Package 'hdi'

March 29, 2019
Type Package
Title High-Dimensional Inference
Version 0.1-7
Date 2019-03-27
Author Lukas Meier [aut, cre], Ruben Dezeure [aut], Nicolai Meinshausen [aut], Martin Maechler [aut], Peter Buehlmann [aut]
Maintainer Lukas Meier meier@stat.math.ethz.ch
Description Implementation of multiple approaches to perform inference in high-dimensional models.
Depends scalreg
DependsNote scalreg does not correctly import lars etc, so we need to depend on it

Imports grDevices, graphics, stats, parallel, MASS, glmnet, linprog
Suggests Matrix
SuggestsNote for tests only
Encoding UTF-8
License GPL
Repository CRAN
Repository/R-Forge/Project hdi
Repository/R-Forge/Revision 155
Repository/R-Forge/DateTimeStamp 2019-03-29 09:03:20
Date/Publication 2019-03-29 10:50:03 UTC
NeedsCompilation no

R topics documented:

hdi-package 2
boot.lasso.proj 4
clusterGroupBound 6
fdr.adjust 9
glm.pval 10
groupBound 11
hdi 13
lasso.cv 15
lasso.firstq 16
lasso.proj 17
lm.ci 19
lm.pval 20
multi.split 21
plot.clusterGroupBound 24
riboflavin 25
ridge.proj 26
rXb 28
stability 30
Index 32
hdi-package $h d i$

Description

Implementation of multiple approaches to perform inference in high-dimensional models.

Details

The DESCRIPTION file:

Package:
Type:
Title:
Version:
Date:
Author:
Maintainer:
Description:
Depends:
DependsNote:
Imports:
Suggests:
SuggestsNote:
Encoding:
License:
Repository:
Repository/R-Forge/Project:
Repository/R-Forge/Revision:
Repository/R-Forge/DateTimeStamp: 2019-03-29 09:03:20
Date/Publication:
hdi
Package
High-Dimensional Inference
0.1-7

2019-03-27 scalreg

Matrix
for tests only
UTF-8
GPL
R-Forge
hdi
155
2019-03-29 09:03:20

Lukas Meier [aut, cre], Ruben Dezeure [aut], Nicolai Meinshausen [aut], Martin Mae Lukas Meier meier@stat.math.ethz.ch
Implementation of multiple approaches to perform inference in high-dimensional mod
scalreg does not correctly import lars etc, so we need to depend on it
grDevices, graphics, stats, parallel, MASS, glmnet, linprog

Index of help topics:

boot.lasso.proj	P-values based on the bootstrapped lasso projection method Hierarchical structure group tests in linear model
clusterGroupBound	Function to calculate FDR adjusted p-values fdr.adjust glm.pval genction to calculate p-values for a
groupBound	Lener bound on the l1-norm of groups of regression variables
hdi	Function to perform inference in high-dimensional (generalized) linear models hdi
hdi-package	Select Predictors via (10-fold) Cross-Validation of the Lasso
lasso.cv	Determine the first q Predictors in the Lasso Path
lasso.proj	P-values based on lasso projection method Function to calculate confidence intervals for
lm.pi	ordinary multiple linear regression.
Function to calculate p-values for ordinary	
multiple linear regression.	

Author(s)

Lukas Meier, Ruben Dezeure, Nicolai Meinshausen, Martin Mächler, Peter Bühlmann, Maintainer: Lukas Meier meier@stat.math.ethz.ch

References

Dezeure, R., Bühlmann, P., Meier, L. and Meinshausen, N. (2015) High-dimensional inference: confidence intervals, p-values and R-software hdi. Statistical Science 30, 533-558.

Meinshausen, N., Meier, L. and Bühlmann, P. (2009) P-values for high-dimensional regression. Journal of the American Statistical Association 104, 1671-1681.

Meinshausen, N. (2015) Group-bound: confidence intervals for groups of variables in sparse highdimensional regression without assumptions on the design. Journal of the Royal Statistical Society: Series B, 77(5), 923-945.

Meinshausen, N. and Bühlmann, P. (2010) Stability selection (with discussion). Journal of the Royal Statistical Society: Series B 72, 417-473.
boot.lasso.proj P-values based on the bootstrapped lasso projection method

Description

Compute p-values based on the lasso projection method, also known as the de-sparsified Lasso, using the bootstrap to approximate the distribution of the estimator.

Usage

```
    boot.lasso.proj(x, y, family = "gaussian", standardize = TRUE,
                    multiplecorr.method = "WY",
                        parallel = FALSE, ncores = getOption("mc.cores", 2L),
                        betainit = "cv lasso", sigma = NULL, Z = NULL, verbose = FALSE,
                        return.Z = FALSE, robust= FALSE,
                B = 1000, boot.shortcut = FALSE,
                    return.bootdist = FALSE, wild = FALSE,
                    gaussian.stub = FALSE)
```


Arguments

$x \quad$ Design matrix (without intercept).
$y \quad$ Response vector.
family family
standardize Should design matrix be standardized to unit column standard deviation.
multiplecorr.method
Either "WY" or any of p.adjust.methods.
parallel Should parallelization be used? (logical)
ncores Number of cores used for parallelization.
betainit Either a numeric vector, corresponding to a sparse estimate of the coefficient vector, or the method to be used for the initial estimation, "scaled lasso" or "cv lasso".
sigma Estimate of the standard deviation of the error term. This estimate needs to be compatible with the initial estimate (see betainit) provided or calculated. Otherwise, results will not be correct.
Z user input, also see return. Z below
verbose A boolean to enable reporting on the progress of the computations. (Only prints out information when Z is not provided by the user)
return. $Z \quad$ An option to return the intermediate result which only depends on the design matrix x. This intermediate results can be used when calling the function again and the design matrix is the same as before.

```
    robust Uses a robust variance estimation procedure to be able to deal with model mis- specification.
    B The number of bootstrap samples to be used.
    boot.shortcut A boolean to enable the computational shortcut for the bootstrap. If set to true, the lasso is not re-tuned for each bootstrap iteration, but it uses the tuning parameter computed on the original data instead.
return.bootdist
A boolean specifying if one is to return the computed bootstrap distributions to the estimator. (Matrix size: \(n \operatorname{col}(\mathrm{x}) * \mathrm{~B}\) ) If the multiple testing method was chosen to be WY, the bootstrap distribution computer under the complete null hypothesis is returned as well. This option is required if one wants to compute confidence intervals afterwards.
wild Perform the wild bootstrap based on \(\mathrm{N}(0,1)\) distributed random variables
gaussian.stub DEVELOPER OPTION. Only enable if you know what you are doing. A boolean to run stub code instead of actually bootstrapping the estimator. It generates a finite sample distribution for each estimate by sampling B samples from \(\mathrm{N}\left(0, \operatorname{lhat}\{\text { s.e. }\}_{-} \mathrm{j}^{\wedge} 2\right)\). (Note: we do not sample from the multivariate gaussian with the covariance matrix. Therefore, no dependencies are modelled at all.) Useful for debugging and for checking if the bootstrap is way off for some reason.
```


Value

pval Individual p-values for each parameter.
pval.corr \quad Multiple testing corrected p-values for each parameter.
sigmahat $\quad \widehat{\sigma}$ coming from the scaled lasso.
Z Only different from NULL if the option return. Z is on. This is an intermediate result from the computation which only depends on the design matrix x. These are the residuals of the nodewise regressions.
B The number of bootstrap samples used.
boot. shortcut If the bootstrap shortcut has been used or not.
lambda What tuning parameter was used for the bootstrap shortcut. NULL if no shortcut was used or if no valid lambda was available to use for the shortcut.
cboot.dist Only different from NULL if the option return.bootdist is on. This is a ncol(x)*B matrix where each row contains the computed centered bootstrap distribution for that estimate.
cboot.dist.underH0
Only different from NULL if the option return.bootdist is on and if the multiple testing method is WY. This is a $\operatorname{ncol}(\mathrm{x})^{*} \mathrm{~B}$ matrix where each row contains the computed centered bootstrap distribution for that estimate. These bootstrap distributions were computed under the complete null hypothesis ($\mathrm{b} _1=\ldots=\mathrm{b} _\mathrm{p}=$ $0)$.

Author(s)

Ruben Dezeure

References

van de Geer, S., Bühlmann, P., Ritov, Y. and Dezeure, R. (2014) On asymptotically optimal confidence regions and tests for high-dimensional models. Annals of Statistics 42, 1166-1202.
Zhang, C., Zhang, S. (2014) Confidence intervals for low dimensional parameters in high dimensional linear models. Journal of the Royal Statistical Society: Series B 76, 217-242.
Bühlmann, P. and van de Geer, S. (2015) High-dimensional inference in misspecified linear models. Electronic Journal of Statistics 9, 1449-1473.
Dezeure, R., Bühlmann, P. and Zhang, C. (2016) High-dimensional simultaneous inference with the bootstrap http://arxiv.org/abs/1606.03940

Examples

```
x <- matrix(rnorm(100*20), nrow = 100, ncol = 10)
y <- x[,1] + x[,2] + rnorm(100)
fit.lasso <- boot.lasso.proj(x, y)
which(fit.lasso$pval.corr < 0.05) # typically: '1' and '2' and no other
## Use the computational shortcut for the bootstrap to speed up
## computations
fit.lasso.shortcut <- boot.lasso.proj(x, y, boot.shortcut = TRUE)
which(fit.lasso.shortcut$pval.corr < 0.05) # typically: '1' and '2' and no other
```

```
## Return the bootstrap distribution as well and compute confidence intervals based on it
fit.lasso.allinfo <- boot.lasso.proj(x, y, return.bootdist = TRUE)
confint(fit.lasso.allinfo, level = 0.95)
confint(fit.lasso.allinfo, parm = 1:3)
## Use the scaled lasso for the initial estimate
fit.lasso.scaled <- boot.lasso.proj(x, y, betainit = "scaled lasso")
which(fit.lasso.scaled$pval.corr < 0.05)
## Use a robust estimate for the standard error
fit.lasso.robust <- boot.lasso.proj(x, y, robust = TRUE)
which(fit.lasso.robust$pval.corr < 0.05)
```

clusterGroupBound Hierarchical structure group tests in linear model

Description

Computes confidence intervals for the 11-norm of groups of linear regression coefficients in a hierarchical clustering tree.

Usage

```
clusterGroupBound(x, y, method = "average",
    dist = as.dist(1 - abs(cor(x))), alpha = 0.05,
    eps = 0.1, hcloutput, nsplit = 11,
    s = min(10, ncol(x) - 1),
    silent = FALSE, setseed = TRUE, lpSolve = TRUE)
```


Arguments

x
$\mathrm{y} \quad$ numeric response variable of length n.
method a character string; the method used for constructing the hierarchical clustering tree (default: "average" for "average linkage") via hclust. Alternatively, you can provide your own hierarchical clustering through the optional argument hcloutput.
dist a distance matrix can be specified on which the hierarchical clustering will be based (see dist). The default option is that the distance between variables will be calculated as 1 less the absolute correlation matrix. Alternatively, you can provide your own hierarchical clustering through the optional argument hcloutput.
alpha numeric level in $(0,1)$ at which the test / confidence intervals are to be constructed.
eps a level of eps*alpha is used and the values of different splits are aggregated using the (1-eps) quantile. See reference below for more details.
hcloutput optionally, the value of a hclust() call. If it is provided, the arguments dist and method are ignored.
nsplit the number of data splits used.
s
the dimensionality of the projection that is used. Lower values lead to faster computation and if $n>50$, then s is set to 50 if left unspecified, to avoid lengthy computations.
silent logical enabling progress output.
setseed a logical; if this is true (recommended), then the same random seeds are used for all groups, which makes the confidence intervals simultaneously valid over all groups of variables tested.
lpSolve logical; only set it to false if lpSolve() is not working on the current machine: setting it to false will result in much slower computations; only use on small problems.

Value

Returns a list with components
groupNumber The index of the group tested in the original hierarchical clustering tree
members A list containing the variables that belong into each testes group

noMembers	A vector containing the number of members in each group
lowerBound	The lower bound on the 11-norm in each group
position	The position on the x-axis of each group (used for plotting)
leftChild	Gives the index of the group that corresponds to the left child node in the tested tree (negative values correspond to leaf nodes)
rightChild	Same as leftCHild for the right child of each node
isLeaf	Logical vector. Is TRUE for a group if it is a leaf node in the tested tree or if both child nodes have a zero lower bound on their group 11-norm

Author(s)

Nicolai Meinshausen

References

Meinshausen, N. (2015); JRSS B, see groupBound.

See Also

Use groupBound to compute the lower bound for selected groups of variables whereas you use this clusterGroupBound to test all groups in a hierarchical clustering tree.

Examples

```
## Create a regression problem with correlated design (n = 10, p = 3):
## a block of size 2 and a block of size 1, within-block correlation is 0.99
set.seed(29)
p <- 3
n <- 10
Sigma <- diag(p)
Sigma[1,2] <- Sigma[2,1] <- 0.99
x <- matrix(rnorm(n * p), nrow = n) %*% chol(Sigma)
## Create response with active variable 1
beta <- rep(0, p)
beta[1] <- 5
y <- as.numeric(x %*% beta + rnorm(n))
out <- clusterGroupBound(x, y, nsplit = 4) ## use larger value for nsplit!
## Plot and print the hierarchical group-test
plot(out)
```

```
print(out)
out$members
out$lowerBound
```

fdr.adjust Function to calculate FDR adjusted p-values

Description

Calculates FDR adjusted p-values similar to R-function p.adjust but *without* adjustment for multiplicity.

Usage

```
    fdr.adjust(p)
```


Arguments

p
Vector of p-values.

Details

It is assumed that the p -values are already corrected for multiplicity. P -values with a value of 1 are currently ignored.

Value

Vector of p -values.

Author(s)

Lukas Meier

References

Meinshausen, N., Meier, L. and Bühlmann, P. (2009), P-values for high-dimensional regression, Journal of the American Statistical Association 104, 1671-1681.

See Also

p.adjust

Examples

```
x <- matrix(rnorm(100*1000), nrow = 100, ncol = 1000)
y<- x[,1] * 2 + x[,2] * 2.5 + rnorm(100)
## Multi-splitting with lasso.firstq as model selector function
fit.multi <- multi.split(x, y, model.selector =lasso.firstq,
    args.model.selector = list(q = 10))
p.adjust <- fdr.adjust(fit.multi$pval.corr)
```

glm.pval Function to calculate p-values for a generalized linear model.

Description

Calculates (classical) p -values for an ordinary generalized linear model in the $\mathrm{n}>\mathrm{p}$ situation.

Usage

glm.pval(x, y, family = "binomial", verbose = FALSE, ...)

Arguments

x
Design matrix (without intercept).
y
Response vector.
family
As in glm.
verbose
Logical. Should information be printed out if algorithm did not converge?
... Additional arguments to be passed to glm.

Details

A model with intercept is fitted but the p-value of the intercept is not reported in the output.

Value

Vector of p-values (not including the intercept).

Author(s)

Lukas Meier

See Also

hdi

Examples

\#\# ...

Description

Computes a lower bound that forms a one-sided confidence interval for the group 11-norm of a specified group of regression parameters. It is assumed that errors have a Gaussian distribution with unknown noise level. The underlying vector that inference is made about is the 11 -sparsest approximation to the noiseless data.

Usage

```
groupBound(x, y, group, alpha = 0.05, eps = 0.1, nsplit = 11,
    s = min(10, ncol(x) - 1), setseed = TRUE,
    silent = FALSE, lpSolve = TRUE, parallel = FALSE,
    ncores = getOption("mc.cores", 2L))
```


Arguments

$\mathrm{x} \quad$ numeric design matrix of the regression $n \times p$ with p columns for p predictor variables and n rows corresponding to n observations.
$y \quad$ numeric response variable of length n.
group either a numeric vector with entries in $\{1, \ldots, p\}$ or a list with such numeric vectors. If group is a numeric vector, this is the group of variables for which a lower bound is computed. If group is a list, the lower bound is computed for each group in the list.
alpha numeric level in $(0,1)$ at which the test / confidence interval is computed.
eps a level of eps * alpha is used and the values of different splits are aggregated using the ($1-\mathrm{eps}$) quantile. See reference below for more details.
nsplit the number of data splits used.
s
the dimensionality of the projection that is used. Lower values lead to faster computation and if $n>50$, then s is set to 50 if left unspecified, to avoid lengthy computations.
setseed a logical; if this is true (recommended), then the same random seeds are used for all groups, which makes the confidence intervals simultaneously valid over all groups of variables tested.
silent logical enabling progress output.
lpSolve logical; only set it to false if lpSolve() is not working on the current machine: setting it to false will result in much slower computations; only use on small problems.
parallel should parallelization be used? (logical)
ncores number of cores used for parallelization.

Details

The data are split since the noise level is unknown. On the first part of the random split, a crossvalidated lasso solution is computed, using the glmnet implementation. This estimator is used as an initial estimator on the second half of the data. Results at level alpha are aggregated over nsplit splits via the median of results at levels alpha/2.

Value

If group is a single numeric vector, a scalar containg the lower bound for this group of variables is returned. If group is a list, a numeric vector is retuned where each entry corresponds to the group of variables defined in the same order in group.

Author(s)

Nicolai Meinshausen

References

Meinshausen, N. (2015) Group bound: confidence intervals for groups of variables in sparse high dimensional regression without assumptions on the design. Journal of the Royal Statistical Society: Series B, 77, 923-945; http://dx.doi.org/10.1111/rssb. 12094.

See Also

Use clusterGroupBound to test all groups in a hierarchical clustering tree.

Examples

```
## Create a regression problem with correlated design: p = 6, n = 50,
## block size B = 3 and within-block correlation of rho = 0.99
p <- 6
n <- 50
B <- 3
rho <- 0.99
ind <- rep(1:ceiling(p / B), each = B)[1:p]
Sigma <- diag(p)
for (ii in unique(ind)){
    id <- which(ind == ii)
    Sigma[id, id] <- rho
}
diag(Sigma) <- 1
x <- matrix(rnorm(n * p), nrow = n) %*% chol(Sigma)
## Create response with active variable 1
beta <- rep(0, p)
beta[1] <- 5
y <- as.numeric(x %*% beta + rnorm(n))
```

```
## Compute lower bounds:
## Lower bound for the L1-norm of *all* variables 1-6 of the sparsest
## optimal vector
nsplit <- 4 ## to make example run fast (use larger value)
lowerBoundAll <- groupBound(x, y, 1:p, nsplit = nsplit)
cat("\nlower bound for all variables 1-6: ", lowerBoundAll, "\n")
## Compute additional lower bounds:
q()## Lower bounds for variable 1 itself, then group {1,3}, 1-2, 1-3, 2-6,
lowerBound <- groupBound(x, y, list(1, c(1,3), 1:2, 1:3, 2:6),
                    nsplit = nsplit)
cat("lower bound for the groups\n\t {1}, {1,3}, {1,2}, {1..3}, {2..6}:\n\t",
    format(formatC(c(lowerBound))), "\n")
```

Function to perform inference in high-dimensional (generalized) linear models

Description

Perform inference in high-dimensional (generalized) linear models using various approaches.

Usage

hdi(x, y, method = "multi.split", B = NULL, fraction = 0.5, model.selector $=$ NULL, EV $=$ NULL, threshold $=0.75$, gamma $=\operatorname{seq}(0.05,0.99$, by $=0.01)$, classical.fit = NULL, args.model.selector = NULL, args.classical.fit = NULL, verbose = FALSE, ...)

Arguments

x
Design matrix (without intercept).
$y \quad$ Response vector.
method Multi-splitting ("multi.split") or stability-selection ("stability").
B
Number of sample-splits (for "multi.split") or sub-sample iterations (for "stability"). Default is 50 ("multi.split")or 100 ("stability"). Ignored otherwise.
fraction Fraction of data used at each of the B iterations.
model.selector Function to perform model selection. Default is lasso.cv ("multi.split") and lasso.firstq ("stability"). Function must have at least two arguments: x (the design matrix) and y (the response vector). Return value is the index vector of selected columns. See lasso.cv and lasso.firstq for examples. Additional arguments can be passed through args.model.selector.

EV	(only for "stability"). Bound(s) for expected number of false positives. Can be a vector.
(only for "stability"). Bound on selection frequency.	
threshold	
gamma	
classical.fit	
(only for "multi.split"). Vector of gamma-values.	
(only for "multi.split"). Function to calculate (classical) p-values. Default is	
lm.pval. Function must have at least two arguments: x (the design matrix) and y	
(the response vector). Return value is the vector of p-values. See lm. pval for an	
example. Additional arguments can be passed through args.classical.fit.	

Value

pval (only for "multi.split"). Vector of p-values.
gamma.min (only for "multi.split"). Value of gamma where minimal p-values was attained.
select (only for "stability"). List with selected predictors for the supplied values of EV.
EV (only for "stability"). Vector of corresponding values of EV.
thresholds (only for "stability"). Used thresholds.
freq (only for "stability"). Vector of selection frequencies.

Author(s)

Lukas Meier

References

Meinshausen, N., Meier, L. and Bühlmann, P. (2009) P-values for high-dimensional regression. Journal of the American Statistical Association 104, 1671-1681.
Meinshausen, N. and Bühlmann, P. (2010) Stability selection (with discussion). Journal of the Royal Statistical Society: Series B 72, 417-473.

See Also

```
stability,multi.split
```


Examples

```
x <- matrix(rnorm(100*1000), nrow = 100, ncol = 200)
y <- x[,1] * 2 + x[,2] * 2.5 + rnorm(100)
## Multi-splitting with lasso.firstq as model selector function
fit.multi <- hdi(x, y, method = "multi.split",
```

 model.selector =lasso.firstq,
 args.model.selector \(=\) list \((q=10)\))
 fit.multi
 fit.multi\$pval.corr[1:10] \#\# the first 10 p -values
\#\# Stability selection
fit.stab <- hdi(x, y, method = "stability", EV = 2)
fit.stab
fit.stab\$freq[1:10] \#\# frequency of the first 10 predictors
lasso.cv Select Predictors via (10-fold) Cross-Validation of the Lasso

Description

Performs (n-fold) cross-validation of the lasso (via cv.glmnet) and determines the prediction optimal set of parameters.

Usage

lasso.cv(x, y,
nfolds = 10,
grouped $=\operatorname{nrow}(x)>3 * n f o l d s$,
...)

Arguments

x
$y \quad$ response vector of length n.
nfolds the number of folds to be used in the cross-validation
grouped corresponds to the grouped argument to cv .glmnet. This has a smart default such that glmnet does not give a warning about too small sample size.
further arguments to be passed to cv .glmnet.

Details

The function basically only calls cv .glmnet, see source code.

Value

Vector of selected predictors.

Author(s)

Lukas Meier

See Also

hdi which uses lasso.cv() by default; cv.glmnet. An alternative for hdi(): lasso.firstq.

Examples

```
x <- matrix(rnorm(100*1000), nrow = 100, ncol = 1000)
y<- x[,1] * 2 + x[,2] * 2.5 + rnorm(100)
sel <- lasso.cv(x, y)
sel
```

lasso.firstq Determine the first q Predictors in the Lasso Path

Description

Determines the q predictors that enter the lasso path first.

Usage

lasso.firstq(x, y, q, ...)

Arguments

$\mathrm{x} \quad$ numeric design matrix (without intercept) of dimension $n \times p$.
$y \quad$ response vector of length n.
q number of predictors that should be selected, a positive integer.
... optional additional arguments to be passed to glmnet.

Details

The lasso.firstq function calls glmnet in a special way and simply postprocesses its nonzero predictor list, see its source code.

Value

Vector of selected predictors.

Author(s)

Lukas Meier

See Also

hdi; the default choice for hdi(), lasso.cv. glmnet

Examples

```
x <- matrix(rnorm(100*1000), nrow = 100, ncol = 1000)
y <- x[,1] * 2 + x[,2] * 2.5 + rnorm(100)
sel <- lasso.firstq(x, y, q = 5)
sel # 5 integers from {1,2, ..., 1000}, including '1' and '2', typically
```

lasso.proj $\quad P$-values based on lasso projection method

Description

Compute p-values based on the lasso projection method, also known as the de-sparsified Lasso, using an asymptotic gaussian approximation to the distribution of the estimator.

Usage

```
lasso.proj(x, y, family = "gaussian", standardize = TRUE,
    multiplecorr.method = "holm", \(\mathrm{N}=10000\),
    parallel = FALSE, ncores = getOption("mc.cores", 2L),
    betainit = "cv lasso", sigma = NULL, Z = NULL, verbose = FALSE,
    return.Z = FALSE, suppress.grouptesting = FALSE, robust = FALSE,
do. \(\mathrm{ZnZ}=\mathrm{FALSE}\) )
```


Arguments

$x \quad$ Design matrix (without intercept).
$y \quad$ Response vector.
family family
standardize Should design matrix be standardized to unit column standard deviation.
multiplecorr.method
Either "WY" or any of p.adjust.methods.
N Number of empirical samples (only used if multiplecorr.method == "WY")
parallel Should parallelization be used? (logical)
ncores Number of cores used for parallelization.
betainit Either a numeric vector, corresponding to a sparse estimate of the coefficient vector, or the method to be used for the initial estimation, "scaled lasso" or "cv lasso".
sigma Estimate of the standard deviation of the error term. This estimate needs to be compatible with the initial estimate (see betainit) provided or calculated. Otherwise, results will not be correct.
Z user input, also see return. Z below
verbose A boolean to enable reporting on the progress of the computations. (Only prints out information when Z is not provided by the user)
return. Z An option to return the intermediate result which only depends on the design matrix x. This intermediate results can be used when calling the function again and the design matrix is the same as before.
suppress.grouptesting
A boolean to optionally suppress the preparations made for testing groups. This will avoid quite a bit of computation and memory usage. The output will also be smaller.
robust Uses a robust variance estimation procedure to be able to deal with model misspecification.
do. $\mathrm{ZnZ} \quad$ Use a slightly different way of choosing tuning parameters to compute Z , called Z\&Z based on Zhang and Zhang (2014). This choice of tuning parameter results in a slightly higher variance of the estimator. More concretely, it achieves a 25 variance of the estimator (over $\mathrm{j}=1$..ncol(x$)$) in comparison to tuning with crossvalidation.

Value

pval Individual p-values for each parameter.
pval.corr \quad Multiple testing corrected p-values for each parameter.
groupTest Function to perform groupwise tests. Groups are indicated using an index vector with entries in $1, \ldots$, p or a list thereof.
clusterGroupTest
Function to perform groupwise tests based on hierarchical clustering. You can either provide a distance matrix and clustering method or the output of hierarchical clustering from the function hclust as for clusterGroupBound. P-values are adjusted for multiple testing.
sigmahat $\quad \widehat{\sigma}$ coming from the scaled lasso.
Z Only different from NULL if the option return. Z is on. This is an intermediate result from the computation which only depends on the design matrix x. These are the residuals of the nodewise regressions.

Author(s)

Ruben Dezeure

References

van de Geer, S., Bühlmann, P., Ritov, Y. and Dezeure, R. (2014) On asymptotically optimal confidence regions and tests for high-dimensional models. Annals of Statistics 42, 1166-1202._
Zhang, C., Zhang, S. (2014) Confidence intervals for low dimensional parameters in high dimensional linear models. Journal of the Royal Statistical Society: Series B 76, 217-242.
Bühlmann, P. and van de Geer, S. (2015) High-dimensional inference in misspecified linear models. Electronic Journal of Statistics 9, 1449-1473.

Examples

```
x <- matrix(rnorm(100*20), nrow = 100, ncol = 10)
y <- x[,1] + x[,2] + rnorm(100)
fit.lasso <- lasso.proj(x, y)
which(fit.lasso$pval.corr < 0.05) # typically: '1' and '2' and no other
## Group-wise testing of the first two coefficients
fit.lasso$groupTest(1:2)
##Compute confidence intervals
confint(fit.lasso, level = 0.95)
## Hierarchical testing using distance matrix based on
## correlation matrix
out.clust <- fit.lasso$clusterGroupTest()
plot(out.clust)
## Fit the lasso projection method without doing the preparations
## for group testing (saves time and memory)
fit.lasso.faster <- lasso.proj(x, y, suppress.grouptesting = TRUE)
## Use the scaled lasso for the initial estimate
fit.lasso.scaled <- lasso.proj(x, y, betainit = "scaled lasso")
which(fit.lasso.scaled$pval.corr < 0.05)
## Use a robust estimate for the standard error
fit.lasso.robust <- lasso.proj(x, y, robust = TRUE)
which(fit.lasso.robust$pval.corr < 0.05)
## Perform the Z&Z version of the lasso projection method
fit.lasso <- lasso.proj(x, y, do.ZnZ = TRUE)
which(fit.lasso$pval.corr < 0.05) # typically: '1' and '2' and no other
```

lm.ci
Function to calculate confidence intervals for ordinary multiple linear regression.

Description

Calculates (classical) confidence intervals for an ordinary multiple linear regression model in the n $>p$ situation.

Usage

lm.ci(x, y, level $=0.95, \ldots)$

Arguments

x
$y \quad$ Response vector.
level Coverage level.
... Additional arguments to be passed to lm.

Details

A model with intercept is fitted but the p-value of the intercept is not reported in the output.

Value

Matrix of confidence interval bounds (not including the intercept).

Author(s)

Lukas Meier

See Also

hdi

Examples

```
x <- matrix(rnorm(100*5), nrow = 100, ncol = 5)
y <- x[,1] * 2 + x[,2] * 2.5 + rnorm(100)
ci <- lm.ci(x, y)
ci
```

lm.pval Function to calculate p-values for ordinary multiple linear regression.

Description

Calculates (classical) p-values for an ordinary multiple linear regression in the $\mathrm{n}>\mathrm{p}$ situation.

Usage

lm.pval(x, y, exact = TRUE, ...)

Arguments

x	Design matrix (without intercept).
y	Response vector.
exact	Logical. TRUE if p-values based on t-distribution should be calculated. FALSE
	if normal distribution should be used as approximation.
\ldots	Additional arguments to be passed to lm.

Details

A model with intercept is fitted but the p-value of the intercept is not reported in the output.

Value

Vector of p-values (not including the intercept).

Author(s)

Lukas Meier

See Also

hdi

Examples

```
x <- matrix(rnorm(100*5), nrow = 100, ncol = 5)
y <- x[,1] * 2 + x[,2] * 2.5 + rnorm(100)
pval <- lm.pval(x, y)
pval
```

multi.split

Calculate P-values Based on Multi-Splitting Approach

Description

Calculate p-values and confidence intervals based on the multi-splitting approach

Usage

multi.split(x, y, $B=100$, fraction $=0.5$, ci $=$ TRUE, ci.level $=0.95$, model.selector = lasso.cv, classical.fit = lm.pval, classical.ci = lm.ci, parallel = FALSE, ncores = getOption("mc.cores", 2L), gamma $=\operatorname{seq}($ ceiling $(0.05 * B) / B, 1-1 / B$, by $=1 / B)$, args.model.selector $=$ NULL, args.classical.fit $=$ NULL, args.classical.ci = NULL, return.nonaggr $=$ FALSE, return.selmodels $=$ FALSE, repeat.max = 20, verbose $=$ FALSE)

Arguments

$x \quad$ numeric design matrix (without intercept).
$\mathrm{y} \quad$ numeric response vector.
B the number of sample-splits, a positive integer.
fraction a number in $(0,1)$, the fraction of data used at each sample split for the model selection process. The remaining data is used for calculating the p-values.
ci logical indicating if a confidence interval should be calculated for each parameter.
ci.level (if ci is true:) a number in (0,1), typically close to 1 , the desired coverage level of the confidence intervals.
model.selector a function to perform model selection, with default lasso.cv. The function must have at least two arguments, x (the design matrix) and y (the response vector). Return value is the index vector of selected columns. See lasso.cv and lasso.firstq for an example. Additional arguments can be passed via args.model.selector.
classical.fit a function to calculate (classical) p-values. Default is lm.pval. The function must have at least two arguments, x (the design matrix) and y (the response vector), and return the vector of p-values. See lm.pval for an example. Additional arguments can be passed through args.classical.fit.
classical.ci a function to calculate (classical) confidence intervals. Default is lm.ci. The function must have at least 3 arguments, x (the design matrix), y (the response vector) and level (the coverage level), and return the matrix of confidence intervals. See lm.ci for an example. Additional arguments can be passed through args.classical.ci.
parallel logical indicating if parallelization via mclapply should be used.
ncores number of cores used for parallelization as mc.cores in mclapply().
gamma vector of gamma-values. In case gamma is a scalar, the value Q_{j} instead of P_{j} is being calculated (see reference below).
args.model.selector
named list of further arguments for function model. selector.
args.classical.fit
named list of further arguments for function classical.fit.
args.classical.ci
named list of further arguments for function classical.ci.
return.nonaggr logical indicating if the unadjusted p-values be returned.
return.selmodels
logical indicating if the selected models (at each split) should be returned. Necessary for the clusterGroupTest () part of the result.
repeat.max positive integer indicating the maximal number of split trials. Should not matter in regular cases, but necessary to prevent infinite loops in borderline cases.
verbose should information be printed out while computing? (logical).

Value

pval.corr \quad Vector of multiple testing corrected p-values.
gamma.min Value of gamma where minimal p-values was attained.
clusterGroupTest
Function to perform groupwise tests based on hierarchical clustering. You can either provide a distance matrix and clustering method or the output of hierarchical clustering from the function hclust as for clusterGroupBound. P-values are adjusted for multiple testing.

Author(s)

Lukas Meier, Ruben Dezeure, Jacopo Mandozzi

References

Meinshausen, N., Meier, L. and Bühlmann, P. (2009) P-values for high-dimensional regression. Journal of the American Statistical Association 104, 1671-1681.
Mandozzi, J. and Bühlmann, P. (2015) A sequential rejection testing method for high-dimensional regression with correlated variables. To appear in the International Journal of Biostatistics. Preprint arXiv: 1502.03300

See Also

lasso.cv, lasso.firstq; lm.pval, lm.ci.

Examples

```
n <- 40 # a bit small, to keep example "fast"
p <- 256
x <- matrix(rnorm(n*p), nrow = n, ncol = p)
y <- x[,1] * 2 + x[,2] * 2.5 + rnorm(n)
## Multi-splitting with lasso.firstq as model selector function
## 'q' must be specified
fit.multi <- multi.split(x, y, model.selector = lasso.firstq,
    args.model.selector = list(q = 10))
fit.multi
head(fit.multi$pval.corr, 10) ## the first 10 p-values
ci. <- confint(fit.multi)
head(ci.) # the first 6
stopifnot(all.equal(ci.,
        with(fit.multi, cbind(lci, uci)), check.attributes=FALSE))
## Use default 'lasso.cv' (slower!!) -- incl cluster group testing:
system.time(fit.m2 <- multi.split(x, y, return.selmodels = TRUE))# 9 sec (on "i7")
head(fit.m2$pval.corr) ## the first 6 p-values
head(confint(fit.m2)) ## the first 6 95% conf.intervals
## Now do clustergroup testing
```

```
clGTst <- fit.m2$clusterGroupTest
names(envGT <- environment(clGTst))# about 14
if(!interactive()) # if you are curious (and advanced):
    print(ls.str(envGT), max = 0)
stopifnot(identical(clGTst, envGT$clusterGroupTest))
ccc <- clGTst()
str(ccc)
ccc$hh # the clustering
has.1.or.2 <- sapply(ccc$clusters,
    function(j.set) any(c(1,2) %in% j.set))
ccc$pval[ has.1.or.2] ## all very small
ccc$pval[!has.1.or.2] ## all 1
```

plot.clusterGroupBound
Plot output of hierarchical testing of groups of variables

Description

The plot() method for "clusterGroupBound" objects plots the outcome of applying a lower bound on the 11-norm on groups of variables in a hierarchical clustering tree.

Usage

\#\# S3 method for class 'clusterGroupBound'
plot (x, cexfactor $=1$, yaxis = "members",

$$
\text { xlab }=" ", \text { col }=\text { NULL, pch }=20, \ldots \text {) }
$$

Arguments

x
cexfactor
yaxis
xlab
col the colour of the symbols for the nodes.
pch the plot symbol (see points) of the symbols for the nodes.
... optional additional arguments passed to plot.default.

Value

Nothing is returned

Author(s)

Nicolai Meinshausen meinshausen@stat.math.ethz.ch

See Also

Use clusterGroupBound() to test all groups in a hierarchical clustering tree. Use groupBound() to compute the lower bound for selected groups of variables.

Examples

```
## Create a regression problem with correlated design (n = 10, p = 3):
## a block of size 2 and a block of size 1, within-block correlation is 0.99
set.seed(29)
p <- 3
n <- 10
Sigma <- diag(p)
Sigma[1,2] <- Sigma[2,1] <- 0.99
x <- matrix(rnorm(n * p), nrow = n) %*% chol(Sigma)
## Create response with active variable 1
beta <- rep(0, p)
beta[1] <- 5
y <- as.numeric(x %*% beta + rnorm(n))
## Compute the lower bound for all groups in a hierarchical clustering tree
cgb5 <- clusterGroupBound(x, y, nsplit = 4) ## use larger value for nsplit!
## Plot the tree with y-axis proportional to the (log) of the number of
## group members and node sizes proportional to the lower l1-norm bound.
plot(cgb5)
## Show the lower bound on the y-axis and node sizes proportional to
## number of group members
plot(cgb5, yaxis = "")
```


Description

Dataset of riboflavin production by Bacillus subtilis containing $n=71$ observations of $p=4088$ predictors (gene expressions) and a one-dimensional response (riboflavin production).

Usage

```
    data(riboflavin)
```


Format

y Log-transformed riboflavin production rate (original name: q_RIBFLV).
\mathbf{x} (Co-)variables measuring the logarithm of the expression level of 4088 genes.

Details

Data kindly provided by DSM (Switzerland).

References

Bühlmann, P., Kalisch, M. and Meier, L. (2014) High-dimensional statistics with a view towards applications in biology. Annual Review of Statistics and its Applications 1, 255-278

Examples

```
data(riboflavin)
```

ridge.proj $\quad P$-values based on ridge projection method

Description

Compute p-values for lasso-type regression coefficients based on the ridge projection method.

Usage

ridge.proj(x, y, family = "gaussian", standardize = TRUE, lambda $=1$, betainit $=$ "cv lasso", sigma $=$ NULL, suppress.grouptesting = FALSE, multiplecorr.method = "holm", $N=10000$)

Arguments

$y \quad$ response vector.
family
standardize Should design matrix be standardized to unit column standard deviation (logical)?
lambda Value of penalty parameter lambda (ridge regression).
betainit Either a numeric vector, corresponding to a sparse estimate of the coefficient vector, or the method to be used for the initial estimation, "scaled lasso" or "cv lasso".
sigma Estimate of the standard deviation of the error term. This estimate needs to be compatible with the initial estimate (see betainit) provided or calculated. Otherwise, results won't be correct.
suppress.grouptesting
A boolean to optionally suppress the preparations made for testing groups. This will avoid quite a bit of computation and memory usage. The output will also be smaller.
multiplecorr.method
Either "WY" or any of p.adjust.methods.
N number of empirical samples (only used if multiplecorr.method = "WY").

Value
pval Individual p-values for each parameter.
pval.corr \quad Multiple testing corrected p -values for each parameter.
groupTest Function to perform groupwise tests. Groups are indicated using an index vector with entries in $1, \ldots, p$ or a list thereof.
clusterGroupTest
Function to perform groupwise tests based on hierarchical clustering. You can either provide a distance matrix and clustering method or the output of hierarchical clustering from the function hclust as for clusterGroupBound. P-values are adjusted for multiple testing.
sigmahat $\quad \widehat{\sigma}$ coming from the scaled lasso.

Author(s)

Peter Buehlmann, Ruben Dezeure, Lukas Meier

References

Bühlmann, P. (2013) Statistical significance in high-dimensional linear models. Bernoulli 19, 12121242.

Examples

```
x <- matrix(rnorm(100 * 100), nrow = 100, ncol = 100)
y <- x[,1] + x[,2] + rnorm(100)
fit.ridge <- ridge.proj(x, y)
which(fit.ridge$pval.corr < 0.05)
## Use the scaled lasso for the initial estimate
fit.ridge.scaled <- ridge.proj(x, y, betainit = "scaled lasso")
which(fit.ridge.scaled$pval.corr < 0.05)
## Group-wise testing of the first two coefficients
fit.ridge$groupTest(1:2)
## Hierarchical testing using distance matrix based on
## correlation matrix
out.clust <- fit.ridge$clusterGroupTest()
plot(out.clust)
## Fit the method without doing the preparations
## for group testing (saves time and memory)
fit.ridge.faster <- ridge.proj(x, y, suppress.grouptesting = TRUE)
```

rXb
Generate Data Design Matrix X and Coefficient Vector β

Description

Generate a random design matrix X and coefficient vector β useful for simulations of (high dimensional) linear models. In particular, the function rXb () can be used to exactly recreate the reference linear model datasets of the hdi paper.

Usage

$r \times b(n, p, s 0$,
xtype = c("toeplitz", "exp.decay", "equi.corr"),
btype = "U[-2,2]",
permuted $=$ FALSE, iteration $=$ NA, do2S $=$ TRUE,
x.par = switch(xtype,
"toeplitz" = 0.9,
"equi.corr" = 0.8,
"exp.decay" = c(0.4, 5)),
verbose = TRUE)
$r X(n, p, x t y p e$, permuted, $d o 2 S=$ TRUE,
par = switch(xtype,
"toeplitz" $=0.9$,
"equi.corr" = 0.8,
"exp.decay" $=c(0.4,5)))$

Arguments

n
p
s0

> xtype
btype
permuted
iteration
do2S
x. par, par the parameters to be used for the design matrix. Must be a numeric vector of length one or two. The default uses the parameters also used in the hdi paper.
verbose should the function give a message if seeds are being set? (logical).

Details

Generation of the design matrix X :

For all xtype's, the X matrix will be multivariate normal, with mean zero and (co)variance matrix $\Sigma=C$ determined from xtype, x. par and p as follows:

```
xtype = "toeplitz": C <- par ^ abs(toeplitz(0:(p-1)))
```



```
xtype = "exp.decay": C <- solve(par[1] ^ abs(toeplitz(0:(p-1)) / par[2]))
```


Value

For rXb() : A list with components
\mathbf{x} the generated $n \times p$ design matrix X.
beta the generated coefficient vector β ('beta').
For $r \times()$: the generated $n \times p$ design matrix X.

Author(s)

Ruben Dezeure dezeure@stat.math.ethz.ch

References

Dezeure, R., Bühlmann, P., Meier, L. and Meinshausen, N. (2015) High-dimensional inference: confidence intervals, p-values and R-software hdi. Statistical Science 30, 533-558.

Examples

```
## Generate the first realization of the linear model with design matrix
## type Toeplitz and coefficients type uniform between -2 and 2
dset <- rXb(n = 80, p = 20, s0 = 3,
    xtype = "toeplitz", btype = "U[-2,2]")
x <- dset$x
beta <- dset$beta
## generate 100 response vectors of this linear model
y <- as.vector( x %*% beta ) + replicate(100, rnorm(nrow(x)))
## Use 'beta_min' fulfilling beta's (non standard 'btype'):
str(ds2 <- rXb(n = 50, p = 12, s0 = 3,
            xtype = "exp.decay", btype = "U[0.1, 5]"))
## Generate a design matrix of type "toeplitz"
set.seed(3) # making it reproducible
X3 <- rX(n = 800, p = 500, xtype = "toeplitz", permuted = FALSE)
## permute the columns
set.seed(3)
Xp <- rX(n = 800, p = 500, xtype = "toeplitz", permuted = TRUE)
```

stability Function to perform stability selection

Description

Function to perform stability selection

Usage

stability (x, y, EV, threshold $=0.75, B=100$, fraction $=0.5$,
model.selector $=$ lasso.firstq, args.model.selector $=$ NULL, parallel = FALSE, ncores = getOption("mc.cores", 2L), verbose = FALSE)

Arguments

x
Design matrix (without intercept).
$y \quad$ Response vector.
EV Bound for expected number of false positives.

threshold	Threshold for selection frequency. Must be in $(0.5,1)$.
B	Number of sub-sample iterations.
fraction	Fraction of data used at each of the B sub-samples.
model.selector	Function to perform model selection. Default is lasso.firstq. User supplied function must have at least three arguments: x (the design matrix), y (the re- sponse vector) and q (the maximal model size). Return value is the index vector of selected columns. See lasso. firstq for an example. Additional arguments can be passed through args.model.selector.
args.model.selector	
Named list of further arguments for function model.selector.	

Value

selected Vector of selected predictors.
freq Vector of selection frequencies.
q Size of fitted models in order to control error rate at desired level.

Author(s)

Lukas Meier

References

Meinshausen, N. and Bühlmann, P. (2010) Stability selection (with discussion). Journal of the Royal Statistical Society: Series B 72, 417-473.
Bühlmann, P., Kalisch, M. and Meier, L. (2014) High-dimensional statistics with a view towards applications in biology. Annual Review of Statistics and its Applications 1, 255-278

Examples

```
x <- matrix(rnorm(100*1000), nrow = 100, ncol = 1000)
y <- x[,1] * 2 + x[,2] * 2.5 + rnorm(100)
fit.stab <- stability(x, y, EV = 1)
fit.stab
fit.stab$freq[1:10] ## selection frequency of the first 10 predictors
```


Index

*Topic confidence intervals
clusterGroupBound, 6
groupBound, 11
*Topic datagen
rXb, 28
*Topic datasets
riboflavin, 25
*Topic hierarchical clustering
clusterGroupBound, 6
*Topic htest
plot.clusterGroupBound, 24
*Topic models
boot.lasso.proj, 4
fdr.adjust, 9
glm.pval, 10
hdi, 13
lasso.cv, 15
lasso.firstq, 16
lasso.proj, 17
lm.ci, 19
lm.pval, 20
multi.split, 21
ridge.proj, 26
stability, 30
*Topic package
hdi-package, 2
$*$ Topic regression
boot.lasso.proj, 4
clusterGroupBound, 6
fdr.adjust, 9
glm.pval, 10
groupBound, 11
hdi, 13
lasso.cv, 15
lasso.firstq, 16
lasso.proj, 17
lm.ci, 19
lm.pval, 20
multi.split, 21
plot.clusterGroupBound, 24
ridge.proj, 26
rXb, 28
stability, 30
.Random.seed, 29
boot.lasso.proj, 4
character, 7, 29
class, 24
clusterGroupBound, 6, 12, 18, 23-25, 27
cv.glmnet, 15, 16
dist, 7
fdr.adjust, 9
function, 22
glm, 10
glm.pval, 10
glmnet, 16
groupBound, 8, 11, 25
hclust, 7, 18, 23, 27
hdi, 10, 13, 16, 20, 21
hdi-package, 2
lasso.cv, 13, 15, 16, 22, 23
lasso.firstq, 13, 16, 16, 22, 23, 31
lasso.proj, 17
list, 11, 22, 29
lm, 20, 21
lm.ci, 19, 22, 23
lm.pval, 14, 20, 22, 23
logical, 22
mclapply, 22
multi.split, 14, 21
p.adjust, 9
p.adjust.methods, 4, 17, 27
plot, 24
plot.clusterGroupBound, 24
plot.default, 24
points, 24
riboflavin, 25
ridge.proj, 26
rX (rXb), 28
rXb, 28
stability, 14, 30

