(0),
sd = numeric(0),
type = "pol_coefficients",
is_parallel = FALSE

)

Arguments

x numeric matrix of density function arguments. Note that x rows are observations
while variables are columns.

pol_coefficients

numeric vector of polynomial coefficients.

pol_degrees non-negative integer vector of polynomial degrees.

given_ind logical vector indicating wheather corresponding component is conditioned. By
default it is a logical vector of FALSE values.

omit_ind logical vector indicating wheather corresponding component is omitted. By de-
fault it is a logical vector of FALSE values.

mean numeric vector of expected values.

dhpaDiff 9

sd positive numeric vector of standard deviations.

type determines the partial derivatives to be included into gradient. Currently type="pol_coefficients"
is the only available option (default) meaning that the gradient will contain par-
tial derivatives respect to polynomial coefficients listed in the same order as
pol_coefficients.

is_parallel if TRUE then multiple cores will be used for some calculations. It usually pro-
vides speed advantage for large enough samples (about more than 1000 obser-
vations).

Details

Densities hermite polynomial approximation approach has been proposed by A. Gallant and D.
W. Nychka in 1987. The main idea is to approximate unknown distribution density with hermite
polynomial of degree pol_degree. In this framework hermite polynomial represents adjusted (to
insure integration to 1) product of squared polynomial and normal distribution densities. Parameters
mean and sd determine means and standard deviations of normal distribution density functions
which are parts of this polynomial. For more information please refer to the literature listed below.

Parameters mean, sd, given_ind, omit_ind should have the same length as pol_degrees parame-
ter.

If x has more then one row then the output will be jacobian matrix where rows are gradients.

Value

This function returns gradient of density function hermite polynomial approximation at point x.
Gradient elements are determined by the type argument.

References

A. Gallant and D. W. Nychka (1987) <doi:10.2307/1913241>

Examples

Let's approximate some three random variables joint density function
at point (0,1, 0.2, 0.3) with hermite polynomial of (1,2,3) degrees which polynomial
coefficients equals 1 except coefficient related to x1*(x^3) polynomial element
which equals 2. Also suppose that normal density related mean vector
equals (1.1, 1.2, 1.3) while standard deviations vector is (2.1, 2.2, 2.3).
In this example let's calculate density approximating function gradient respect to
polynomial coefficients.

Prepare initial values
x <- matrix(c(0.1, 0.2, 0.3), nrow=1)
mean <- c(1.1, 1.2, 1.3)
sd <- c(2.1, 2.2, 2.3)
pol_degrees <- c(1, 2, 3)

Create polynomial powers and indexes correspondence matrix
pol_ind <- polynomialIndex(pol_degrees)
Set all polynomial coefficients to 1
pol_coefficients <- rep(1, ncol(pol_ind))

10 dnorm_parallel

pol_degrees_n <- length(pol_degrees)

Assign coefficient 2 to the polynomial element(x1 ^ 1)*(x2 ^ 0)*(x3 ^ 2)
pol_coefficients[which(colSums(pol_ind == c(1, 0, 2)) == pol_degrees_n)] <- 2

Visualize correspondence between polynomial elements and their coefficients
as.data.frame(rbind(pol_ind, pol_coefficients),
row.names = c("x1 power", "x2 power", "x3 power", "coefficients"),
optional = TRUE)

printPolynomial(pol_degrees, pol_coefficients)

Calculate density approximation gradient
respect to polynomial coefficients at point x
dhpaDiff(x = x,
pol_coefficients = pol_coefficients, pol_degrees = pol_degrees,
mean = mean, sd = sd)

Condition second component to be 0.5
Substitute x second component with conditional value 0.5
x <- matrix(c(0.1, 0.5, 0.3), nrow = 1)
Set TRUE to the second component indicating that it is conditioned
given_ind <- c(FALSE, TRUE, FALSE)

Calculate conditional (on x2=0.5) density approximation
gradient respect to polynomial coefficients at point x
dhpaDiff(x = x,
pol_coefficients = pol_coefficients, pol_degrees = pol_degrees,
mean = mean, sd = sd,
given_ind = given_ind)

Consider third component marginal distribution
conditioned on the second component 0.5 value
Set TRUE to the first component indicating that it is omitted
omit_ind <- c(TRUE, FALSE, FALSE)

Calculate conditional (on x2=0.5) marginal (for x3) density approximation
gradient respect to polynomial coefficients at point x
dhpaDiff(x = x,
pol_coefficients = pol_coefficients, pol_degrees = pol_degrees,
mean = mean, sd = sd,
given_ind = given_ind, omit_ind = omit_ind)

dnorm_parallel Calculate normal pdf in parallel

Description

Calculate in parallel for each value from vector x density function of normal distribution with mean
equal to mean and standard deviation equal to sd.

dtrhpa 11

Usage

dnorm_parallel(x, mean = 0, sd = 1, is_parallel = FALSE)

Arguments

x vector of quantiles: should be numeric vector, not just double value.

mean double value.

sd double positive value.

is_parallel if TRUE then multiple cores will be used for some calculations. It usually pro-
vides speed advantage for large enough samples (about more than 1000 obser-
vations).

dtrhpa Truncated density function hermite polynomial approximation

Description

This function calculates truncated density function hermite polynomial approximation.

Usage

dtrhpa(
x = matrix(1, 1),
tr_left = matrix(),
tr_right = matrix(),
pol_coefficients = numeric(0),
pol_degrees = numeric(0),
given_ind = logical(0),
omit_ind = logical(0),
mean = numeric(0),
sd = numeric(0),
is_parallel = FALSE

)

Arguments

x numeric matrix of density function arguments. Note that x rows are observations
while variables are columns.

tr_left numeric matrix of left (lower) truncation limits. Note that tr_right rows are
observations while variables are columns. If tr_left or tr_right is single row
matrix then the same truncation limits would be applied to all observations that
are determined by the first rows of these matrices.

tr_right numeric matrix of right (upper) truncation limits. Note that tr_right rows are
observations while variables are columns. If tr_left or tr_right is single row
matrix then the same truncation limits would be applied to all observations that
are determined by the first rows of these matrices.

12 dtrhpa

pol_coefficients

numeric vector of polynomial coefficients.

pol_degrees non-negative integer vector of polynomial degrees.

given_ind logical vector indicating wheather corresponding component is conditioned. By
default it is a logical vector of FALSE values.

omit_ind logical vector indicating wheather corresponding component is omitted. By de-
fault it is a logical vector of FALSE values.

mean numeric vector of expected values.

sd positive numeric vector of standard deviations.

is_parallel if TRUE then multiple cores will be used for some calculations. It usually pro-
vides speed advantage for large enough samples (about more than 1000 obser-
vations).

Details

Densities hermite polynomial approximation approach has been proposed by A. Gallant and D.
W. Nychka in 1987. The main idea is to approximate unknown distribution density with hermite
polynomial of degree pol_degree. In this framework hermite polynomial represents adjusted (to
insure integration to 1) product of squared polynomial and normal distribution densities. Parameters
mean and sd determine means and standard deviations of normal distribution density functions
which are parts of this polynomial. For more information please refer to the literature listed below.

Parameters mean, sd, given_ind, omit_ind should have the same length as pol_degrees parame-
ter.

Value

This function returns density function hermite polynomial approximation at point x for truncated
distribution.

References

A. Gallant and D. W. Nychka (1987) <doi:10.2307/1913241>

Examples

##Let's approximate some three truncated random variables joint density function
##at point (0,1, 0.2, 0.3) with hermite polynomial of (1,2,3) degrees which polynomial
##coefficients equals 1 except coefficient related to x1*(x^3) polynomial
element which equals 2. Also suppose that normal density related
mean vector equals (1.1, 1.2, 1.3) while standard deviations vector
is (2.1, 2.2, 2.3). Suppose that lower and upper truncation points
are (-1.1,-1.2,-1.3) and (1.1,1.2,1.3) correspondingly.

#Prepare initial values
x <- matrix(c(0.1, 0.2, 0.3), nrow=1)
tr_left = matrix(c(-1.1,-1.2,-1.3), nrow = 1)
tr_right = matrix(c(1.1,1.2,1.3), nrow = 1)
mean <- c(1.1, 1.2, 1.3)
sd <- c(2.1, 2.2, 2.3)

ehpa 13

pol_degrees <- c(1, 2, 3)

#Create polynomial powers and indexes correspondence matrix
pol_ind <- polynomialIndex(pol_degrees)

#Set all polynomial coefficients to 1
pol_coefficients <- rep(1, ncol(pol_ind))
pol_degrees_n <- length(pol_degrees)

#Assign coefficient 2 to the polynomial element(x1 ^ 1)*(x2 ^ 0)*(x3 ^ 2)
pol_coefficients[which(colSums(pol_ind == c(1, 0, 2)) == pol_degrees_n)] <- 2

#Visualize correspondence between polynomial elements and their coefficients
as.data.frame(rbind(pol_ind, pol_coefficients),
row.names = c("x1 power", "x2 power", "x3 power", "coefficients"),
optional = TRUE)
printPolynomial(pol_degrees, pol_coefficients)

#Calculate density approximation at point x
dtrhpa(x = x,
pol_coefficients = pol_coefficients, pol_degrees = pol_degrees,
mean = mean, sd = sd,
tr_left = tr_left, tr_right = tr_right)

#Condition second component to be 0.5
#Substitute x second component with conditional value 0.5
x <- matrix(c(0.1, 0.5, 0.3), nrow = 1)
#Set TRUE to the second component indicating that it is conditioned
given_ind <- c(FALSE, TRUE, FALSE)
#Calculate conditional (on x2=0.5) density approximation at point x
dtrhpa(x = x,
pol_coefficients = pol_coefficients, pol_degrees = pol_degrees,
mean = mean, sd = sd,
given_ind = given_ind,
tr_left = tr_left, tr_right = tr_right)

#Consider third component marginal distribution
#conditioned on the second component 0.5 value
#Set TRUE to the first component indicating that it is omitted
omit_ind <- c(TRUE, FALSE, FALSE)

#Calculate conditional (on x2=0.5) marginal (for x3) density approximation at point x
dtrhpa(x = x,
pol_coefficients = pol_coefficients, pol_degrees = pol_degrees,
mean = mean, sd = sd,
given_ind = given_ind, omit_ind = omit_ind,
tr_left = tr_left, tr_right = tr_right)

ehpa Expected powered product hermite polynomial approximation

14 ehpa

Description

This function calculates expected powered product hermite polynomial approximation.

Usage

ehpa(
x = matrix(1, 1),
pol_coefficients = numeric(0),
pol_degrees = numeric(0),
given_ind = logical(0),
omit_ind = logical(0),
mean = numeric(0),
sd = numeric(0),
expectation_powers = numeric(0),
is_parallel = FALSE

)

Arguments

x non-negative numeric matrix of quantiles. Note that x rows are observations
while variables are columns.

pol_coefficients

numeric vector of polynomial coefficients.

pol_degrees non-negative integer vector of polynomial degrees.

given_ind logical vector indicating wheather corresponding component is conditioned. By
default it is a logical vector of FALSE values.

omit_ind logical vector indicating wheather corresponding component is omitted. By de-
fault it is a logical vector of FALSE values.

mean numeric vector of expected values.

sd positive numeric vector of standard deviations.
expectation_powers

integer vector of random vector components powers.

is_parallel if TRUE then multiple cores will be used for some calculations. It usually pro-
vides speed advantage for large enough samples (about more than 1000 obser-
vations).

Details

Expected powered product of random variables is expectation of their product given powers expectation_powers.
Therefore in order to approximate expected value of i-th random vector component just set all
expectation_powers to zero except it’s i-th component which should be assigned 1.

Densities hermite polynomial approximation approach has been proposed by A. Gallant and D.
W. Nychka in 1987. The main idea is to approximate unknown distribution density with hermite
polynomial of degree pol_degree. In this framework hermite polynomial represents adjusted (to
insure integration to 1) product of squared polynomial and normal distribution densities. Parameters

ehpa 15

mean and sd determine means and standard deviations of normal distribution density functions
which are parts of this polynomial. For more information please refer to the literature listed below.

Parameters mean, sd, given_ind, omit_ind should have the same length as pol_degrees parame-
ter.

Value

This function returns numeric vector of expected powered product hermite polynomial approxima-
tions.

References

A. Gallant and D. W. Nychka (1987) <doi:10.2307/1913241>

Examples

##Let's approximate some three random variables powered product expectation for
##powers (3,2,1) with hermite polynomial of (1,2,3) degrees which polynomial coefficients
##equals 1 except coefficient related to x1*(x^3) polynomial element which equals 2.
Also suppose that normal density related mean vector equals (1.1, 1.2, 1.3) while
standard deviations vector is (2.1, 2.2, 2.3).

#Prepare initial values
expectation_powers = c(3,2,1)
mean <- c(1.1, 1.2, 1.3)
sd <- c(2.1, 2.2, 2.3)
pol_degrees <- c(1, 2, 3)

#Create polynomial powers and indexes correspondence matrix
pol_ind <- polynomialIndex(pol_degrees)

#Set all polynomial coefficients to 1
pol_coefficients <- rep(1, ncol(pol_ind))
pol_degrees_n <- length(pol_degrees)

#Assign coefficient 2 to the polynomial element (x1 ^ 1)*(x2 ^ 0)*(x3 ^ 2)
pol_coefficients[which(colSums(pol_ind == c(1, 0, 2)) == pol_degrees_n)] <- 2

#Visualize correspondence between polynomial elements and their coefficients
as.data.frame(rbind(pol_ind, pol_coefficients),
row.names = c("x1 power", "x2 power", "x3 power", "coefficients"),
optional = TRUE)
printPolynomial(pol_degrees, pol_coefficients)

#Calculate expected powered product approximation
ehpa(pol_coefficients = pol_coefficients, pol_degrees = pol_degrees,
mean = mean, sd = sd, expectation_powers = expectation_powers)

#Condition second component to be 0.5
#Substitute x second component with conditional value 0.5
x <- matrix(c(NA, 0.5, NA), nrow = 1)
#Set TRUE to the second component indicating that it is conditioned

16 etrhpa

given_ind <- c(FALSE, TRUE, FALSE)

#Calculate conditional(on x2 = 0.5) expected powered product approximation
ehpa(x = x,
pol_coefficients = pol_coefficients, pol_degrees = pol_degrees,
mean = mean, sd = sd, expectation_powers = expectation_powers,
given_ind = given_ind)

#Consider third component marginal distribution
#conditioned on the second component 0.5 value
#Set TRUE to the first component indicating that it is omitted
omit_ind <- c(TRUE, FALSE, FALSE)

#Calculate conditional (on x2=0.5) marginal (for x3) expected powered
#product approximation at points x_lower and x_upper
ehpa(x = x,
pol_coefficients = pol_coefficients, pol_degrees = pol_degrees,
mean = mean, sd = sd, expectation_powers = expectation_powers,
given_ind = given_ind, omit_ind = omit_ind)

etrhpa Expected powered product hermite polynomial approximation for
truncated distribution

Description

This function calculates expected powered product hermite polynomial approximation for truncated
distribution.

Usage

etrhpa(
tr_left = matrix(1, 1),
tr_right = matrix(1, 1),
pol_coefficients = numeric(0),
pol_degrees = numeric(0),
mean = numeric(0),
sd = numeric(0),
expectation_powers = numeric(0),
is_parallel = FALSE

)

Arguments

tr_left numeric matrix of left (lower) truncation limits. Note that tr_right rows are
observations while variables are columns. If tr_left or tr_right is single row
matrix then the same truncation limits would be applied to all observations that
are determined by the first rows of these matrices.

etrhpa 17

tr_right numeric matrix of right (upper) truncation limits. Note that tr_right rows are
observations while variables are columns. If tr_left or tr_right is single row
matrix then the same truncation limits would be applied to all observations that
are determined by the first rows of these matrices.

pol_coefficients

numeric vector of polynomial coefficients.

pol_degrees non-negative integer vector of polynomial degrees.

mean numeric vector of expected values.

sd positive numeric vector of standard deviations.
expectation_powers

integer vector of random vector components powers.

is_parallel if TRUE then multiple cores will be used for some calculations. It usually pro-
vides speed advantage for large enough samples (about more than 1000 obser-
vations).

Details

Expected powered product of random variables is expectation of their product given powers expectation_powers.
Therefore in order to approximate expected value of i-th random vector component just set all
expectation_powers to zero except it’s i-th component which should be assigned 1.

Densities hermite polynomial approximation approach has been proposed by A. Gallant and D.
W. Nychka in 1987. The main idea is to approximate unknown distribution density with hermite
polynomial of degree pol_degree. In this framework hermite polynomial represents adjusted (to
insure integration to 1) product of squared polynomial and normal distribution densities. Parameters
mean and sd determine means and standard deviations of normal distribution density functions
which are parts of this polynomial. For more information please refer to the literature listed below.

Parameters mean, sd, given_ind, omit_ind should have the same length as pol_degrees parame-
ter.

Value

This function returns numeric vector of expected powered product hermite polynomial approxima-
tions for truncated distribution.

References

A. Gallant and D. W. Nychka (1987) <doi:10.2307/1913241>

Examples

##Let's approximate some three truncated random variables powered product expectation
##for powers (3,2,1) with hermite polynomial of (1,2,3) degrees which polynomial
##coefficients equals 1 except coefficient related to x1*(x^3) polynomial element which
##equals 2. Also suppose that normal density related mean vector equals (1.1, 1.2, 1.3)
##while standard deviations vector is (2.1, 2.2, 2.3). Suppose that lower and upper
##truncation points are (-1.1,-1.2,-1.3) and (1.1,1.2,1.3) correspondingly.

#Prepare initial values

18 hpaBinary

expectation_powers = c(3,2,1)
tr_left = matrix(c(-1.1,-1.2,-1.3), nrow = 1)
tr_right = matrix(c(1.1,1.2,1.3), nrow = 1)
mean <- c(1.1, 1.2, 1.3)
sd <- c(2.1, 2.2, 2.3)
pol_degrees <- c(1, 2, 3)

#Create polynomial powers and indexes correspondence matrix
pol_ind <- polynomialIndex(pol_degrees)
#Set all polynomial coefficients to 1
pol_coefficients <- rep(1, ncol(pol_ind))
pol_degrees_n <- length(pol_degrees)

#Assign coefficient 2 to the polynomial element(x1 ^ 1)*(x2 ^ 0)*(x3 ^ 2)
pol_coefficients[which(colSums(pol_ind == c(1, 0, 2)) == pol_degrees_n)] <- 2

#Visualize correspondence between polynomial elements and their coefficients
as.data.frame(rbind(pol_ind, pol_coefficients),
row.names = c("x1 power", "x2 power", "x3 power", "coefficients"),
optional = TRUE)
printPolynomial(pol_degrees, pol_coefficients)

#Calculate expected powered product approximation for truncated distribution
etrhpa(pol_coefficients = pol_coefficients, pol_degrees = pol_degrees,
mean = mean, sd = sd, expectation_powers = expectation_powers,
tr_left = tr_left, tr_right = tr_right)

hpaBinary Perform semi-nonparametric binary choice model estimation

Description

This function performs semi-nonparametric single index binary choice model estimation via hermite
polynomial densities approximation.

Usage

hpaBinary(
formula,
data,
K = 1L,
z_mean_fixed = NA_real_,
z_sd_fixed = NA_real_,
z_constant_fixed = 0,
is_z_coef_first_fixed = TRUE,
is_x0_probit = TRUE,
is_sequence = FALSE,
x0 = numeric(0),
cov_type = "sandwich",

hpaBinary 19

boot_iter = 100L,
is_parallel = FALSE,
opt_type = "optim",
opt_control = NULL

)

Arguments

formula an object of class "formula" (or one that can be coerced to that class): a symbolic
description of the model to be fitted.

data data frame containing the variables in the model.
K non-negative integer representing polynomial degree.
z_mean_fixed numeric value for binary choice equation random error density mean parameter.

Set it to NA (default) if this parameter should be estimated rather then fixed.
z_sd_fixed numeric value for binary choice equation random error density sd parameter.

Set it to NA (default) if this parameter should be estimated rather then fixed.
z_constant_fixed

numeric value for binary choice equation constant parameter. Set it to NA (de-
fault) if this parameter should be estimated rather then fixed.

is_z_coef_first_fixed

bool value indicating weather binary equation first independend variable coeffi-
cient should be fixed (TRUE) or estimated (FALSE).

is_x0_probit logical; if TRUE (default) then initial points for optimization routine will be ob-
tained by probit model estimated via glm function.

is_sequence if TRUE then function calculates models with polynomial degrees from 0 to K
each time using initial values obtained from the previous step. In this case func-
tion will return the list of models where i-th list element correspond to model
calculated under K=(i-1).

x0 numeric vector of optimization routine initial values. Note that x0=c(pol_coefficients[-1],mean,sd,coefficients).
cov_type string value determinign the type of covariance matrix to be returned and used

for summary. If cov_type = "hessian" then negative inverse of hessian ma-
trix will be applied. If cov_type = "gop" then inverse of jacobian outer prod-
ucts will be applied. If cov_type = "sandwich" (default) then sandwich covari-
ance matrix estimator will be applied. If cov_type = "bootstrap" then boot-
strap with boot_iter iterations will be applied. If cov_type = "hessianFD" or
cov_type = "sandwichFD" then accurate but computationally demanding finite
difference hessian approximation will be calculated for the inverse hessian and
sandwich estimators correspondingly.

boot_iter the number of bootstrap iterations for cov_type = "bootstrap" covariance ma-
trix estimator type.

is_parallel if TRUE then multiple cores will be used for some calculations. It usually pro-
vides speed advantage for large enough samples (about more than 1000 obser-
vations).

opt_type string value determining the type of the optimization routine to be applied. The
default is "optim" meaning that BFGS method from the optim function will be
applied. If opt_type = "GA" then ga function will be additionally applied.

20 hpaBinary

opt_control a list containing arguments to be passed to the optimization routine depending
on opt_type argument value. Please see details to get additional information.

Details

Semi-nonparametric (SNP) approach has been implemented via densities hermite polynomial ap-
proximation

Densities hermite polynomial approximation approach has been proposed by A. Gallant and D.
W. Nychka in 1987. The main idea is to approximate unknown distribution density with hermite
polynomial of degree pol_degree. In this framework hermite polynomial represents adjusted (to
insure integration to 1) product of squared polynomial and normal distribution densities. Parameters
mean and sd determine means and standard deviations of normal distribution density functions
which are parts of this polynomial. For more information please refer to the literature listed below.

Parameters mean, sd, given_ind, omit_ind should have the same length as pol_degrees parame-
ter.

The first polynomial coefficient (zero powers) set to identity constant for identification reasons.

Note that if is_z_coef_first_fixed value is TRUE then the coefficient for the first independent
variable in formula will be fixed to 1.

Parameter sd will be scale adjusted in order to provide better initial point for optimization routine.
Please, extract sd adjusted value from this function’s output list.

All variables mentioned in formula should be numeric vectors.

The function calculates standard errors via sandwich estimator and significance levels are reported
taking into account quasi maximum likelihood estimator (QMLE) asymptotic normality. If ones
wants to switch from QMLE to semi-nonparametric estimator (SNPE) during hypothesis testing
then covariance matrix should be reestimated using bootstrap.

This function maximizes (quasi) log-likelihood function via optim function setting it’s method
argument to "BFGS". If opt_type = "GA" then genetic algorithm from ga function will be addi-
tionally (after optim putting it’s solution (par) to suggestions matrix) applied in order to perform
global optimization. Note that global optimization takes much more time (usually minutes but
sometimes hours or even days). The number of iterations and population size of the genetic algo-
rithm will grow linearly along with the number of estimated parameters. If it is seems that global
maximum has not been found than it is possible to continue the search restarting the function setting
it’s input argument x0 to x1 output value. Note that if cov_type = "bootstrap" then ga function
will not be used for bootstrap iterations since it may be extremely time consuming.

If opt_type = "GA" then opt_control should be the list containing the values to be passed to
ga function. It is possible to pass arguments lower, upper, popSize, pcrossover, pmutation,
elitism, maxiter, suggestions, optim, optimArgs and seed. Note that it is possible to set
population, selection, crossover and mutation arguments changing ga default parameters via
gaControl function. These arguments information reported in ga. In order to provide manual val-
ues for lower and upper bounds please follow parameters ordering mentioned above for the x0
argument. If these bonds are not provided manually then they (except those related to the polyno-
mial coefficients) will depend on the estimates obtained by local optimization via optim function
(this estimates will be in the middle between lower and upper). Specifically for each sd param-
eter lower (upper) bound is 5 times lower (higher) then this parameter optim estimate. For each
mean and regression coefficient parameter it’s lower and upper bounds deviate from corresponding

hpaBinary 21

optim estimate by two absolute value of this estimate. Finally, lower and upper bounds for each
polynomial coefficient are -10 and 10 correspondingly (do not depend on their optim estimates).

The following arguments are differ from their defaults in ga:

• pmutation = 0.2,
• optim = TRUE,
• optimArgs = list("method" = "Nelder-Mead","poptim" = 0.2,"pressel" = 0.5),
• seed = 8,
• elitism = 2 + round(popSize * 0.1).

Let’s denote by n_reg the number of regressors included to the formula. The arguments popSize
and maxiter of ga function have been set proportional to the number of estimated polynomial
coefficients and independent variables:

• popSize = 10 + 5 * (K + 1) + 2 * n_reg

• maxiter = 50 * (1 + K) + 10 * n_reg

Value

This function returns an object of class "hpaBinary".

An object of class "hpaBinary" is a list containing the following components:

• optim - optim function output. If opt_type = "GA" then it is the list containing optim and ga
functions outputs.

• x1 - numeric vector of distribution parameters estimates.
• mean - mean (mu) parameter of density function estimate.
• sd - sd (sigma) parameter of density function estimate.
• pol_coefficients - polynomial coefficients estimates.
• pol_degrees - the same as K input parameter.
• coefficients - regression (single index) coefficients estimates.
• cov_matrix - estimated parameters covariance matrix estimate.
• marginal_effects - marginal effects matrix where columns are variables and rows are ob-

servations.
• results - numeric matrix representing estimation results.
• log-likelihood - value of Log-Likelihood function.
• AIC - AIC value.
• errors_exp - random error expectation estimate.
• errors_var - random error variance estimate.
• dataframe - dataframe containing variables mentioned in formula without NA values.
• model_Lists - lists containing information about fixed parameters and parameters indexes in
x1.

• n_obs - number of observations.
• z_latent - latent variable (signle index) estimates.
• z_prob - probabilities of positive outcome (i.e. 1) estimates.

22 hpaBinary

References

A. Gallant and D. W. Nychka (1987) <doi:10.2307/1913241>

See Also

summary.hpaBinary, predict.hpaBinary, plot.hpaBinary, AIC.hpaBinary, logLik.hpaBinary

Examples

Estimate survival probability on Titanic

library("titanic")

#Prepare data set converting
#all variables to numeric vectors
h <- data.frame("male" = as.numeric(titanic_train$Sex == "male"))
h$class_1 <- as.numeric(titanic_train$Pclass == 1)
h$class_2 <- as.numeric(titanic_train$Pclass == 2)
h$class_3 <- as.numeric(titanic_train$Pclass == 3)
h$sibl <- titanic_train$SibSp
h$survived <- titanic_train$Survived
h$age <- titanic_train$Age
h$parch <- titanic_train$Parch
h$fare <- titanic_train$Fare

#Estimate model parameters
model_hpa_1 <- hpaBinary(survived ~class_1 + class_2 +
male + age + sibl + parch + fare,
K = 3, data = h)
#get summary
summary(model_hpa_1)

#Get predicted probabilities
pred_hpa_1 <- predict(model_hpa_1)

#Calculate number of correct predictions
hpa_1_correct_0 <- sum((pred_hpa_1 < 0.5) & (model_hpa_1$dataframe$survived == 0))
hpa_1_correct_1 <- sum((pred_hpa_1 >= 0.5) & (model_hpa_1$dataframe$survived == 1))
hpa_1_correct <- hpa_1_correct_1 + hpa_1_correct_0

#Plot random errors density approximation
plot(model_hpa_1)

##Estimate parameters on data simulated from student distribution

library("mvtnorm")
set.seed(123)

#Simulate independent variables from normal distribution

hpaML 23

n <- 5000
X <- rmvnorm(n=n, mean = c(0,0),
sigma = matrix(c(1,0.5,0.5,1), ncol=2))

#Simulate random errors from student distribution
epsilon <- rt(n, 5) * (3 / sqrt(5))

#Calculate latent and observable variables values
z_star <- 1 + X[, 1] + X[, 2] + epsilon
z <- as.numeric((z_star > 0))

#Store the results into dataframe
h <- as.data.frame(cbind(z,X))
names(h) <- c("z", "x1", "x2")

#Estimate model parameters
model <- hpaBinary(formula = z ~ x1 + x2, data=h, K = 4)
summary(model)

#Get predicted probabibilities of 1 values
predict(model)

#Plot density function approximation
plot(model)

hpaML Semi-nonparametric maximum likelihood estimation

Description

This function performs semi-nonparametric maximum likelihood estimation via hermite polyno-
mial densities approximation.

Usage

hpaML(
x,
pol_degrees = numeric(0),
tr_left = numeric(0),
tr_right = numeric(0),
given_ind = logical(0),
omit_ind = logical(0),
x0 = numeric(0),
cov_type = "sandwich",
boot_iter = 100L,
is_parallel = FALSE,

24 hpaML

opt_type = "optim",
opt_control = NULL

)

Arguments

x numeric matrix which rows are realizations of independend identically distributed
random vectors while columns correspond to variables.

pol_degrees non-negative integer vector of polynomial degrees.

tr_left numeric matrix of left (lower) truncation limits. Note that tr_right rows are
observations while variables are columns. If tr_left or tr_right is single row
matrix then the same truncation limits would be applied to all observations that
are determined by the first rows of these matrices.

tr_right numeric matrix of right (upper) truncation limits. Note that tr_right rows are
observations while variables are columns. If tr_left or tr_right is single row
matrix then the same truncation limits would be applied to all observations that
are determined by the first rows of these matrices.

given_ind logical vector indicating wheather corresponding component is conditioned. By
default it is a logical vector of FALSE values.

omit_ind logical vector indicating wheather corresponding component is omitted. By de-
fault it is a logical vector of FALSE values.

x0 numeric vector of optimization routine initial values. Note that x0=c(pol_coefficients[-1],mean,sd).
For pol_coefficients, mean and sd documentation see dhpa function.

cov_type string value determinign the type of covariance matrix to be returned and used
for summary. If cov_type = "hessian" then negative inverse of hessian ma-
trix will be applied. If cov_type = "gop" then inverse of jacobian outer prod-
ucts will be applied. If cov_type = "sandwich" (default) then sandwich covari-
ance matrix estimator will be applied. If cov_type = "bootstrap" then boot-
strap with boot_iter iterations will be applied. If cov_type = "hessianFD" or
cov_type = "sandwichFD" then accurate but computationally demanding finite
difference hessian approximation will be calculated for the inverse hessian and
sandwich estimators correspondingly.

boot_iter the number of bootstrap iterations for cov_type = "bootstrap" covariance ma-
trix estimator type.

is_parallel if TRUE then multiple cores will be used for some calculations. It usually pro-
vides speed advantage for large enough samples (about more than 1000 obser-
vations).

opt_type string value determining the type of the optimization routine to be applied. The
default is "optim" meaning that BFGS method from the optim function will be
applied. If opt_type = "GA" then ga function will be additionally applied.

opt_control a list containing arguments to be passed to the optimization routine depending
on opt_type argument value. Please see details to get additional information.

hpaML 25

Details

Semi-nonparametric (SNP) approach has been implemented via densities hermite polynomial ap-
proximation

Densities hermite polynomial approximation approach has been proposed by A. Gallant and D.
W. Nychka in 1987. The main idea is to approximate unknown distribution density with hermite
polynomial of degree pol_degree. In this framework hermite polynomial represents adjusted (to
insure integration to 1) product of squared polynomial and normal distribution densities. Parameters
mean and sd determine means and standard deviations of normal distribution density functions
which are parts of this polynomial. For more information please refer to the literature listed below.

Parameters mean, sd, given_ind, omit_ind should have the same length as pol_degrees parame-
ter.

The first polynomial coefficient (zero powers) set to identity constant for identification reasons.

The function calculates standard errors via sandwich estimator and significance levels are reported
taking into account quasi maximum likelihood estimator (QMLE) asymptotic normality. If ones
wants to switch from QMLE to semi-nonparametric estimator (SNPE) during hypothesis testing
then covariance matrix should be reestimated using bootstrap.

This function maximizes (quasi) log-likelihood function via optim function setting it’s method
argument to "BFGS". If opt_type = "GA" then genetic algorithm from ga function will be addi-
tionally (after optim putting it’s solution (par) to suggestions matrix) applied in order to perform
global optimization. Note that global optimization takes much more time (usually minutes but
sometimes hours or even days). The number of iterations and population size of the genetic algo-
rithm will grow linearly along with the number of estimated parameters. If it is seems that global
maximum has not been found than it is possible to continue the search restarting the function setting
it’s input argument x0 to x1 output value. Note that if cov_type = "bootstrap" then ga function
will not be used for bootstrap iterations since it may be extremely time consuming.

If opt_type = "GA" then opt_control should be the list containing the values to be passed to
ga function. It is possible to pass arguments lower, upper, popSize, pcrossover, pmutation,
elitism, maxiter, suggestions, optim, optimArgs and seed. Note that it is possible to set
population, selection, crossover and mutation arguments changing ga default parameters via
gaControl function. These arguments information reported in ga. In order to provide manual val-
ues for lower and upper bounds please follow parameters ordering mentioned above for the x0
argument. If these bonds are not provided manually then they (except those related to the polyno-
mial coefficients) will depend on the estimates obtained by local optimization via optim function
(this estimates will be in the middle between lower and upper). Specifically for each sd param-
eter lower (upper) bound is 5 times lower (higher) then this parameter optim estimate. For each
mean and regression coefficient parameter it’s lower and upper bounds deviate from corresponding
optim estimate by two absolute value of this estimate. Finally, lower and upper bounds for each
polynomial coefficient are -10 and 10 correspondingly (do not depend on their optim estimates).

The following arguments are differ from their defaults in ga:

• pmutation = 0.2,

• optim = TRUE,

• optimArgs = list("method" = "Nelder-Mead","poptim" = 0.2,"pressel" = 0.5),

• seed = 8,

• elitism = 2 + round(popSize * 0.1).

26 hpaML

The arguments popSize and maxiter of ga function have been set proportional to the number of
estimated polynomial coefficients

• popSize = 10 + (prod(pol_degrees + 1) -1) * 2.

• maxiter = 50 * (prod(pol_degrees + 1))

Value

This function returns an object of class "hpaML".

An object of class "hpaML" is a list containing the following components:

• optim - optim function output. If opt_type = "GA" then it is the list containing optim and ga
functions outputs.

• x1 - numeric vector of distribution parameters estimates.

• mean - density function mean vector estimate.

• sd - density function sd vector estimate.

• pol_coefficients - polynomial coefficients estimates.

• tr_left - the same as tr_left input parameter.

• tr_right - the same as tr_right input parameter.

• omit_ind - the same as omit_ind input parameter.

• given_ind - the same as given_ind input parameter.

• cov_matrix - estimated parameters covariance matrix estimate.

• results - numeric matrix representing estimation results.

• log-likelihood - value of Log-Likelihood function.

• AIC - AIC value.

• data - the same as x input parameter but without NA observations.

• n_obs - number of observations.

• bootstrap - list where bootstrap estimation results are stored.

References

A. Gallant and D. W. Nychka (1987) <doi:10.2307/1913241>

See Also

summary.hpaML, predict.hpaML, AIC.hpaML, logLik.hpaML

Examples

Approximate student (t) distribution

Simulate 5000 realizations of student distribution with 5 degrees of freedom
n <- 5000
df <- 5

hpaML 27

x <- matrix(rt(n, df), ncol = 1)
pol_degrees <- c(4)

Apply pseudo maximum likelihood routine
ml_result <- hpa::hpaML(x = x, pol_degrees = pol_degrees)
summary(ml_result)

Get predicted probabilites (density values) approximations
predict(ml_result)

Approximate chi-squared distribution

Simulate 5000 realizations of chi-squared distribution with 5 degrees of freedom
Let's set lower truncation point at sample minimum realization
n <- 5000
df <- 5
x <- matrix(rchisq(n, df), ncol = 1)
pol_degrees <- c(1)
tr_left <- as.vector(min(x))
tr_right <- as.vector(max(x))

Apply pseudo maximum likelihood routine
ml_result <- hpa::hpaML(x = x, pol_degrees = as.vector(pol_degrees),
tr_left = as.vector(tr_left),
tr_right = as.vector(tr_right))
summary(ml_result)

Get predicted probabilites (density values) approximations
predict(ml_result)

Approximate multivariate student (t) distribution
Note that calculations may take up to a minute

Simulate 5000 realizations of three dimensional student distribution with 5 degrees of freedom
library("mvtnorm")
cov_mat <- matrix(c(1, 0.25, -0.25, 0.25, 1, 0.25, -0.25, 0.25, 1), ncol = 3)
x <- rmvt(n = 5000, sigma = cov_mat, df = 5)

Estimate approximating joint distribution parameters
model <- hpaML(x = x, pol_degrees = c(1,1,1))

Get summary
summary(model)

Get predicted values for joint density function
predict(model)

Approximate student (t) distribution and plot densities approximated
under different hermite polynomial degrees against
true density (of student distribution)

Simulate 5000 realizations of t-distribution with 5 degrees of freedom
n <- 5000

28 hpaML

df <- 5
x <- matrix(rt(n, df), ncol=1)

Apply pseudo maximum likelihood routine
Create matrix of lists where i-th element contains hpaML results for K=i
ml_result <- matrix(list(), 4, 1)
for(i in 1:4)
{
ml_result[[i]] <- hpa::hpaML(x = x, pol_degrees = i)

}

Generate test values
test_values <- seq(qt(0.001, df), qt(0.999, df), 0.001)
n0 <- length(test_values)

t-distribution density function at test values points
true_pred <- dt(test_values, df)

Create matrix of lists where i-th element contains densities predictions for K=i
PGN_pred <- matrix(list(), 4, 1)
for(i in 1:4)
{

PGN_pred[[i]] <- predict(object = ml_result[[i]],
newdata = matrix(test_values, ncol=1))

}
Plot the result
library("ggplot2")

prepare the data
h <- data.frame("values" = rep(test_values,5),

"predictions" = c(PGN_pred[[1]],PGN_pred[[2]],
PGN_pred[[3]],PGN_pred[[4]],
true_pred),

"Density" = c(
rep("K=1",n0), rep("K=2",n0),
rep("K=3",n0), rep("K=4",n0),
rep("t-distribution",n0))
)

build the plot
ggplot(h, aes(values, predictions)) + geom_point(aes(color = Density)) +

theme_minimal() + theme(legend.position = "top", text = element_text(size=26),
legend.title=element_text(size=20), legend.text=element_text(size=28)) +

guides(colour = guide_legend(override.aes = list(size=10))
)

Get informative estimates summary for K=4 (minimal AIC)
summary(ml_result[[4]])

hpaSelection 29

hpaSelection Perform semi-nonparametric selection model estimation

Description

This function performs semi-nonparametric selection model estimation via hermite polynomial den-
sities approximation.

Usage

hpaSelection(
selection,
outcome,
data,
z_K = 1L,
y_K = 1L,
pol_elements = 3L,
is_Newey = FALSE,
x0 = numeric(0),
is_Newey_loocv = FALSE,
z_sd_fixed = -1,
cov_type = "sandwich",
boot_iter = 100L,
is_parallel = FALSE,
opt_type = "optim",
opt_control = NULL

)

Arguments

selection an object of class "formula" (or one that can be coerced to that class): a symbolic
description of the selection equation form.

outcome an object of class "formula" (or one that can be coerced to that class): a symbolic
description of the outcome equation form.

data data frame containing the variables in the model.

z_K non-negative integer representing polynomial degree related to selection equa-
tion.

y_K non-negative integer representing polynomial degree related to outcome equa-
tion.

pol_elements number of conditional expectation approximating terms for Newey’s method.
If is_Newey_loocv is TRUE then determines maximum number of these terms
during leave-one-out cross-validation.

is_Newey logical; if TRUE then returns only Newey’s method estimation results (default
value is FALSE).

x0 numeric vector of optimization routine initial values. Note that x0=c(pol_coefficients[-1],mean,sd,z_coef,y_coef).

30 hpaSelection

is_Newey_loocv logical; if TRUE then number of conditional expectation approximating terms
for Newey’s method will be selected based on leave-one-out cross-validation
criteria iterating througt 0 to pol_elements number of these terms.

z_sd_fixed positive value that is fixed sigma parameter for selection equation.

cov_type string value determinign the type of covariance matrix to be returned and used
for summary. If cov_type = "hessian" then negative inverse of hessian ma-
trix will be applied. If cov_type = "gop" then inverse of jacobian outer prod-
ucts will be applied. If cov_type = "sandwich" (default) then sandwich covari-
ance matrix estimator will be applied. If cov_type = "bootstrap" then boot-
strap with boot_iter iterations will be applied. If cov_type = "hessianFD" or
cov_type = "sandwichFD" then accurate but computationally demanding finite
difference hessian approximation will be calculated for the inverse hessian and
sandwich estimators correspondingly.

boot_iter the number of bootstrap iterations for cov_type = "bootstrap" covariance ma-
trix estimator type.

is_parallel if TRUE then multiple cores will be used for some calculations. It usually pro-
vides speed advantage for large enough samples (about more than 1000 obser-
vations).

opt_type string value determining the type of the optimization routine to be applied. The
default is "optim" meaning that BFGS method from the optim function will be
applied. If opt_type = "GA" then ga function will be additionally applied.

opt_control a list containing arguments to be passed to the optimization routine depending
on opt_type argument value. Please see details to get additional information.

Details

Semi-nonparametric (SNP) approach has been implemented via densities hermite polynomial ap-
proximation

Densities hermite polynomial approximation approach has been proposed by A. Gallant and D.
W. Nychka in 1987. The main idea is to approximate unknown distribution density with hermite
polynomial of degree pol_degree. In this framework hermite polynomial represents adjusted (to
insure integration to 1) product of squared polynomial and normal distribution densities. Parameters
mean and sd determine means and standard deviations of normal distribution density functions
which are parts of this polynomial. For more information please refer to the literature listed below.

Parameters mean, sd, given_ind, omit_ind should have the same length as pol_degrees parame-
ter.

The first polynomial coefficient (zero powers) set to identity constant for identification reasons.

Note that coefficient for the first independent variable in selection will be fixed to 1.

Parameter sd will be scale adjusted in order to provide better initial point for optimization routine.
Please, extract sd adjusted value from this function’s output list.

All variables mentioned in selection and outcome should be numeric vectors.

The function calculates standard errors via sandwich estimator and significance levels are reported
taking into account quasi maximum likelihood estimator (QMLE) asymptotic normality. If ones
wants to switch from QMLE to semi-nonparametric estimator (SNPE) during hypothesis testing
then covariance matrix should be reestimated using bootstrap.

hpaSelection 31

Initial values for optimization routine are obtained throught Newey method (see the reference be-
low).

Note that selection equation dependent variables should have exactly two levels (0 and 1) where "0"
states for the selection results which leads to unobservable values of dependent variable in outcome
equation.

This function maximizes (quasi) log-likelihood function via optim function setting it’s method
argument to "BFGS". If opt_type = "GA" then genetic algorithm from ga function will be addi-
tionally (after optim putting it’s solution (par) to suggestions matrix) applied in order to perform
global optimization. Note that global optimization takes much more time (usually minutes but
sometimes hours or even days). The number of iterations and population size of the genetic algo-
rithm will grow linearly along with the number of estimated parameters. If it is seems that global
maximum has not been found than it is possible to continue the search restarting the function setting
it’s input argument x0 to x1 output value. Note that if cov_type = "bootstrap" then ga function
will not be used for bootstrap iterations since it may be extremely time consuming.

If opt_type = "GA" then opt_control should be the list containing the values to be passed to
ga function. It is possible to pass arguments lower, upper, popSize, pcrossover, pmutation,
elitism, maxiter, suggestions, optim, optimArgs and seed. Note that it is possible to set
population, selection, crossover and mutation arguments changing ga default parameters via
gaControl function. These arguments information reported in ga. In order to provide manual val-
ues for lower and upper bounds please follow parameters ordering mentioned above for the x0
argument. If these bonds are not provided manually then they (except those related to the polyno-
mial coefficients) will depend on the estimates obtained by local optimization via optim function
(this estimates will be in the middle between lower and upper). Specifically for each sd param-
eter lower (upper) bound is 5 times lower (higher) then this parameter optim estimate. For each
mean and regression coefficient parameter it’s lower and upper bounds deviate from corresponding
optim estimate by two absolute value of this estimate. Finally, lower and upper bounds for each
polynomial coefficient are -10 and 10 correspondingly (do not depend on their optim estimates).

The following arguments are differ from their defaults in ga:

• pmutation = 0.2,

• optim = TRUE,

• optimArgs = list("method" = "Nelder-Mead","poptim" = 0.2,"pressel" = 0.5),

• seed = 8,

• elitism = 2 + round(popSize * 0.1).

Let’s denote by n_reg the number of regressors included to the selection and outcome formulas.
The arguments popSize and maxiter of ga function have been set proportional to the number of
estimated polynomial coefficients and independent variables:

• popSize = 10 + 5 * (z_K + 1) * (y_K + 1) + 2 * n_reg

• maxiter = 50 * (z_K + 1) * (y_K + 1) + 10 * n_reg

Value

This function returns an object of class "hpaSelection".

An object of class "hpaSelection" is a list containing the following components:

32 hpaSelection

• optim - optim function output. If opt_type = "GA" then it is the list containing optim and ga
functions outputs.

• x1 - numeric vector of distribution parameters estimates.

• Newey - list containing information concerning Newey’s method estimation results.

• z_mean - estimate of the hermite polynomial mean parameter related to selection equation
random error marginal distribution.

• y_mean - estimate of the hermite polynomial mean parameter related to outcome equation
random error marginal distribution.

• z_sd - adjusted value of sd parameter related to selection equation random error marginal
distribution.

• y_sd - estimate of the hermite polynomial sd parameter related to outcome equation random
error marginal distribution.

• pol_coefficients - polynomial coefficients estimates.

• pol_degrees - numeric vector which first element is z_K and the second is y_K.

• z_coef - selection equation regression coefficients estimates.

• y_coef - outcome equation regression coefficients estimates.

• cov_matrix - estimated parameters covariance matrix estimate.

• results - numeric matrix representing estimation results.

• log-likelihood - value of Log-Likelihood function.

• AIC - AIC value.

• re_moments - list which contains information about random errors expectations, variances
and correlation.

• data_List - list containing model variables and their partiotion according to outcome and
selection equations.

• n_obs - number of observations.

• ind_List - list which contains information about parameters indexes in x1.

• selection_formula - the same as selection input parameter.

• outcome_formula - the same as outcome input parameter.

Abovementioned list Newey has class "hpaNewey" and contains the following components:

• y_coef - regression coefficients estimates (except constant term which is part of conditional
expectation approximating polynomial).

• z_coef - regression coefficients estimates related to selection equation.

• constant_biased - biased estimate of constant term.

• inv_mills - inverse mills rations estimates and their powers (including constant).

• inv_mills_coef - coefficients related to inv_mills.

• pol_elements - the same as pol_elements input parameter. However if is_Newey_loocv
is TRUE then it will equal to the number of conditional expectation approximating terms for
Newey’s method which minimize leave-one-out cross-validation criteria.

• outcome_exp_cond - dependend variable conditional expectation estimates.

hpaSelection 33

• selection_exp - selection equation random error expectation estimate.

• selection_var - selection equation random error variance estimate.

• hpaBinaryModel - object of class "hpaBinary" which contains selection equation estimation
results.

Abovementioned list re_moments contains the following components:

• selection_exp - selection equation random errors expectation estimate.

• selection_var - selection equation random errors variance estimate.

• outcome_exp - outcome equation random errors expectation estimate.

• outcome_var - outcome equation random errors variance estimate.

• errors_covariance - outcome and selection equation random errors covariance estimate.

• rho - outcome and selection equation random errors correlation estimate.

• rho_std - outcome and selection equation random errors correlation estimator standard error
estimate.

References

A. Gallant and D. W. Nychka (1987) <doi:10.2307/1913241>

W. K. Newey (2009) <https://doi.org/10.1111/j.1368-423X.2008.00263.x>

Mroz T. A. (1987) <doi:10.2307/1911029>

See Also

summary.hpaSelection, predict.hpaSelection, plot.hpaSelection, AIC.hpaSelection, logLik.hpaSelection

Examples

Let's estimate wage equation accounting for non-random selection.
See the reference to Mroz TA (1987) to get additional details about
the data this examples use

Prepare data
library("sampleSelection")
data("Mroz87")
h = data.frame("kids" = as.numeric(Mroz87$kids5 + Mroz87$kids618 > 0),
"age" = as.numeric(Mroz87$age),
"faminc" = as.numeric(Mroz87$faminc),
"educ" = as.numeric(Mroz87$educ),
"exper" = as.numeric(Mroz87$exper),
"city" = as.numeric(Mroz87$city),
"wage" = as.numeric(Mroz87$wage),
"lfp" = as.numeric(Mroz87$lfp))

Estimate model parameters
model <- hpaSelection(selection = lfp ~ educ + age + I(age ^ 2) +

kids + faminc,

34 hpaSelection

outcome = log(wage) ~ exper + I(exper ^ 2) +
educ + city,

z_K = 1, y_K = 3, data = h,
pol_elements = 3, is_Newey_loocv = TRUE)

summary(model)

Plot outcome equation random errorrs density
plot(model, is_outcome = TRUE)
Plot selection equation random errorrs density
plot(model, is_outcome = FALSE)

Estimate semi-nonparametric sample selection model
parameters on simulated data given chi-squared random errors

set.seed(100)
library("mvtnorm")

Sample size

n <- 1000

Simulate independent variables
X_rho <- 0.5
X_sigma <- matrix(c(1,X_rho,X_rho,X_rho,1,X_rho,X_rho,X_rho,1), ncol=3)
X <- rmvnorm(n=n, mean = c(0,0,0),

sigma = X_sigma)

Simulate random errors
epsilon <- matrix(0, n, 2)
epsilon_z_y <- rchisq(n, 5)
epsilon[, 1] <- (rchisq(n, 5) + epsilon_z_y) * (sqrt(3/20)) - 3.8736
epsilon[, 2] <- (rchisq(n, 5) + epsilon_z_y) * (sqrt(3/20)) - 3.8736
Simulate selection equation
z_star <- 1 + 1 * X[,1] + 1 * X[,2] + epsilon[,1]
z <- as.numeric((z_star > 0))

Simulate outcome equation
y_star <- 1 + 1 * X[,1] + 1 * X[,3] + epsilon[,2]
z <- as.numeric((z_star > 0))
y <- y_star
y[z==0] <- NA
h <- as.data.frame(cbind(z, y, X))
names(h) <- c("z", "y", "x1", "x2", "x3")

Estimate parameters
model <- hpaSelection(selection = z ~ x1 + x2,

outcome = y ~ x1 + x3,
data = h, z_K = 1, y_K = 3)

summary(model)

Get conditional predictions for outcome equation

ihpa 35

model_pred_c <- predict(model,is_cond = TRUE)
Conditional predictions y|z=1
model_pred_c$y_1
Conditional predictions y|z=0
model_pred_c$y_0

Get unconditional predictions for outcome equation
model_pred_u <- predict(model,is_cond = FALSE)
model_pred_u$y

Get conditional predictions for selection equation
Note that for z=0 these predictions are NA
predict(model, is_cond = TRUE, is_outcome = FALSE)
Get unconditional predictions for selection equation
predict(model, is_cond = FALSE, is_outcome = FALSE)

ihpa Interval distribution function hermite polynomial approximation

Description

This function calculates interval distribution function hermite polynomial approximation.

Usage

ihpa(
x_lower = matrix(1, 1),
x_upper = matrix(1, 1),
pol_coefficients = numeric(0),
pol_degrees = numeric(0),
given_ind = logical(0),
omit_ind = logical(0),
mean = numeric(0),
sd = numeric(0),
is_parallel = FALSE

)

Arguments

x_lower numeric matrix of lower integration limits. Note that x_lower rows are obser-
vations while variables are columns.

x_upper numeric matrix of upper integration limits. Note that x_upper rows are obser-
vations while variables are columns.

pol_coefficients

numeric vector of polynomial coefficients.

36 ihpa

pol_degrees non-negative integer vector of polynomial degrees.

given_ind logical vector indicating wheather corresponding component is conditioned. By
default it is a logical vector of FALSE values.

omit_ind logical vector indicating wheather corresponding component is omitted. By de-
fault it is a logical vector of FALSE values.

mean numeric vector of expected values.

sd positive numeric vector of standard deviations.

is_parallel if TRUE then multiple cores will be used for some calculations. It usually pro-
vides speed advantage for large enough samples (about more than 1000 obser-
vations).

Details

Interval distribution function represents probability that random vector components will be greater
then values given in x_lower and lower then values that are in x_upper.

Densities hermite polynomial approximation approach has been proposed by A. Gallant and D.
W. Nychka in 1987. The main idea is to approximate unknown distribution density with hermite
polynomial of degree pol_degree. In this framework hermite polynomial represents adjusted (to
insure integration to 1) product of squared polynomial and normal distribution densities. Parameters
mean and sd determine means and standard deviations of normal distribution density functions
which are parts of this polynomial. For more information please refer to the literature listed below.

Parameters mean, sd, given_ind, omit_ind should have the same length as pol_degrees parame-
ter.

Value

This function returns interval distribution function hermite polynomial approximation at point x.

References

A. Gallant and D. W. Nychka (1987) <doi:10.2307/1913241>

Examples

##Let's approximate some three random variables joint interval distribution function (idf)
##at lower and upper points (0,1, 0.2, 0.3) and (0,4, 0.5, 0.6) correspondingly
##with hermite polynomial of (1,2,3) degrees which polynomial coefficients equals 1 except
##coefficient related to x1*(x^3) polynomial element which equals 2.
##Also suppose that normal density related mean vector equals (1.1, 1.2, 1.3) while
##standard deviations vector is (2.1, 2.2, 2.3).

##Prepare initial values
x_lower <- matrix(c(0.1, 0.2, 0.3), nrow=1)
x_upper <- matrix(c(0.4, 0.5, 0.6), nrow=1)
mean <- c(1.1, 1.2, 1.3)
sd <- c(2.1, 2.2, 2.3)
pol_degrees <- c(1, 2, 3)

ihpaDiff 37

#Create polynomial powers and indexes correspondence matrix
pol_ind <- polynomialIndex(pol_degrees)

#Set all polynomial coefficients to 1
pol_coefficients <- rep(1, ncol(pol_ind))
pol_degrees_n <- length(pol_degrees)

#Assign coefficient 2 to the polynomial element(x1 ^ 1)*(x2 ^ 0)*(x3 ^ 2)
pol_coefficients[which(colSums(pol_ind == c(1, 0, 2)) == pol_degrees_n)] <- 2

#Visualize correspondence between polynomial elements and their coefficients
as.data.frame(rbind(pol_ind, pol_coefficients),
row.names = c("x1 power", "x2 power", "x3 power", "coefficients"),
optional = TRUE)
printPolynomial(pol_degrees, pol_coefficients)

#Calculate idf approximation at points x_lower and x_upper
ihpa(x_lower = x_lower, x_upper = x_upper,
pol_coefficients = pol_coefficients, pol_degrees = pol_degrees,
mean = mean, sd = sd)

#Condition second component to be 0.7
#Substitute x second component with conditional value 0.7
x_upper <- matrix(c(0.4, 0.7, 0.6), nrow = 1)

#Set TRUE to the second component indicating that it is conditioned
given_ind <- c(FALSE, TRUE, FALSE)

#Calculate conditional(on x2 = 0.5) idf approximation at points x_lower and x_upper
ihpa(x_lower = x_lower, x_upper = x_upper,
pol_coefficients = pol_coefficients, pol_degrees = pol_degrees,
mean = mean, sd = sd,
given_ind = given_ind)

#Consider third component marginal distribution
#conditioned on the second component 0.7 value
#Set TRUE to the first component indicating that it is omitted
omit_ind <- c(TRUE, FALSE, FALSE)

#Calculate conditional (on x2=0.5) marginal (for x3) idf approximation at points x_lower and x_upper
ihpa(x_lower = x_lower, x_upper = x_upper,
pol_coefficients = pol_coefficients, pol_degrees = pol_degrees,
mean = mean, sd = sd,
given_ind = given_ind, omit_ind = omit_ind)

ihpaDiff Calculate gradient of interval distribution function hermite polyno-
mial approximation

38 ihpaDiff

Description

This function calculates interval distribution function hermite polynomial approximation.

Usage

ihpaDiff(
x_lower = matrix(1, 1),
x_upper = matrix(1, 1),
pol_coefficients = numeric(0),
pol_degrees = numeric(0),
given_ind = logical(0),
omit_ind = logical(0),
mean = numeric(0),
sd = numeric(0),
type = "pol_coefficients",
is_parallel = FALSE

)

Arguments

x_lower numeric matrix of lower integration limits. Note that x_lower rows are obser-
vations while variables are columns.

x_upper numeric matrix of upper integration limits. Note that x_upper rows are obser-
vations while variables are columns.

pol_coefficients

numeric vector of polynomial coefficients.

pol_degrees non-negative integer vector of polynomial degrees.

given_ind logical vector indicating wheather corresponding component is conditioned. By
default it is a logical vector of FALSE values.

omit_ind logical vector indicating wheather corresponding component is omitted. By de-
fault it is a logical vector of FALSE values.

mean numeric vector of expected values.

sd positive numeric vector of standard deviations.

type determines the partial derivatives to be included into gradient. Currently type="pol_coefficients"
is the only available option (default) meaning that the gradient will contain par-
tial derivatives respect to polynomial coefficients listed in the same order as
pol_coefficients.

is_parallel if TRUE then multiple cores will be used for some calculations. It usually pro-
vides speed advantage for large enough samples (about more than 1000 obser-
vations).

Details

Interval distribution function represents probability that random vector components will be greater
then values given in x_lower and lower then values that are in x_upper.

ihpaDiff 39

Densities hermite polynomial approximation approach has been proposed by A. Gallant and D.
W. Nychka in 1987. The main idea is to approximate unknown distribution density with hermite
polynomial of degree pol_degree. In this framework hermite polynomial represents adjusted (to
insure integration to 1) product of squared polynomial and normal distribution densities. Parameters
mean and sd determine means and standard deviations of normal distribution density functions
which are parts of this polynomial. For more information please refer to the literature listed below.

Parameters mean, sd, given_ind, omit_ind should have the same length as pol_degrees parame-
ter.

If x has more then one row then the output will be jacobian matrix where rows are gradients.

Value

This function returns gradient of interval distribution function hermite polynomial approximation
at point x. Gradient elements are determined by the type argument.

References

A. Gallant and D. W. Nychka (1987) <doi:10.2307/1913241>

Examples

Let's approximate some three random variables joint interval distribution function (idf)
at lower and upper points (0,1, 0.2, 0.3) and (0,4, 0.5, 0.6) correspondingly
with hermite polynomial of (1,2,3) degrees which polynomial coefficients equals 1 except
coefficient related to x1*(x^3) polynomial element which equals 2.
Also suppose that normal density related mean vector equals (1.1, 1.2, 1.3) while
standard deviations vector is (2.1, 2.2, 2.3).
In this example let's calculate interval distribution approximating function gradient
respect to polynomial coefficients.

Prepare initial values
x_lower <- matrix(c(0.1, 0.2, 0.3), nrow=1)
x_upper <- matrix(c(0.4, 0.5, 0.6), nrow=1)
mean <- c(1.1, 1.2, 1.3)
sd <- c(2.1, 2.2, 2.3)
pol_degrees <- c(1, 2, 3)

Create polynomial powers and indexes correspondence matrix
pol_ind <- polynomialIndex(pol_degrees)

Set all polynomial coefficients to 1
pol_coefficients <- rep(1, ncol(pol_ind))
pol_degrees_n <- length(pol_degrees)

Assign coefficient 2 to the polynomial element(x1 ^ 1)*(x2 ^ 0)*(x3 ^ 2)
pol_coefficients[which(colSums(pol_ind == c(1, 0, 2)) == pol_degrees_n)] <- 2

Visualize correspondence between polynomial elements and their coefficients
as.data.frame(rbind(pol_ind, pol_coefficients),
row.names = c("x1 power", "x2 power", "x3 power", "coefficients"),
optional = TRUE)

40 itrhpa

printPolynomial(pol_degrees, pol_coefficients)

Calculate idf approximation gradient respect to
polynomial coefficients at points x_lower and x_upper
ihpaDiff(x_lower = x_lower, x_upper = x_upper,
pol_coefficients = pol_coefficients, pol_degrees = pol_degrees,
mean = mean, sd = sd)

Condition second component to be 0.7
Substitute x second component with conditional value 0.7
x_upper <- matrix(c(0.4, 0.7, 0.6), nrow = 1)

Set TRUE to the second component indicating that it is conditioned
given_ind <- c(FALSE, TRUE, FALSE)

Calculate conditional(on x2 = 0.5) idf approximation
respect to polynomial coefficients at points x_lower and x_upper
ihpaDiff(x_lower = x_lower, x_upper = x_upper,
pol_coefficients = pol_coefficients, pol_degrees = pol_degrees,
mean = mean, sd = sd,
given_ind = given_ind)

Consider third component marginal distribution
conditioned on the second component 0.7 value
Set TRUE to the first component indicating that it is omitted
omit_ind <- c(TRUE, FALSE, FALSE)

Calculate conditional (on x2=0.5) marginal (for x3) idf approximation
respect to polynomial coefficients at points x_lower and x_upper
ihpaDiff(x_lower = x_lower, x_upper = x_upper,
pol_coefficients = pol_coefficients, pol_degrees = pol_degrees,
mean = mean, sd = sd,
given_ind = given_ind, omit_ind = omit_ind)

itrhpa Truncated interval distribution function hermite polynomial approxi-
mation for truncated distribution

Description

This function calculates truncated interval distribution function hermite polynomial approximation
for truncated distribution.

Usage

itrhpa(
x_lower = matrix(1, 1),
x_upper = matrix(1, 1),
tr_left = matrix(1, 1),
tr_right = matrix(1, 1),

itrhpa 41

pol_coefficients = numeric(0),
pol_degrees = numeric(0),
given_ind = logical(0),
omit_ind = logical(0),
mean = numeric(0),
sd = numeric(0),
is_parallel = FALSE

)

Arguments

x_lower numeric matrix of lower integration limits. Note that x_lower rows are obser-
vations while variables are columns.

x_upper numeric matrix of upper integration limits. Note that x_upper rows are obser-
vations while variables are columns.

tr_left numeric matrix of left (lower) truncation limits. Note that tr_right rows are
observations while variables are columns. If tr_left or tr_right is single row
matrix then the same truncation limits would be applied to all observations that
are determined by the first rows of these matrices.

tr_right numeric matrix of right (upper) truncation limits. Note that tr_right rows are
observations while variables are columns. If tr_left or tr_right is single row
matrix then the same truncation limits would be applied to all observations that
are determined by the first rows of these matrices.

pol_coefficients

numeric vector of polynomial coefficients.

pol_degrees non-negative integer vector of polynomial degrees.

given_ind logical vector indicating wheather corresponding component is conditioned. By
default it is a logical vector of FALSE values.

omit_ind logical vector indicating wheather corresponding component is omitted. By de-
fault it is a logical vector of FALSE values.

mean numeric vector of expected values.

sd positive numeric vector of standard deviations.

is_parallel if TRUE then multiple cores will be used for some calculations. It usually pro-
vides speed advantage for large enough samples (about more than 1000 obser-
vations).

Details

Interval distribution function represents probability that random vector components will be greater
then values given in x_lower and lower then values that are in x_upper.

Densities hermite polynomial approximation approach has been proposed by A. Gallant and D.
W. Nychka in 1987. The main idea is to approximate unknown distribution density with hermite
polynomial of degree pol_degree. In this framework hermite polynomial represents adjusted (to
insure integration to 1) product of squared polynomial and normal distribution densities. Parameters
mean and sd determine means and standard deviations of normal distribution density functions
which are parts of this polynomial. For more information please refer to the literature listed below.

42 itrhpa

Parameters mean, sd, given_ind, omit_ind should have the same length as pol_degrees parame-
ter.

Value

This function returns interval distribution function (idf) hermite polynomial approximation at point
x for truncated distribution.

References

A. Gallant and D. W. Nychka (1987) <doi:10.2307/1913241>

Examples

##Let's approximate some three truncated random variables joint interval distribution function
##at lower and upper points (0,1, 0.2, 0.3) and (0,4, 0.5, 0.6) correspondingly
##with hermite polynomial of (1,2,3) degrees which polynomial coefficients equals 1 except
##coefficient related to x1*(x^3) polynomial element which equals 2. Also suppose that normal
##density related mean vector equals (1.1, 1.2, 1.3) while standard deviations vector is
##(2.1, 2.2, 2.3). Suppose that lower and upper truncation are (-1.1,-1.2,-1.3) and
##(1.1,1.2,1.3) correspondingly.

#Prepare initial values
x_lower <- matrix(c(0.1, 0.2, 0.3), nrow=1)
x_upper <- matrix(c(0.4, 0.5, 0.6), nrow=1)
tr_left = matrix(c(-1.1,-1.2,-1.3), nrow = 1)
tr_right = matrix(c(1.1,1.2,1.3), nrow = 1)
mean <- c(1.1, 1.2, 1.3)
sd <- c(2.1, 2.2, 2.3)
pol_degrees <- c(1, 2, 3)

#Create polynomial powers and indexes correspondence matrix
pol_ind <- polynomialIndex(pol_degrees)
#Set all polynomial coefficients to 1
pol_coefficients <- rep(1, ncol(pol_ind))
pol_degrees_n <- length(pol_degrees)

#Assign coefficient 2 to the polynomial element(x1 ^ 1)*(x2 ^ 0)*(x3 ^ 2)
pol_coefficients[which(colSums(pol_ind == c(1, 0, 2)) == pol_degrees_n)] <- 2
#Visualize correspondence between polynomial elements and their coefficients
as.data.frame(rbind(pol_ind, pol_coefficients),
row.names = c("x1 power", "x2 power", "x3 power", "coefficients"),
optional = TRUE)
printPolynomial(pol_degrees, pol_coefficients)

#Calculate idf approximation at points x_lower and x_upper
itrhpa(x_lower = x_lower, x_upper = x_upper,
pol_coefficients = pol_coefficients, pol_degrees = pol_degrees,
mean = mean, sd = sd,

tr_left = tr_left, tr_right = tr_right)

#Condition second component to be 0.7

logLik.hpaBinary 43

#Substitute x second component with conditional value 0.7
x_upper <- matrix(c(0.4, 0.7, 0.6), nrow = 1)
#Set TRUE to the second component indicating that it is conditioned
given_ind <- c(FALSE, TRUE, FALSE)

#Calculate conditional(on x2 = 0.5) idf approximation at points x_lower and x_upper
itrhpa(x_lower = x_lower, x_upper = x_upper,
pol_coefficients = pol_coefficients, pol_degrees = pol_degrees,
mean = mean, sd = sd,
given_ind = given_ind,

tr_left = tr_left, tr_right = tr_right)

#Consider third component marginal distribution
#conditioned on the second component 0.7 value
#Set TRUE to the first component indicating that it is omitted
omit_ind <- c(TRUE, FALSE, FALSE)

#Calculate conditional (on x2=0.5) marginal (for x3) idf approximation at points x_lower and x_upper
itrhpa(x_lower = x_lower, x_upper = x_upper,
pol_coefficients = pol_coefficients, pol_degrees = pol_degrees,
mean = mean, sd = sd,
given_ind = given_ind, omit_ind = omit_ind,

tr_left = tr_left, tr_right = tr_right)

logLik.hpaBinary Calculates log-likelihood for "hpaBinary" object

Description

This function calculates log-likelihood for "hpaBinary" object

Usage

S3 method for class 'hpaBinary'
logLik(object, ...)

Arguments

object Object of class "hpaBinary"

... further arguments (currently ignored)

44 logLik.hpaSelection

logLik.hpaML Calculates log-likelihood for "hpaML" object

Description

This function calculates log-likelihood for "hpaML" object

Usage

S3 method for class 'hpaML'
logLik(object, ...)

Arguments

object Object of class "hpaML"

... further arguments (currently ignored)

logLik.hpaSelection Calculates log-likelihood for "hpaSelection" object

Description

This function calculates log-likelihood for "hpaSelection" object

Usage

S3 method for class 'hpaSelection'
logLik(object, ...)

Arguments

object Object of class "hpaSelection"

... further arguments (currently ignored)

logLik_hpaBinary 45

logLik_hpaBinary Calculates log-likelihood for "hpaBinary" object

Description

This function calculates log-likelihood for "hpaBinary" object

Usage

logLik_hpaBinary(object)

Arguments

object Object of class "hpaBinary"

logLik_hpaML Calculates log-likelihood for "hpaML" object

Description

This function calculates log-likelihood for "hpaML" object

Usage

logLik_hpaML(object)

Arguments

object Object of class "hpaML"

logLik_hpaSelection Calculates log-likelihood for "hpaSelection" object

Description

This function calculates log-likelihood for "hpaSelection" object

Usage

logLik_hpaSelection(object)

Arguments

object Object of class "hpaSelection"

46 normalMoment

mecdf Calculates multivariate empirical cumulative distribution function

Description

This function calculates multivariate empirical cumulative distribution function at each point of the
sample

Usage

mecdf(x)

Arguments

x numeric matrix which rows are observations

normalMoment Calculate k-th order moment of normal distribution

Description

This function iteratively calculates k-th order moment of normal distribution.

Usage

normalMoment(
k = 0L,
mean = 0,
sd = 1,
return_all_moments = FALSE,
is_validation = TRUE,
is_central = FALSE

)

Arguments

k non-negative integer moment order.
mean numeric expected value.
sd positive numeric standard deviation.
return_all_moments

logical; if TRUE, function returns (k+1)-dimensional numeric vector of moments
of normaly distributed random variable with mean = mean and standard devia-
tion = sd. Note that i-th vector’s component value corresponds to the (i-1)-th
moment.

is_validation bool value indicating whether function input arguments should be validated. Set
it to FALSE for slight perfomance boost (default value is TRUE).

is_central logical; if TRUE, then central moments will be calculated.

phpa 47

Details

This function estimates k-th order moment of normal distribution which mean equals to mean and
standard deviation equals to sd.

Note that parameter k value automatically converts to integer. So passing non-integer k value will
not cause any errors but the calculations will be performed for rounded k value only.

Value

This function returns k-th order moment of normal distribution which mean equals to mean and
standard deviation is sd. If return_all_moments is TRUE then see this argument description above
for output details.

Examples

Calculate 5-th order moment of normal random variable which
mean equals to 3 and standard deviation is 5.

5-th moment
normalMoment(k = 5, mean = 3, sd = 5)

(0-5)-th moments
normalMoment(k = 5, mean = 3, sd = 5, return_all_moments = TRUE)

phpa Distribution function hermite polynomial approximation

Description

This function calculates cumulative distribution function hermite polynomial approximation.

Usage

phpa(
x = matrix(1, 1),
pol_coefficients = numeric(0),
pol_degrees = numeric(0),
given_ind = logical(0),
omit_ind = logical(0),
mean = numeric(0),
sd = numeric(0),
is_parallel = FALSE

)

48 phpa

Arguments

x numeric matrix of cumulative distribution function arguments. Note that x rows
are observations while variables are columns.

pol_coefficients

numeric vector of polynomial coefficients.

pol_degrees non-negative integer vector of polynomial degrees.

given_ind logical vector indicating wheather corresponding component is conditioned. By
default it is a logical vector of FALSE values.

omit_ind logical vector indicating wheather corresponding component is omitted. By de-
fault it is a logical vector of FALSE values.

mean numeric vector of expected values.

sd positive numeric vector of standard deviations.

is_parallel if TRUE then multiple cores will be used for some calculations. It usually pro-
vides speed advantage for large enough samples (about more than 1000 obser-
vations).

Details

Densities hermite polynomial approximation approach has been proposed by A. Gallant and D.
W. Nychka in 1987. The main idea is to approximate unknown distribution density with hermite
polynomial of degree pol_degree. In this framework hermite polynomial represents adjusted (to
insure integration to 1) product of squared polynomial and normal distribution densities. Parameters
mean and sd determine means and standard deviations of normal distribution density functions
which are parts of this polynomial. For more information please refer to the literature listed below.

Parameters mean, sd, given_ind, omit_ind should have the same length as pol_degrees parame-
ter.

Value

This function returns cumulative distribution function hermite polynomial approximation at point
x.

References

A. Gallant and D. W. Nychka (1987) <doi:10.2307/1913241>

Examples

##Let's approximate some three random variables joint cumulative distribution function (cdf)
##at point (0,1, 0.2, 0.3)
##with hermite polynomial of (1,2,3) degrees which polynomial coefficients equals 1 except
##coefficient related to x1*(x^3) polynomial element which equals 2. Also suppose that normal
##density related mean vector equals (1.1, 1.2, 1.3) while standard deviations
##vector is (2.1, 2.2, 2.3).

##Prepare initial values
x <- matrix(c(0.1, 0.2, 0.3), nrow=1)

phpa 49

mean <- c(1.1, 1.2, 1.3)
sd <- c(2.1, 2.2, 2.3)
pol_degrees <- c(1, 2, 3)

#Create polynomial powers and indexes correspondence matrix
pol_ind <- polynomialIndex(pol_degrees)

#Set all polynomial coefficients to 1
pol_coefficients <- rep(1, ncol(pol_ind))
pol_degrees_n <- length(pol_degrees)

#Assign coefficient 2 to the polynomial element(x1 ^ 1)*(x2 ^ 0)*(x3 ^ 2)
pol_coefficients[which(colSums(pol_ind == c(1, 0, 2)) == pol_degrees_n)] <- 2

#Visualize correspondence between polynomial elements and their coefficients
as.data.frame(rbind(pol_ind, pol_coefficients),
row.names = c("x1 power", "x2 power", "x3 power", "coefficients"),
optional = TRUE)
printPolynomial(pol_degrees, pol_coefficients)

#Calculate cdf approximation at point x
phpa(x = x,
pol_coefficients = pol_coefficients, pol_degrees = pol_degrees,
mean = mean, sd = sd)

#Condition second component to be 0.5
#Substitute x second component with conditional value 0.5
x <- matrix(c(0.1, 0.5, 0.3), nrow = 1)

#Set TRUE to the second component indicating that it is conditioned
given_ind <- c(FALSE, TRUE, FALSE)

#Calculate conditional(on x2 = 0.5) cdf approximation at point x
phpa(x = x,
pol_coefficients = pol_coefficients, pol_degrees = pol_degrees,
mean = mean, sd = sd,
given_ind = given_ind)

#Consider third component marginal distribution
#conditioned on the second component 0.5 value

#Set TRUE to the first component indicating that it is omitted
omit_ind <- c(TRUE, FALSE, FALSE)

#Calculate conditional (on x2=0.5) marginal (for x3) cdf approximation at point x
phpa(x = x,
pol_coefficients = pol_coefficients, pol_degrees = pol_degrees,
mean = mean, sd = sd,
given_ind = given_ind, omit_ind = omit_ind)

50 plot.hpaSelection

plot.hpaBinary Plot hpaBinary random errors approximated density

Description

Plot hpaBinary random errors approximated density

Usage

S3 method for class 'hpaBinary'
plot(x, y = NULL, ...)

Arguments

x Object of class "hpaBinary"

y this parameter currently ignored

... further arguments (currently ignored)

plot.hpaSelection Plot hpaSelection random errors approximated density

Description

Plot hpaSelection random errors approximated density

Usage

S3 method for class 'hpaSelection'
plot(x, y = NULL, ..., is_outcome = TRUE)

Arguments

x Object of class "hpaSelection"

y this parameter currently ignored

... further arguments (currently ignored)

is_outcome logical; if TRUE then function plots the graph for outcome equation random
errors. Otherwise plot for selection equation random errors will be plotted.

Value

This function returns the list containing random error’s expected value errors_exp and variance
errors_var estimates for selection (if is_outcome = TRUE) or outcome (if is_outcome = FALSE)
equation.

plot_hpaBinary 51

plot_hpaBinary Plot hpaBinary random errors approximated density

Description

Plot hpaBinary random errors approximated density

Usage

plot_hpaBinary(x)

Arguments

x Object of class "hpaBinary"

plot_hpaSelection Plot hpaSelection random errors approximated density

Description

Plot hpaSelection random errors approximated density

Usage

plot_hpaSelection(x, is_outcome = TRUE)

Arguments

x Object of class "hpaSelection"

is_outcome logical; if TRUE then function plots the graph for outcome equation random
errors. Otherwise plot for selection equation random errors will be plotted.

Value

This function returns the list containing random error’s expected value errors_exp and variance
errors_var estimates for selection (if is_outcome = TRUE) or outcome (if is_outcome = FALSE)
equation.

52 polynomialIndex

pnorm_parallel Calculate normal cdf in parallel

Description

Calculate in parallel for each value from vector x distribution function of normal distribution with
mean equal to mean and standard deviation equal to sd.

Usage

pnorm_parallel(x, mean = 0, sd = 1, is_parallel = FALSE)

Arguments

x vector of quantiles: should be numeric vector, not just double value.

mean double value.

sd double positive value.

is_parallel if TRUE then multiple cores will be used for some calculations. It usually pro-
vides speed advantage for large enough samples (about more than 1000 obser-
vations).

polynomialIndex Returns matrix of polynomial indexes

Description

Returns matrix of polynomial indexes for the polynomial with degrees (orders) vector pol_degrees.

Usage

polynomialIndex(pol_degrees = 0L)

Arguments

pol_degrees non-negative integer vector of polynomial degrees.

Details

This function motivation is to have an opportunity to iterate through the columns of polynomial
indexes matrix in order to access polynomial elements being aware of their powers.

Value

This function returns polynomial indexes matrix which rows are responsible for variables while
columns are related to powers.

predict.hpaBinary 53

Examples

Get polynomial indexes matrix for the polynomial which degrees are (1, 3, 5)

polynomialIndex(c(1, 3, 5))

Consider polynomial of degrees (2, 1) such that coefficients
for elements which powers sum is even are 2 and for those which powers
are odd are 5. So the polynomial is 2+5y+5x+2xy+2x^2+5yx^2.

Let's represent its powers (not coefficients) in a matrix form
pol_matrix <- polynomialIndex(c(2, 1))

Suppose we want to calculate this polynomial coefficients sum:
powers_sum <- 0

For pedagogical reasons iterate throught the pol_matrix columns
pol_matrix_length = dim(pol_matrix)[2]

for (i in 1:pol_matrix_length)
{
if ((pol_matrix[1, i] + pol_matrix[2, i]) %% 2 == 0)
{

powers_sum <- powers_sum + 2
} else {

powers_sum <- powers_sum + 5
}
}
#powers_sum value will be 21

predict.hpaBinary Predict method for hpaBinary

Description

Predict method for hpaBinary

Usage

S3 method for class 'hpaBinary'
predict(object, ..., newdata = NULL, is_prob = TRUE)

Arguments

object Object of class "hpaBinary"

... further arguments (currently ignored)

54 predict.hpaSelection

newdata An optional data frame (for hpaBinary and hpaSelection) or numeric matrix (for
hpaML) in which to look for variables with which to predict. If omitted, the
original dataframe (matrix) used.

is_prob logical; if TRUE (default) then function returns predicted probabilities. Other-
wise latent variable (single index) estimates will be returned.

Value

This function returns predicted probabilities based on hpaBinary estimation results.

predict.hpaML Predict method for hpaML

Description

Predict method for hpaML

Usage

S3 method for class 'hpaML'
predict(object, ..., newdata = matrix(c(0)))

Arguments

object Object of class "hpaML"

... further arguments (currently ignored)

newdata An optional data frame (for hpaBinary and hpaSelection) or numeric matrix (for
hpaML) in which to look for variables with which to predict. If omitted, the
original dataframe (matrix) used.

Value

This function returns predictions based on hpaML estimation results.

predict.hpaSelection Predict outcome and selection equation values from hpaSelection
model

Description

This function predicts outcome and selection equation values from hpaSelection model.

predict_hpaBinary 55

Usage

S3 method for class 'hpaSelection'
predict(
object,
...,
newdata = NULL,
method = "HPA",
is_cond = TRUE,
is_outcome = TRUE

)

Arguments

object Object of class "hpaSelection"

... further arguments (currently ignored)

newdata An optional data frame (for hpaBinary and hpaSelection) or numeric matrix (for
hpaML) in which to look for variables with which to predict. If omitted, the
original dataframe (matrix) used.

method string value indicating prediction method based on hermite polynomial approx-
imation "HPA" or Newey method "Newey".

is_cond logical; if TRUE (default) then conditional predictions will be estimated. Other-
wise unconditional predictions will be returned.

is_outcome logical; if TRUE (default) then predictions for selection equation will be esti-
mated using "HPA" method. Otherwise selection equation predictions (proba-
bilities) will be returned.

Details

Note that Newey method can’t predict conditional outcomes for zero selection equation value. Con-
ditional probabilities for selection equation could be estimated only when dependent variable from
outcome equation is observable.

Value

This function returns the list which structure depends on method, is_probit and is_outcome
values.

predict_hpaBinary Predict method for hpaBinary

Description

Predict method for hpaBinary

56 predict_hpaML

Usage

predict_hpaBinary(object, newdata = NULL, is_prob = TRUE)

Arguments

object Object of class "hpaBinary"

newdata An optional data frame (for hpaBinary and hpaSelection) or numeric matrix (for
hpaML) in which to look for variables with which to predict. If omitted, the
original dataframe (matrix) used.

is_prob logical; if TRUE (default) then function returns predicted probabilities. Other-
wise latent variable (single index) estimates will be returned.

Value

This function returns predicted probabilities based on hpaBinary estimation results.

predict_hpaML Predict method for hpaML

Description

Predict method for hpaML

Usage

predict_hpaML(object, newdata = matrix(1, 1))

Arguments

object Object of class "hpaML"

newdata An optional data frame (for hpaBinary and hpaSelection) or numeric matrix (for
hpaML) in which to look for variables with which to predict. If omitted, the
original dataframe (matrix) used.

Value

This function returns predictions based on hpaML estimation results.

predict_hpaSelection 57

predict_hpaSelection Predict outcome and selection equation values from hpaSelection
model

Description

This function predicts outcome and selection equation values from hpaSelection model.

Usage

predict_hpaSelection(
object,
newdata = NULL,
method = "HPA",
is_cond = TRUE,
is_outcome = TRUE

)

Arguments

object Object of class "hpaSelection"

newdata An optional data frame (for hpaBinary and hpaSelection) or numeric matrix (for
hpaML) in which to look for variables with which to predict. If omitted, the
original dataframe (matrix) used.

method string value indicating prediction method based on hermite polynomial approx-
imation "HPA" or Newey method "Newey".

is_cond logical; if TRUE (default) then conditional predictions will be estimated. Other-
wise unconditional predictions will be returned.

is_outcome logical; if TRUE (default) then predictions for selection equation will be esti-
mated using "HPA" method. Otherwise selection equation predictions (proba-
bilities) will be returned.

Details

Note that Newey method can’t predict conditional outcomes for zero selection equation value. Con-
ditional probabilities for selection equation could be estimated only when dependent variable from
outcome equation is observable.

Value

This function returns the list which structure depends on method, is_probit and is_outcome
values.

58 print.summary.hpaML

print.summary.hpaBinary

Summary for hpaBinary output

Description

Summary for hpaBinary output

Usage

S3 method for class 'summary.hpaBinary'
print(x, ...)

Arguments

x Object of class "hpaML"

... further arguments (currently ignored)

print.summary.hpaML Summary for hpaML output

Description

Summary for hpaML output

Usage

S3 method for class 'summary.hpaML'
print(x, ...)

Arguments

x Object of class "hpaML"

... further arguments (currently ignored)

print.summary.hpaSelection 59

print.summary.hpaSelection

Summary for hpaSelection output

Description

Summary for hpaSelection output

Usage

S3 method for class 'summary.hpaSelection'
print(x, ...)

Arguments

x Object of class "hpaSelection"

... further arguments (currently ignored)

printPolynomial Print polynomial given it’s degrees and coefficients

Description

This function prints polynomial given it’s degrees and coefficients.

Usage

printPolynomial(pol_degrees, pol_coefficients)

Arguments

pol_degrees non-negative integer vector of polynomial degrees.
pol_coefficients

numeric vector of polynomial coefficients.

Details

Function automatically removes polynomial elements which coefficient are zero and variables which
power is zero. Output may contain long coefficients representation as they are not rounded.

Value

This function returns the string which contains polynomial symbolic representation.

60 print_summary_hpaML

Examples

##Let's represent polynomial 0.3+0.5x2-x2^2+2x1+1.5x1x2+x1x2^2

pol_degrees <- c(1, 2)
pol_coefficients <- c(0.3, 0.5, -1, 2, 1.5, 1)

printPolynomial(pol_degrees, pol_coefficients)

print_summary_hpaBinary

Summary for hpaBinary output

Description

Summary for hpaBinary output

Usage

print_summary_hpaBinary(x)

Arguments

x Object of class "hpaML"

print_summary_hpaML Summary for hpaML output

Description

Summary for hpaML output

Usage

print_summary_hpaML(x)

Arguments

x Object of class "hpaML"

print_summary_hpaSelection 61

print_summary_hpaSelection

Summary for hpaSelection output

Description

Summary for hpaSelection output

Usage

print_summary_hpaSelection(x)

Arguments

x Object of class "hpaSelection"

summary.hpaBinary Summarizing hpaBinary Fits

Description

Summarizing hpaBinary Fits

Usage

S3 method for class 'hpaBinary'
summary(object, ...)

Arguments

object Object of class "hpaBinary"

... further arguments (currently ignored)

Value

This function returns the same list as hpaBinary function changing it’s class to "summary.hpaBinary".

62 summary.hpaSelection

summary.hpaML Summarizing hpaML Fits

Description

Summarizing hpaML Fits

Usage

S3 method for class 'hpaML'
summary(object, ...)

Arguments

object Object of class "hpaML"

... further arguments (currently ignored)

Value

This function returns the same list as hpaML function changing it’s class to "summary.hpaML".

summary.hpaSelection Summarizing hpaSelection Fits

Description

This function summarizing hpaSelection Fits

Usage

S3 method for class 'hpaSelection'
summary(object, ...)

Arguments

object Object of class "hpaSelection"

... further arguments (currently ignored)

Value

This function returns the same list as hpaSelection function changing it’s class to "summary.hpaSelection".

summary_hpaBinary 63

summary_hpaBinary Summarizing hpaBinary Fits

Description

Summarizing hpaBinary Fits

Usage

summary_hpaBinary(object)

Arguments

object Object of class "hpaBinary"

Value

This function returns the same list as hpaBinary function changing it’s class to "summary.hpaBinary".

summary_hpaML Summarizing hpaML Fits

Description

Summarizing hpaML Fits

Usage

summary_hpaML(object)

Arguments

object Object of class "hpaML"

Value

This function returns the same list as hpaML function changing it’s class to "summary.hpaML".

64 truncatedNormalMoment

summary_hpaSelection Summarizing hpaSelection Fits

Description

This function summarizing hpaSelection Fits

Usage

summary_hpaSelection(object)

Arguments

object Object of class "hpaSelection"

Value

This function returns the same list as hpaSelection function changing it’s class to "summary.hpaSelection".

truncatedNormalMoment Calculate k-th order moment of truncated normal distribution

Description

This function iteratively calculates k-th order moment of truncated normal distribution.

Usage

truncatedNormalMoment(
k = 1L,
x_lower = numeric(0),
x_upper = numeric(0),
mean = 0,
sd = 1,
pdf_lower = numeric(0),
cdf_lower = numeric(0),
pdf_upper = numeric(0),
cdf_upper = numeric(0),
cdf_difference = numeric(0),
return_all_moments = FALSE,
is_validation = TRUE,
is_parallel = FALSE

)

truncatedNormalMoment 65

Arguments

k non-negative integer moment order.
x_lower numeric vector of lower trancation points.
x_upper numeric vector of upper trancation points.
mean numeric expected value.
sd positive numeric standard deviation.
pdf_lower non-negative numeric matrix of precalculated normal density functions with

mean mean and standard deviation sd at points given by x_lower.
cdf_lower non-negative numeric matrix of precalculated normal cumulative distribution

functions with mean mean and standard deviation sd at points given by x_lower.
pdf_upper non-negative numeric matrix of precalculated normal density functions with

mean mean and standard deviation sd at points given by x_upper.
cdf_upper non-negative numeric matrix of precalculated normal cumulative distribution

functions with mean mean and standard deviation sd at points given by x_upper.
cdf_difference non-negative numeric matrix of predcalculated cdf_upper-cdf_lower values.
return_all_moments

logical; if TRUE, function returns the matrix of moments of normaly distributed
random variable with mean = mean and standard deviation = sd under lower
and upper truncation points x_lower and x_upper correspondingly. Note that
element in i-th row and j-th column of this matrix corresponds to the i-th obser-
vation (j-1)-th order moment.

is_validation bool value indicating whether function input arguments should be validated. Set
it to FALSE for slight perfomance boost (default value is TRUE).

is_parallel if TRUE then multiple cores will be used for some calculations. It usually pro-
vides speed advantage for large enough samples (about more than 1000 obser-
vations).

Details

This function estimates k-th order moment of normal distribution which mean equals to mean and
standard deviation equals to sd truncated at points given by x_lower and x_upper. Note that
the function is vectorized so you can provide x_lower and x_upper as vectors of equal size. If
vectors values for x_lower and x_upper are not provided then their default values will be set to
-(.Machine$double.xmin * 0.99) and (.Machine$double.xmax * 0.99) correspondingly.

Note that parameter k value automatically converts to integer. So passing non-integer k value will
not cause any errors but the calculations will be performed for rounded k value only.

If you have precaulculated density or cumulative distribution functions at standartized truncation
points (substract mean and then divide by sd) then provide them throught pdf_lower, pdf_upper,
cdf_lower and cdf_upper arguments in order to decrease number of calculations.

Value

This function returns vector of k-th order moments for normaly distributed random variable with
mean = mean and standard deviation = sd under x_lower and x_upper truncation points x_lower
and x_upper correspondingly. If return_all_moments is TRUE then see this argument description
above for output details.

66 truncatedNormalMoment

Examples

Calculate 5-th order moment of three truncated normal random variables (x1,x2,x3)
which mean is 5 and standard deviation is 3.
These random variables truncation points are given as follows:-1<x1<1, 0<x2<2, 1<x3<3.
k <- 3
x_lower <- c(-1, 0, 1)
x_upper <- c(1, 2 ,3)
mean <- 3
sd <- 5

get the moments
truncatedNormalMoment(k, x_lower, x_upper, mean, sd)

get matrix of (0-5)-th moments (columns) for each variable (rows)
truncatedNormalMoment(k, x_lower, x_upper, mean, sd, return_all_moments = TRUE)

Index

AIC.hpaBinary, 3, 22
AIC.hpaML, 3, 26
AIC.hpaSelection, 4, 33
AIC_hpaBinary, 4
AIC_hpaML, 5
AIC_hpaSelection, 5

dhpa, 6, 24
dhpaDiff, 8
dnorm_parallel, 10
dtrhpa, 11

ehpa, 13
etrhpa, 16

ga, 19–21, 24–26, 30–32
gaControl, 20, 25, 31
glm, 19

hpaBinary, 18, 54–57, 61, 63
hpaML, 23, 54–57, 62, 63
hpaSelection, 29, 54–57, 62, 64

ihpa, 35
ihpaDiff, 37
itrhpa, 40

logLik.hpaBinary, 22, 43
logLik.hpaML, 26, 44
logLik.hpaSelection, 33, 44
logLik_hpaBinary, 45
logLik_hpaML, 45
logLik_hpaSelection, 45

mecdf, 46

normalMoment, 46

optim, 19–21, 24–26, 30–32

phpa, 47

plot.hpaBinary, 22, 50
plot.hpaSelection, 33, 50
plot_hpaBinary, 51
plot_hpaSelection, 51
pnorm_parallel, 52
polynomialIndex, 52
predict.hpaBinary, 22, 53
predict.hpaML, 26, 54
predict.hpaSelection, 33, 54
predict_hpaBinary, 55
predict_hpaML, 56
predict_hpaSelection, 57
print.summary.hpaBinary, 58
print.summary.hpaML, 58
print.summary.hpaSelection, 59
print_summary_hpaBinary, 60
print_summary_hpaML, 60
print_summary_hpaSelection, 61
printPolynomial, 59

summary.hpaBinary, 22, 61
summary.hpaML, 26, 62
summary.hpaSelection, 33, 62
summary_hpaBinary, 63
summary_hpaML, 63
summary_hpaSelection, 64

truncatedNormalMoment, 64

67

	AIC.hpaBinary
	AIC.hpaML
	AIC.hpaSelection
	AIC_hpaBinary
	AIC_hpaML
	AIC_hpaSelection
	dhpa
	dhpaDiff
	dnorm_parallel
	dtrhpa
	ehpa
	etrhpa
	hpaBinary
	hpaML
	hpaSelection
	ihpa
	ihpaDiff
	itrhpa
	logLik.hpaBinary
	logLik.hpaML
	logLik.hpaSelection
	logLik_hpaBinary
	logLik_hpaML
	logLik_hpaSelection
	mecdf
	normalMoment
	phpa
	plot.hpaBinary
	plot.hpaSelection
	plot_hpaBinary
	plot_hpaSelection
	pnorm_parallel
	polynomialIndex
	predict.hpaBinary
	predict.hpaML
	predict.hpaSelection
	predict_hpaBinary
	predict_hpaML
	predict_hpaSelection
	print.summary.hpaBinary
	print.summary.hpaML
	print.summary.hpaSelection
	printPolynomial
	print_summary_hpaBinary
	print_summary_hpaML
	print_summary_hpaSelection
	summary.hpaBinary
	summary.hpaML
	summary.hpaSelection
	summary_hpaBinary
	summary_hpaML
	summary_hpaSelection
	truncatedNormalMoment
	Index

