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Background

In Beaulieu and O’Meara (2016) we pointed out that the trait-independent HiSSE model is basically a model
for traits and a separate model for shifts in diversification parameters, much like BAMM (though without
priors, discontinuous inheritance of extinction probability, or other mathematical foibles). The hidden states
can drive different diversification processes, and the traits just evolve under a regular Markovian trait model.
At that point, there is no harm in just dropping the trait altogether and just focusing on diversification
driven by unknown factors. This is what we meant by our HiSSE framework essentially forming a continuum
from a purely trait-independent model (e.g., BAMM, or MEDUSA), to a completely trait-dependent model
(e.g., BiSSE)(see discussion in Caetano et al., 2018). That is what this MiSSE function does – it sets up and
executes a completely trait-free version of a HiSSE model. Thus, all that is required is a tree. The model
allows up to 26 possible hidden states in diversification (denoted by A-Z). Transitions among hidden states
are governed by a single global transition rate, q. A “shift” in diversification denotes a lineage tracking some
unobserved, hidden state. An interesting byproduct of this assumption is that distantly related clades can
actually share the same discrete set of diversification parameters.

Note that we refer to “hidden state” simply as a shorthand. We do not mean that there is a single, discrete
character that is solely driving diversification differences. There is some heritable “thing” that affects rates,
such as a combination of body size, oxygen concentration, trophic level, and, say, how many total species
are competing for resources in an area. In other words, it could be that there is some single discrete trait
that drives everything. However, it is more likely that a whole range of factors play a role, and we just slice
them up into discrete categories, the same way we slice up mammals into carnivore / omnivore / herbivore or
plants into woody / herbaceous when the reality is more continuous. This is true for HiSSE, but this concept
is especially important to grasp for MiSSE.

Setting up a MiSSE model

The set up is similar to other functions in hisse, except there is no need to set up a transition model For the
following example, we will use the cetacean phylogeny (e.g., whales and relatives) of Steeman et al. (2009).
suppressWarnings(library(hisse))

## Loading required package: ape

## Loading required package: deSolve

## Loading required package: GenSA

## Loading required package: subplex

## Loading required package: nloptr

phy <- read.tree("whales_Steemanetal2009.tre")

As with hisse, rather than optimizing λi and µi separately, MiSSE optimizes transformations of these
variables. We let τi = λi + µi define “net turnover”, and we let εi = µi/λi define the “extinction fraction”.
This reparameterization alleviates problems associated with over-fitting when λi and µi are highly correlated,
but both matter in explaining the diversity pattern (see discussion of this issue in Beaulieu and O’Meara
2016). The number of free parameters in the model for both net turnover and extinction fraction are specified
as index vectors provided to the function call. First, let us fit a single rate model:

1



turnover <- c(1)
eps <- c(1)
one.rate <- MiSSE(phy, f=1, turnover=turnover, eps=eps, sann=TRUE, sann.its=5000)

Pretty simple. Now to fit a model that contains two rate classes, we will simply expand out the turnover
vector:
turnover <- c(1,2)
eps <- c(1,1)
two.rate <- MiSSE(phy, f=1, turnover=turnover, eps=eps, sann=TRUE, sann.its=5000)

Overall, MiSSE allows up to 26 possible hidden states in diversification (denoted by A-Z), and in this example
since we fit two rate classes, we have two hidden states, A and B, impacting turnover rates. Here is the rest
of the model set applied to the whale data set:
#rate classes A:C
turnover <- c(1,2,3)
eps <- c(1,1,1)
three.rate <- MiSSE(phy, f=1, turnover=turnover, eps=eps, sann=TRUE, sann.its=5000)
#rate classes A:D
turnover <- c(1,2,3,4)
eps <- c(1,1,1,1)
four.rate <- MiSSE(phy, f=1, turnover=turnover, eps=eps, sann=TRUE, sann.its=5000)
#rate classes A:E
turnover <- c(1,2,3,4,5)
eps <- c(1,1,1,1,1)
five.rate <- MiSSE(phy, f=1, turnover=turnover, eps=eps, sann=TRUE, sann.its=5000)

We can also let εi vary across the tree:
turnover <- c(1,2)
eps <- c(1,2)
two.rate.weps <- MiSSE(phy, f=1, turnover=turnover, eps=eps)

#rate classes A:C, but include eps as well:
turnover <- c(1,2,3)
eps <- c(1,2,3)
three.rate.weps <- MiSSE(phy, f=1, turnover=turnover, eps=eps)

However, in the case of cetaceans, allowing extinction fraction to vary does not provide any additional
information to the model as all rate classes return nearly identical estimates (not shown).

I have already fit these models. Figure 1 shows the improvement in AIC as we increase the complexity of the
model.

Plotting MiSSE reconstructions

Like with all other functions, we provide plotting functionality with plot.misse.states() for hidden state
reconstructions of class misse.states output by our MarginReconMiSSE() function. And, as with other
functions, a single misse.states object can be supplied and the plotting function will provide a heat map of
the diversification rate parameter of choice, or a list of misse.states objects can be supplied and the function
will “model-average” the results. For plotting rates, users can choose among turnover, net diversification
(“net.div”), speciation, extinction, or extinction fraction (“extinction.fraction”). Below is an example of how
to run the reconstruction function to obtain misse.states output from our two rate model for cetaceans.
But, again, for simplicity, I have a file that contains the reconstructions and we can check that everything
has loaded correctly and is of the proper misse.states class:
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Figure 1: The fit of an incremental increase in the number of rate classes estimated under a MiSSE analysis
of the cetacean phylogeny of Steeman et al. (2009). There is a clear reduction in AIC from one to three rate
classes, which levels off at four rate classes and five rate classes returns an AIC that is about 1 unit higher
than either the three and four rate class.

# two.rate.recon <- MarginReconMiSSE(phy=phy, f=1, hidden.states=2,
#pars=two.rate$solution, n.cores=3, aic=two.rate$AIC)

load("misse.vignette.Rsave") # Line above shows the command to create this result.
class(two.rate.recon)

## [1] "misse.states"
two.rate.recon

##
## Phylogenetic tree with 87 tips and 86 internal nodes.
##
## Tip labels:
## Balaena_mysticetus, Eubalaena_australis, Eubalaena_glacialis, Eubalaena_japonica, Caperea_marginata, Eschrichtius_robustus, ...
## Node labels:
## 1, 1, 1, 1, 1, 1, ...
##
## Rooted; includes branch lengths.

Let’s take a look at the reconstruction for the two.rate model reconstruction. I will simply supply the
reconstruction object if misse.states class to the plotting function, plot.misse.states(), and plot net
diversification (see Figure 2).
plot.misse.states(two.rate.recon, rate.param="net.div", show.tip.label=TRUE, type="phylogram",

fsize=.25, legend="none")

## $rate.tree
## Object of class "contMap" containing:
##
## (1) A phylogenetic tree with 87 tips and 86 internal nodes.
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Balaena mysticetus
Eubalaena australis
Eubalaena glacialis
Eubalaena japonica
Caperea marginata
Eschrichtius robustus
Balaenoptera acutorostrata
Balaenoptera bonaerensis
Balaenoptera physalus
Megaptera novaeangliae
Balaenoptera musculus
Balaenoptera omurai
Balaenoptera borealis
Balaenoptera brydei
Balaenoptera edeni
Physeter catodon
Kogia breviceps
Kogia simus
Platanista gangetica
Platanista minor
Tasmacetus shepherdi
Berardius arnuxii
Berardius bairdii
Ziphius cavirostris
Indopacetus pacificus
Hyperoodon ampullatus
Hyperoodon planifrons
Mesoplodon bidens
Mesoplodon traversii
Mesoplodon ginkgodens
Mesoplodon europaeus
Mesoplodon mirus
Mesoplodon bowdoini
Mesoplodon carlhubbsi
Mesoplodon layardii
Mesoplodon hectori
Mesoplodon densirostris
Mesoplodon stejnegeri
Mesoplodon grayi
Mesoplodon perrini
Mesoplodon peruvianus
Lipotes vexillifer
Inia geoffrensis
Pontoporia blainvillei
Delphinapterus leucas
Monodon monoceros
Neophocaena phocaenoides
Phocoena phocoena
Phocoenoides dalli
Phocoena sinus
Phocoena dioptrica
Phocoena spinipinnis
Orcinus orca
Orcaella brevirostris
Grampus griseus
Pseudorca crassidens
Feresa attenuata
Peponocephala electra
Globicephala macrorhynchus
Globicephala melas
Lagenorhynchus albirostris
Lagenorhynchus acutus
Lissodelphis borealis
Lissodelphis peronii
Cephalorhynchus hectori
Cephalorhynchus commersonii
Cephalorhynchus eutropia
Lagenorhynchus obscurus
Lagenorhynchus obliquidens
Cephalorhynchus heavisidii
Lagenorhynchus australis
Lagenorhynchus cruciger
Steno bredanensis
Sotalia fluviatilis
Sotalia guianensis
Lagenodelphis hosei
Stenella longirostris
Stenella attenuata
Tursiops aduncus
Tursiops truncatus
Sousa chinensis
Stenella clymene
Stenella coeruleoalba
Stenella frontalis
Delphinus tropicalis
Delphinus capensis
Delphinus delphis

Figure 2: A two-rate class MiSSE analysis and reconstruction of the cetacean phylogeny of Steeman et al.
(2009) shows a clear increase in the net diversification rate within the Delphinidae (dolphins) relative to
all other cetaceans; there also seems to be a slightly elevated rates in the sister group of Delphinidae, the
Monodontidae+Phocenidae. Overall, this particular MiSSE model seems to correctly identify the source of
‘trait-independent’ diversification that can plague BiSSE analyses of simulated data sets on the cetacean tree
(see Rabosky and Goldberg, 2015).
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Balaena mysticetus
Eubalaena australis
Eubalaena glacialis
Eubalaena japonica
Caperea marginata
Eschrichtius robustus
Balaenoptera acutorostrata
Balaenoptera bonaerensis
Balaenoptera physalus
Megaptera novaeangliae
Balaenoptera musculus
Balaenoptera omurai
Balaenoptera borealis
Balaenoptera brydei
Balaenoptera edeni
Physeter catodon
Kogia breviceps
Kogia simus
Platanista gangetica
Platanista minor
Tasmacetus shepherdi
Berardius arnuxii
Berardius bairdii
Ziphius cavirostris
Indopacetus pacificus
Hyperoodon ampullatus
Hyperoodon planifrons
Mesoplodon bidens
Mesoplodon traversii
Mesoplodon ginkgodens
Mesoplodon europaeus
Mesoplodon mirus
Mesoplodon bowdoini
Mesoplodon carlhubbsi
Mesoplodon layardii
Mesoplodon hectori
Mesoplodon densirostris
Mesoplodon stejnegeri
Mesoplodon grayi
Mesoplodon perrini
Mesoplodon peruvianus
Lipotes vexillifer
Inia geoffrensis
Pontoporia blainvillei
Delphinapterus leucas
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Neophocaena phocaenoides
Phocoena phocoena
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Phocoena sinus
Phocoena dioptrica
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Orcaella brevirostris
Grampus griseus
Pseudorca crassidens
Feresa attenuata
Peponocephala electra
Globicephala macrorhynchus
Globicephala melas
Lagenorhynchus albirostris
Lagenorhynchus acutus
Lissodelphis borealis
Lissodelphis peronii
Cephalorhynchus hectori
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Cephalorhynchus eutropia
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Lagenorhynchus obliquidens
Cephalorhynchus heavisidii
Lagenorhynchus australis
Lagenorhynchus cruciger
Steno bredanensis
Sotalia fluviatilis
Sotalia guianensis
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Stenella attenuata
Tursiops aduncus
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Delphinus delphis

Figure 3: A model-averaged MiSSE analysis of the cetacean phylogeny of Steeman et al. (2009) shows an
apparent slow down in the net diversification through time.

##
## (2) A mapped continuous trait on the range (0.074823, 0.205397).

Of course, in this example we have a set of models that includes models that contain upwards of five rate
classes. Also, we know from AIC that there are three model – the three-, four-, and five rate class models –
that are within 2 AIC units away from each. As we do in all other hisse functions, we allow for plots to be
model-averaging of the rates at nodes and tips. To do this, we simply supply all reconstructions you want to
average as elements in a list. There are many ways to generate a list, but here is one way:
misse.results.list = list()
misse.results.list[[1]] = one.rate.recon
misse.results.list[[2]] = two.rate.recon
misse.results.list[[3]] = three.rate.recon
misse.results.list[[4]] = four.rate.recon
misse.results.list[[5]] = five.rate.recon

And, as before, we simply supply this list to the plotting function, plot.misse.states(), and plot net
diversification (see Figure 3).
plot.misse.states(misse.results.list, rate.param="net.div", show.tip.label=TRUE, type="phylogram",

fsize=.25, legend="none")

## $rate.tree
## Object of class "contMap" containing:
##
## (1) A phylogenetic tree with 87 tips and 86 internal nodes.
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##
## (2) A mapped continuous trait on the range (0.047889, 0.229038).

Fixing extinction fraction

Estimating extinction is hard. This affects all diversification models (even if all you want and look at is
speciation rate, extinction rate estimates still affect what this is as they affect the likelihood). It is most
noticeable in MiSSE with extinction fraction (extinction rate divided by speciation rate). One option, following
Magallon & Sanderson (2001), is to set extinction fraction at set values. We have made this straightforward
to do in the MiSSE() function call. The first step is to setup a Yule-based MiSSE() run by supplying a vector
of zeros for eps that is of equal length to the number of turnover rate classes:
turnover <- c(1,2)
eps <- c(0,0)

In the function call, there is an option called fixed.eps. Normally, this is set to NULL, which indicates that
extinction fraction is to be estimated. When a value is supplied to fixed.eps this will be the value used
throughout the parameter search. Here we assume there are two rate classes and a fixed extinction fraction
of 0.90:
two.rate <- MiSSE(phy, f=1, turnover=turnover, eps=eps, fixed.eps=0.9)

Other considerations

Like with hisse, GeoHiSSE, and MuHiSSE, there are functions available for generating estimates of the
uncertainty in the parameter estimates (i.e., SupportRegionMiSSE()), and to obtain model averages (i.e.,
GetModelAveRates()) for nodes, for tips, or for both to be used in post-hoc tests. Users are encouraged to
read other vignettes and help pages provided for more information. For more conceptual discussions of these
functions and ideas, readers are also encouraged to read Caetano et al. (2018).

There are two additional items that are worth mentioning. First, like with MuHiSSE, I would recommend users
try multiple random starting points when optimizing any given model with MiSSE. In Nakov et al. (2018), we
found that the default starting values often did not return the highest log likelihood. To alleviate this issue,
we performed ≥ 50 maximum likelihood optimizations for each model, each initiated from a distinct starting
point. All functions within hisse are provided with starting.vals option for these purposes.

Second, we note that MiSSE may seem slower than most other functions within hisse. This is somewhat
intentional. Underneath the hood we have implemented a lot of checks to the integration for calculating
probabilities along branches. This will mean that often times weird messages will spit out to the screen.
For now, ignore them, the optimization “feels” these issues and takes necessary action. But this also means
that users must pay particular attention to the complexity of the models they are fitting and critically think
whether or not the parameters make sense. For example, in cetacean tree used above, I attemped to fit
a model with three, four, and five hidden states, A, B, and C, but the reconstructions indicated a rather
complicated, and highly uncertain, diversification history:
two.rate

##
## Fit
## lnL AIC AICc n.taxa
## -271.7681 551.5363 552.0241 87.0000
## n.hidden.states
## 2.0000
##
## Model parameters:
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##
## turnover0A eps0A turnover0B eps0B q0
## 7.489769e-02 2.061154e-09 2.052022e-01 2.061154e-09 3.743782e-03

three.rate

##
## Fit
## lnL AIC AICc n.taxa
## -263.9931 537.9863 538.7270 87.0000
## n.hidden.states
## 3.0000
##
## Model parameters:
##
## turnover0A eps0A turnover0B eps0B turnover0C eps0C
## 0.008069096 0.275802793 0.008083110 0.275802793 0.340152955 0.275802793
## q0
## 0.131447160

Note that the likelihood was a significant improvement from the two rate model, but the transition rate, q, is
roughly two orders of magnitude higher (q = 0.131) relative to the two-rate model estimate (q = 0.004). The
same is true for the four and five rate class models. What does this mean? Well, we can convert this into the
expected number of transitions by multiplying the rate by the sum of the branch lengths in the cetacean
phylogeny:
expected.transitions.two <- 0.004 * sum(two.rate$phy$edge.length)
expected.transitions.two

## [1] 3.281109

expected.transitions.three <- 0.131 * sum(three.rate$phy$edge.length)
expected.transitions.three

## [1] 107.4563

At first glance, this might seem that something is off with the three-rate class model – e.g., 3 vs. 107 number
of shifts among the different classes? However, examining the support region around the parameters can give
an indication as to the overall reliability of these estimates:
load("misse.support.Rsave")
two.rate.support$ci[,"q0"]

## 0% 25% 50% 75% 100%
## 0.0009535839 0.0036835840 0.0065180114 0.0106515654 0.0206332391

three.rate.support$ci[,"q0"]

## 0% 25% 50% 75% 100%
## 0.06839226 0.11308939 0.13144716 0.15736921 0.22772718

In the case of the two rate class model, even though the MLE indicates very few transitions among the rate
classes, there is a model within 2 log likelihood units that suggests as many as 17 expected transitions. In
other words, the q estimate even under the two rate class model is fairly certain. We suspect that what
is being picked up by these models is something that is both clade-specific (i.e., implied by the two rate
class model) and time-dependent (i.e., implied by the three, four, and five rate class models), with the latter
exerting the strongest influence on the overall fit.
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MiSSE Greedy

With the way MiSSE() is implemented there are 52 possible models one could try, which would require
coding each model by hand. Of course, a model where there are 26 different classes of turnover rates may be
far too parameter rich that it’s not even worth trying. The difficulty then is determining what the “right”
stopping point is in terms of adding further model complexity. We implemented MiSSEGreedy() as means of
automating the process of fitting a set of MiSSE() models. It first runs a chunk of models, determines the
“best” based on AIC, then it continues on from that complexity until the a more complex model is less than
some user defined ∆AIC than the current best model. At that point, MiSSEGreedy() stops running new
models. Since this is based on current best AICc, and we start with simplest models. However, note that this
produces an asymmetry, where a terrible model with no rate variation is always included, but a slightly less
terrible model with 26 turnover rates might never be evaluated.

This functions work much faster when run in parallel. To do this, we include an option n.cores to allow
users to set the number of available cores on your machine. The default is one core. Since many models
are evaluated, the most natural approach is to run one model per core, see if at least one of the models
are still ok, then send out the next models out to all the cores. Setting n.cores to the number of parallel
jobs you want, and leaving chunk.size set to NULL, will do this. However, this is slightly inefficient – the
odds are that some cores will finish earlier than others, and will be waiting until all finish. So a different
approach is to set a chunk.size greater than n.cores – it will still use no more than n.cores at a time, but once
one model in the set finishes it will send off the next until all models in the chunk are run. This keeps the
computer even busier, but then it won’t stop to check to make sure the models are still feasible as often,
and it only saves intermediate results after each chunk of models finishes. Our recommendation is to use
n.cores=parallel::detectCores() if you’re on a machine where you can use all the cores and leave chunk.size
unspecified (so it will also default to n.cores), but it’s up to you.

After every chunk of models are done, this function will display the status: what models have been run, what
the likelihoods and AICs are, etc. It will also predict how long future runs will check, based on a linear
regression between the number of free parameters and log(minutes to run). These are just estimates based on
the runs so far, but it’s a stochastic search and can take more or less time. Here is a very straightforward
MiSSEGreedy() run:
model.set <- MiSSEGreedy(tree, possible.combos=generateMiSSEGreedyCombinations(4), n.cores=4)

The output in model.set is a list of models evaluated. From there you can just loop over each model and do
the rate class reconstruction:
model.recons <- as.list(1:length(model.set))
for (model_index in 1:length(model.set)) {

nturnover <- length(unique(model.set[[model_index]]$turnover))
neps <- length(unique(model.set[[model_index]]$eps))
misse_recon <- MarginReconMiSSE(phy = model.set[[model_index]]$phy, f = 1,

hidden.states = nturnover,
pars = model.set[[model_index]]$solution,
aic = model.set[[model_index]]$AIC)

model.recons[[model_index]] <- misse_recon
}

As with any other function contained within hisse, the output from the character reconstruction can be
used to obtain model averaged rates, such the estimated rates for each tip in the tree:
tip.rates <- GetModelAveRates(model.recons, type = c("tips"))

We recommend also taking a look at the function generateMiSSEFGreedyCombinations(), which we used
in the MiSSEGreedy() example above. This creates the set of combinations of models to run through
MiSSEGreedy() as a data.frame. It has columns for the number of rates to estimate for turnover, the number
of values to estimate for extinction fraction (eps), and any fixed values for eps to apply to the whole tree.
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You can add your own rows or delete some to this data.frame to add more or fewer combinations. By default,
this comes out ordered so that simpler models are run first in MiSSEGreedy() but that is not required (but
wise for most use cases), and you can reorder if you wish. turnover.tries and eps.tries set how many
turnover and eps hidden states to try, respectively. If you wanted to try only 1, 3, and 7 hidden states for
turnover you would set turnover.tries = c(1, 3, 7) for example.

As discussed above estimating extinction rates is hard. This affects all diversification models (even if all
you want and look at is speciation rate, extinction rate estimates still affect what this is as they affect the
likelihood). It is most noticeable in MiSSE with eps, the extinction fraction (extinction rate divided by
speciation rate). One option, following Magallon & Sanderson (2001), is to set extinction fraction at set
values. By default, we use the somewhat arbitrary values of Magallon & Sanderson (2001) – 0 (meaning a
Yule model - no extinction) or 0.9 (a lot of extinction, though still less than paleontoligists find). You can set
your own in fixed.eps.tries. If you only want to use fixed values, and not estimate, get rid of the NA, as
well. However, don’t “cheat” – if you use a range of values for fixed.eps, it’s basically doing a search for this,
though the default AICc calculation doesn’t “know” this to penalize it for another parameter.

HiSSE and, by extension, MiSSE assume that a taxon has a particular hidden state. Thus, they’re written
to assume that we “paint” these states on the tree and a given state affects both turnover and eps. So if
turnover has four hidden states, eps has four hidden states. They can be constrained: the easiest way is to
have, say, turnover having an independent rate for each hidden state and eps having the same rate for all the
hidden states. If vary.both is set to FALSE, all models are of this sort: if turnover varies, eps is constant
across all hidden states, or vice versa. Jeremy Beaulieu prefers this. If vary.both is set to TRUE, both can
vary: for example, there could be five hidden states for both turnover and eps, but turnover lets each of these
have a different rate, but eps only allows three values (so that eps_A and eps_D might be forced to be equal,
and eps_B and eps_E might be forced to be equal). Brian O’Meara would consider allowing this, while
cautioning you about the risks of too many parameters.
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