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createHmma Create an asymmetric hidden Markov model.

Description

The createHmma method creates a HMM-A from the specifications provided. The amount of states
are implicitly derived from the initial distribution. Bayesian networks can be created using the
bnlearn package.

Usage

createHmma(init, trans, bns)

Arguments

init This initial distribution as a vector.

trans The transition distribution as a matrix.

bns The Bayesian networks for the states.

See Also

bnlearn for more information regarding the creation of Bayesian networks

Examples

# Start by creating the initial and transition distribution
init <- c(0.3, 0.7)
trans <- c(0.4, 0.7, 0.6, 0.3)
dim(trans) <- c(2,2)

# Create a Baysian network for each state using 'bnlearn'
library(bnlearn)
struc <- model2network("[X1][X2]")
cptX1 <- matrix(c(0.15, 0.85), ncol = 2, dimnames = list(NULL, c("TRUE", "FALSE")))
cptX2 <- matrix(c(0.7, 0.3), ncol = 2, dimnames = list(NULL, c("TRUE", "FALSE")))

bn1 <- custom.fit(struc, dist = list(X1 = cptX1,
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X2 = cptX2))

struc <- model2network("[X2|X1][X1]")
cptX1 <- matrix(c(0.4, 0.6), ncol = 2, dimnames = list(NULL, c("TRUE", "FALSE")))
cptX2 <- matrix(c(0.9, 0.1, 0.5, 0.5), nrow = 2, ncol = 2)
dimnames(cptX2) <- list("X2" = c("TRUE", "FALSE"),

"X1" = c("TRUE", "FALSE"))

bn2 <- custom.fit(struc, dist = list(X1 = cptX1,
X2 = cptX2))

bns <- list()
bns[[1]] <- bn1
bns[[2]] <- bn2

# Create the model
hmma <- createHmma(init = init, trans = trans, bns = bns)

hmma hmma: A package for the contruction of asymmetric hidden Markov
models

Description

The hmma package is able to construct asymmetric hidden Markov models (HMM-As) from data.
HMM-As are similar to regular HMMs, but use Bayesian Networks (BNs) in their emission distri-
bution.

Details

HMMs have successfully been used in “speech recognition systems, in numerous applications in-
computational molecular biology, in data compression, and in other areas of artificial intelligence-
and pattern recognition”.

When limited data is available, HMMs may be unable to correctly capture these distributions.Bueno
et al. show that HMMs can be enriched by employing state-specific Bayesian networks(BNs), i.e.
BNs that may be different from state to state. This enables the model to better capturecertain in-
dependencies, depending on the state. The resulting models are called asymmetrichidden Markov
models (HMM-As). (see: http://dx.doi.org/10.1016/j.ijar.2017.05.011 for more infor-
mation)

http://dx.doi.org/10.1016/j.ijar.2017.05.011
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hmmaExampleData An example dataset for use on HMM-As

Description

This dataset has been generated using a HMM-A with two different Bayesian networks. The obser-
vations consist of 100 sequences of length 20.

Usage

hmmaExampleData

Format

A list with the following items

x All observations.

N The length of the observation sequence.

Details

The sum of all observation lengts (hmmaExampleData$N) must be equal to the total number of
observations (hmmExampleData$x).

learnModel Learna a HMM-A from data

Description

The learnModel function, learns a HMM-A from the supplied data file. The function first creates
a random model: the initial and transition distributions are initialized using a Dirichlet https://
en.wikipedia.org/wiki/Dirichlet_distribution distribution. Thereafter the model is max-
imised for the datafile that is supplied.

Usage

learnModel(
data,
amountOfStates = 2,
maxit = 50,
seed,
iss = 1e-04,
debug = FALSE

)

https://en.wikipedia.org/wiki/Dirichlet_distribution
https://en.wikipedia.org/wiki/Dirichlet_distribution
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Arguments

data The datafile. The datafile should be a list containing a dataframe with the data as
its $x component and contain the lengths of the observations a the $N component
(see details).

amountOfStates The amount of states.

maxit The maximum amount of iterations.

seed Seed (optional).

iss The Imaginary Sample Size (iss), also called priors, to add data.

debug Debugmode.

Details

The learnModel makes use of the mhsmm hmmfit function. An example of the structure of the
datafile can be found in hmmaExampleData.

Value

The output of the function is an asymmetric hidden Markov model. This model contains the amount
of states, the initial distribution, the transition distribution and the emission distribution (Bayesian
networks in the different states).

The model can quicly be visualised with the visualise method. The visualise method does not
show the Bayesian networks within the states as this would result in unreadable graphs. Instead, the
bnlearn graphviz.plot method can be used (see the examples below).

Examples

fit <- learnModel(data = hmmaExampleData, amountOfStates = 3, seed = 1234)
visualise(fit)

# See bn in first state
library(bnlearn)
graphviz.plot(fit$parms.emission[[1]])

predict.hmma Predict sequence of data on HMMA

Description

predict.hmma is simply a wrapper function for the mhsmm predict.hmmspec function. It gener-
ates the predicted state sequence for dat data, given the model.

Usage

## S3 method for class 'hmma'
predict(object, data, method = "viterbi", ...)
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Arguments

object The HMMA
data The data file
method The prediction method (viterbi or smoothed, see details)
... Futher arguments.

Details

From the mhsmm documentation: If method="viterbi", this technique applies the Viterbi algorithm
for HMMs, producing the most likely sequence of states given the observed data. If method="smoothed",
then the individually most likely (or smoothed) state sequence is produced, along with a matrix with
the respective probabilities for each state. This function differs from predict.hmm in that it takes
the output from hmmspec ie. this is useful when users already know their parameters and wish to
make predictions.

Value

The return object contains the data, a vector ‘s‘ with the reconstructed state sequence, the vector
N with the lengths of the sequences, a matrix p with the probabilities of the states (only with
smoothed). For more details see predict.hmmspec.

The loglikelihood is returned as the $loglik component.

See Also

predict.hmmspec for more information.

simulate.hmma Simulates a HMM-A.

Description

simulate.hmma simulates a HMM-A. The only difference between simulate.hmma and simulate.hmmspec
is that this function adds the names of the nodes of the Bayesian networks to the results. The
simulate.hmmspec function only uses numbers, instead of names.

Usage

## S3 method for class 'hmma'
simulate(object, nsim, seed = NULL, ...)

Arguments

object A hmma object
nsim An integer or vector of integers (for multiple sequences) specifying the length

of the sequence(s)
seed seed for the random number generator
... Further arguments passed to or from other methods.



visualise 7

Value

A simulation with the following values

• s The states of the model.

• x The observations.

• n The length of the observation.

Examples

# Get a HMM-A (e.g. from learnModel or createHmma)
model <- learnModel(data = hmmaExampleData, amountOfStates = 2, seed = 1234)

# Simulate the data, results in 100 observation sequences of length 20.
data <- simulate(model, nsim = c(rep(20, 100)))

visualise Visualise the HMM-A

Description

The function visualise shows a graphical representation of the found HMM-A. Only the initial
distribution and transition distribution are shown. Each state contains a Bayesian network, these
would be unreadble when displayed within each state. The bnlearn graphviz.plot method can
be used to display the bayesian networks.

Usage

visualise(
model,
minProb = 0,
numDigitsRound = 2,
relateWidthWithWeight = TRUE,
widthType = "linear",
minWidth = 0.05,
maxWidth = 5

)

Arguments

model The model.

minProb The minimum probability of an arc (initial or transition) to be drawn in the
visualisation (see details).

numDigitsRound The amount of decimals that should be presented in the graph.
relateWidthWithWeight

An edge with a high weight will be drawn with a thicker line compared to an
edge with a lower weight.
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widthType The thickness function for the lines. Defaults to linear function. When sigmoid
is used, a sigmoid function is used to determine the thickness.

minWidth The minimum thickness for a line. Only used when relateWidthWithWeight
is TRUE

maxWidth The maximum thickness for a line. Only used when relateWidthWithWeight
is TRUE

Details

Per default, all transitions (initial and transition) are drawn on the canvas. For larger HMM-As, the
visualisation can become cluttered with arcs that have a low probability. By setting the minProb,
an arc is only drawn when it is equal to or greater than the specified minProb. The default value for
minProb is 0.00 (all arcs are drawn).

To further improve the visualisation, edge line width can be related to the respective weight of the
edge. When relateWeightWithThickness is TRUE, an edge with a higher weight will be drawn
with a wider line. The minimum width of a line and the maximum width can be supplied via the
respective parameters.

The minWidth is associated with a weight of 0.00, the maxWidth is related to the weight 1.00. When
widthType is set to ’linear’, the width of a line is linearly related to the weight. When widthType
is set to ’sigmoid’, the width of a line is determined via a sigmoid of the weight.

Examples

# First, we need a model that we want to visualise, we create
# one using the learnModel function.
fit <- learnModel(data = hmmaExampleData, amountOfStates = 3)

# To visualise the states and transitions, we use the visualise method.
# Only lines with a weight of 0.10 are drawn.
visualise(fit, minProb = 0.10)

# When it is not desired to relate the width of a line with its weight,
# this can be disabled:
visualise(fit, minProb = 0.10, relateWidthWithWeight = FALSE)

# Finally, it is possible to use a sigmoid instead of a linear relation:
visualise(fit, minProb = 0.10, widthType = 'sigmoid')

# To visualise the BNs within the states, use the code below
library(bnlearn)
graphviz.plot(fit$parms.emission[[1]])
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