Package 'hdpca'

October 23, 2019

Type Package Title Principal Component Analysis in High-Dimensional Data Version 1.1.3 Date 2019-10-23 Author Rounak Dey, Seunggeun Lee Maintainer Rounak Dey <deyrnk@umich.edu> **Description** In high-dimensional settings: Estimate the number of distant spikes based on the Generalized Spiked Population (GSP) model. Estimate the population eigenvalues, angles between the sample and population eigenvectors, correlations between the sample and population PC scores, and the asymptotic shrinkage factors. Adjust the shrinkage bias in the predicted PC scores. Dey, R. and Lee, S. (2019) <doi.org/10.1016/j.jmva.2019.02.007>. **Depends** R (>= 3.0.0) License GPL (>= 2) **Repository** CRAN Imports lpSolve, boot

NeedsCompilation no

Date/Publication 2019-10-23 14:30:08 UTC

R topics documented:

	hapmap	2 5	
[9	

Index

hapmap

Description

The example dataset is from the Hapmap Phase III project (http://hapmap.ncbi.nlm.nih.gov/). Our training sample consisted of unrelated individuals from two different populations: a) Utah residents with Northern and Western European ancestry (CEU), and b) Toscans in Italy (TSI). We present the eigenvalues and PC scores obtained from performing PCA on the SNPs on chromosome 7.

Format

This example dataset is a list containing the following elements:

train.eval Sample eigenvalues of the training sample.

trainscore PC scores of the training sample. This has PC1 and PC2 scores for 198 observations.

testscore We obtained the predicted scores by leaving one observation out at a time, applying PCA to the rest of the data and then predicting the PC score of the left out observation. This has PC1 and PC2 scores of 198 observations.

nSamp Number of observations in the training set = 198.

nSNP Number of SNPs on chromosome 7.

hdpc_est

High-dimensional PCA estimation

Description

Estimates the population eigenvalues, angles between the sample and population eigenvectors, correlations between the sample and population PC scores, and the asymptotic shrinkage factors. Three different estimation methods can be used.

Usage

```
hdpc_est(samp.eval, p, n, method = c("d.gsp", "l.gsp", "osp"),
n.spikes, n.spikes.max, n.spikes.out, nonspikes.out = FALSE, smooth = TRUE)
```

Arguments

samp.eval	Numeric vector containing the sample eigenvalues. The vector must have dimension $n \circ n-1$, it may be unordered.
р	The number of features.
n	The number of samples.

hdpc_est

method	String specifying the estimation method. Possible values are "d.gsp" (default),"1.gsp" and "osp".
n.spikes	Number of distant spikes in the population (Optional).
n.spikes.max	Upper bound of the number of distant spikes in the population. Optional, but needed if n.spikes is not specified. Ignored if n.spikes is specified.
n.spikes.out	Number of distant spikes to be returned in the output (Optional). If not specified, all the estimated distant spikes are returned.
nonspikes.out	Logical. If TRUE and method="l.gsp", the estimated set of non-spikes are re- turned. If TRUE and method="osp", the estimated value of the non-spike is returned.
smooth	Logical. If TRUE and method="l.gsp", kernel smoothing will be performed on the estimated population eigenvalue spectrum. Default is TRUE.

Details

The different choices for method are:

- "d.gsp": *d*-estimation method based on the Generalized Spiked Population (GSP) model.
- "l.gsp": λ -estimation method based on the GSP model.
- "osp": Estimation method based on the Ordinary Spiked Population (OSP) model.

At least one of n.spikes and n.spikes.max must be provided. If n.spikes is provided then n.spikes.max is ignored, else n.spikes.max is used to find out the number of distant spikes using select.nspike.

The argument nonspikes.out is ignored if method="d.gsp".

The argument smooth is useful when the user assumes the population spectral distribution to be continuous.

Value

spikes	An array of estimated distant spikes. If n.spikes.out is specified, only largest n.spikes.out many eigenvalues are returned.
n.spikes	Number of distant spikes. If n.spikes is not provided, then the estimated value is returned.
angles	An array of estimated cosines of angles between the sample and population eigenvectors corresponding to the distant spikes. The k^{th} element of the array is the estimated cosine of the angle between k^{th} sample and population eigenvectors. If n. spikes.out is specified, only first n. spikes.out many cos(angle)-s are returned.
correlations	An array of estimated correlations between the sample and population PC scores corresponding to the distant spikes. The k^{th} element of the array is the estimated correlation between k^{th} sample and population PC scores. If n.spikes.out is specified, only first n.spikes.out many correlations are returned.
shrinkage	An array of estimated asymptotic shrinkage factors corresponding to the distant spikes. If n.spikes.out is specified, only first n.spikes.out many shrinkage factors are returned.

loss	If method="l.gsp", L-infinity loss function for the spectrum estimation is re- turned.
nonspikes	If nonspikes.out=TRUE, estimated non-spikes are returned. If λ -estimation method is used then this is a numeric vector of length p-n.spikes. If OSP model based method is used then this is a scalar number.

Author(s)

Rounak Dey, <deyrnk@umich.edu>

References

Dey, R. and Lee, S. (2019). Asymptotic properties of principal component analysis and shrinkagebias adjustment under the generalized spiked population model. Journal of Multivariate Analysis, Vol 173, 145-164.

See Also

select.nspike,pc_adjust

Examples

data(hapmap)
#n = 198, p = 75435 for this data

```
m<-select.nspike(train.eval,p,n,n.spikes.max=10,evals.out=FALSE)$n.spikes
out<-hdpc_est(train.eval, p, n, method = "d.gsp",
n.spikes=m, n.spikes.out=2, nonspikes.out = FALSE) #Output 2 spikes, no non-spike</pre>
```

```
out<-hdpc_est(train.eval, p, n, method = "l.gsp",
n.spikes=m, nonspikes.out = FALSE) #Output m many spikes, no non-spike
```

```
out<-hdpc_est(train.eval, p, n, method = "l.gsp",
n.spikes.max=10, nonspikes.out = TRUE) #Output all eigenvalues
```

```
out<-hdpc_est(train.eval, p, n, method = "osp",
n.spikes=m, n.spikes.out=2, nonspikes.out = TRUE) #Output m many spikes, no non-spike
```

End(Not run)

pc_adjust

Description

Adjusts the shrinkage bias in the predicted PC scores based on the estimated shrinkage factors.

Usage

```
pc_adjust(train.eval, p, n, test.scores, method = c("d.gsp", "l.gsp", "osp"),
n.spikes, n.spikes.max, smooth = TRUE)
```

Arguments

pThe number of features.nThe number of training samples.test.scoresAn $m \times k$ matrix or data frame containing the first k predicted PC scores of m many test samples.methodString specifying the estimation method. Possible values are "d.gsp" (default),"l.gsp and "osp".n.spikesNumber of distant spikes in the population (Optional).n.spikes.maxUpper bound of the number of distant spikes in the population. Optional, but needed if n.spikes is not specified. Ignored if n.spikes is specified.smoothLogical. If TRUE and method="l.gsp", kernel smoothing will be performed on the estimated population eigenvalue spectrum. Default is TRUE.	train.eval	Numeric vector containing the sample eigenvalues. The vector must have dimension $n \circ n-1$, it may be unordered.
 test.scores An m × k matrix or data frame containing the first k predicted PC scores of m many test samples. method String specifying the estimation method. Possible values are "d.gsp" (default),"l.gsp" and "osp". n.spikes Number of distant spikes in the population (Optional). n.spikes.max Upper bound of the number of distant spikes in the population. Optional, but needed if n.spikes is not specified. Ignored if n.spikes is specified. smooth Logical. If TRUE and method="l.gsp", kernel smoothing will be performed on 	р	The number of features.
many test samples.methodString specifying the estimation method. Possible values are "d.gsp" (default),"l.gsp" and "osp".n.spikesNumber of distant spikes in the population (Optional).n.spikes.maxUpper bound of the number of distant spikes in the population. Optional, but needed if n.spikes is not specified. Ignored if n.spikes is specified.smoothLogical. If TRUE and method="l.gsp", kernel smoothing will be performed on	n	The number of training samples.
and "osp".n.spikesn.spikes.maxUpper bound of the number of distant spikes in the population. Optional, but needed if n.spikes is not specified. Ignored if n.spikes is specified.smoothLogical. If TRUE and method="l.gsp", kernel smoothing will be performed on	test.scores	0 1
 n.spikes.max Upper bound of the number of distant spikes in the population. Optional, but needed if n. spikes is not specified. Ignored if n. spikes is specified. smooth Logical. If TRUE and method="l.gsp", kernel smoothing will be performed on 	method	String specifying the estimation method. Possible values are "d.gsp" (default),"l.gsp" and "osp".
needed if n. spikes is not specified. Ignored if n. spikes is specified.smoothLogical. If TRUE and method="l.gsp", kernel smoothing will be performed on	n.spikes	Number of distant spikes in the population (Optional).
	n.spikes.max	
	smooth	

Details

The different choices for method are:

- "d.gsp": d-estimation method based on the Generalized Spiked Population (GSP) model.
- "l.gsp": λ -estimation method based on the GSP model.
- "osp": Estimation method based on the Ordinary Spiked Population (OSP) model.

The $(i, j)^{th}$ element of test.scores should denote the j^{th} predicted PC score for the i^{th} subject in the test sample.

At least one of n.spikes and n.spikes.max must be provided. If n.spikes is provided then n.spikes.max is ignored, else n.spikes.max is used to find out the number of distant spikes using select.nspike.

The argument nonspikes.out is ignored if method="d.gsp" or "osp".

The argument smooth is useful when the user assumes the population spectral distribution to be continuous.

Value

A matrix containing the bias-adjusted PC scores. The dimension of the matrix is the same as the dimension of test.scores.

A printed message shows the number of top PCs that were adjusted for shrinkage bias.

Author(s)

Rounak Dey, <deyrnk@umich.edu>

References

Dey, R. and Lee, S. (2019). Asymptotic properties of principal component analysis and shrinkagebias adjustment under the generalized spiked population model. Journal of Multivariate Analysis, Vol 173, 145-164.

See Also

hdpc_est,select.nspike

Examples

```
data(hapmap)
#n = 198, p = 75435 for this data
```

```
m<-select.nspike(train.eval,p,n,n.spikes.max=10,evals.out=FALSE)$n.spikes
score.adj.o1<-pc_adjust(train.eval,p,n,testscore,method="osp",n.spikes=m)
score.adj.d1<-pc_adjust(train.eval,p,n,testscore,method="d.gsp",n.spikes=m)
score.adj.l1<-pc_adjust(train.eval,p,n,testscore,method="l.gsp",n.spikes=m)</pre>
```

```
#Or you can provide an upper bound n.spikes.max
score.adj.o2<-pc_adjust(train.eval,p,n,testscore,method="osp",n.spikes.max=10)
score.adj.d2<-pc_adjust(train.eval,p,n,testscore,method="d.gsp",n.spikes.max=10)
score.adj.l2<-pc_adjust(train.eval,p,n,testscore,method="l.gsp",n.spikes.max=10)</pre>
```

```
#Plot the training score, test score, and adjusted scores
plot(trainscore,pch=19)
points(testscore,col='blue',pch=19)
points(score.adj.o1,col='red',pch=19)
points(score.adj.d2,col='green',pch=19)
```

End(Not run)

select.nspike

Description

Estimates the number of distant spikes in the population based on the Generalized Spiked Population model. A finite upper bound (n.spikes.max) of the number of distant spikes must be provided.

Usage

```
select.nspike(samp.eval, p, n, n.spikes.max, evals.out = FALSE, smooth = TRUE)
```

Arguments

samp.eval	Numeric vector containing the sample eigenvalues. The vector must have dimension n or $n-1$, it may be unordered.
р	The number of features.
n	The number of samples.
n.spikes.max	Upper bound of the number of distant spikes in the population.
evals.out	Logical. If TRUE, the estimated spikes and non-spikes are returned.
smooth	Logical. If TRUE, kernel smoothing will be performed on the estimated popula- tion eigenvalue spectrum. Default is TRUE.

Details

The function searches between 0 and n.spikes.max to find out the number of distant spikes in the population. It also estimates both non-spiked and spiked eigenvalues based on the λ -estimation method.

The argument smooth is useful when the user assumes the population spectral distribution to be continuous.

Value

n.spikes	Estimated number of distant spikes.
spikes	If evals.out=TRUE, estimated distant spikes are returned.
nonspikes	If evals.out=TRUE, estimated non-spikes are returned.
loss	If evals.out=TRUE, L-infinity loss function for the spectrum estimation is re- turned.

Author(s)

Rounak Dey, <deyrnk@umich.edu>

References

Dey, R. and Lee, S. (2019). Asymptotic properties of principal component analysis and shrinkagebias adjustment under the generalized spiked population model. Journal of Multivariate Analysis, Vol 173, 145-164.

See Also

hdpc_est,pc_adjust

Examples

```
data(hapmap)
#n = 198, p = 75435 for this data
```

select.nspike(train.eval,p,n,n.spikes.max=10,evals.out=FALSE)

#If you want the estimated spikes and non-spikes
out<-select.nspike(train.eval,p,n,n.spikes.max=10,evals.out=TRUE)</pre>

End(Not run)

Index

*Topic multivariate
 hdpc_est, 2
 pc_adjust, 5
 select.nspike, 7
*Topic optimize
 hdpc_est, 2
 select.nspike, 7
hapmap, 2

hdpc_est, 2, 6, 8

pc_adjust, *4*, *5*, *8*

select.nspike, 3-6, 7