
Package ‘hbm’
February 20, 2015

Type Package

Title Hierarchical Block Matrix Analysis

Version 1.0

Date 2015-01-25

Author Yoli Shavit

Maintainer Yoli Shavit <ys388@cam.ac.uk>

Description A package for building hierarchical block matrices from association matrices and for per-
forming multi-scale analysis. It specifically targets chromatin contact maps, gener-
ated from high-throughput chromosome conformation capture data, such as 5C and Hi-
C, and provides methods for detecting movements and for computing chain hierarchy and re-
gion communicability across scales.

License GPL (>= 2)

Depends R (>= 3.0.2)

Imports Matrix, foreach, doParallel

NeedsCompilation no

Repository CRAN

Date/Publication 2015-02-01 19:50:29

R topics documented:
hbm-package . 2
add.noise . 2
communicability . 3
detect.movement . 5
generate.random.conf . 7
get.movements . 8
hbm . 9
hbm.features . 11
hierarchy . 12
mcl . 14

Index 16

1

2 add.noise

hbm-package Hierarchical Block Matrix Analysis

Description

A package for building hierarchical block matrices from association matrices and for performing
multi-scale analysis. It specifically targets chromatin contact maps, generated from high-throughput
chromosome conformation capture data, such as 5C and Hi-C, and provides methods for detecting
movements and for computing chain hierarchy and region communicability across scales.

Details

Package: hbm
Type: Package
Version: 1.0
Date: 2015-01-25
License: GPL (>=2)

Get started with hbm’s tutorials at: http://www.cl.cam.ac.uk/~ys388/hbm/

Author(s)

Yoli Shavit
Maintainer: <ys388@cam.ac.uk>

References

hbm’s website: http://www.cl.cam.ac.uk/~ys388/hbm/

add.noise Add Noise to a Symmetric Association Matrix

Description

add.noise adds noise to a symmetric association matrix, typically a chromatin contact map.

Usage

add.noise(m, ...)

Arguments

m a symmetric numeric association matrix, typically a chromatin contact map.

... additional parameters for jitter.

http://www.cl.cam.ac.uk/~ys388/hbm/
http://www.cl.cam.ac.uk/~ys388/hbm/

communicability 3

Value

add.noise returns a matrix of the same dimension as m but with noise added (see additional param-
eters for setting noise amount in jitter).

Author(s)

Yoli Shavit

References

hbm’s website: http://www.cl.cam.ac.uk/~ys388/hbm/

See Also

hbm.features to see how add.noise is used to estimate feature robustness in hierarchical block
matrices
hbm to learn how to build hierarchical block matrices
hbm’s tutorials at http://www.cl.cam.ac.uk/~ys388/hbm/

Examples

set.seed(2)
n = 200 # chain size
conf = generate.random.conf(n, sd = 0.5, scale = FALSE)
generate a contact map -like matrix using the model c ~ exp(-d)
control = exp(-1*as.matrix(dist(conf)))
add noise
control.noisy = add.noise(control, factor = 5)

communicability Compute Communicability between Nodes in an HBM

Description

communicability computes the scale communicability between nodes (rows) in a hierarchical
block matrix hm, generated with hbm.

Usage

communicability(hm)

Arguments

hm a hierarchical block matrix computed with hbm, with:
hmi,j = the minimal scale (iteration) at which i and j were clustered together,
or 0 if i=j

http://www.cl.cam.ac.uk/~ys388/hbm/
http://www.cl.cam.ac.uk/~ys388/hbm/

4 communicability

Details

The communicability of an adjacency matrix A can be expressed as eA (Estrada et al., 2012), so
that the i,j-th entry is a weighted sum of all paths from i to j, where shortest paths are assigned with
larger weights. For a hierarchical block matrix, computed with hbm, each scale s defines its own
adjacency matrix, where all entries with values larger than s are set to 0. The scale-communicability
between 2 nodes i and j in this matrix is defined here as the mean communicability across scales
(excluding the largest scale).

Value

communicability returns a matrix of the same dimensions as hm, where the (i,j)-th entry gives the
scale-communicability between i and j in hm.

Author(s)

Yoli Shavit

References

Estrada, E., Hatano, N. and Benzi, M. The physics of communicability in complex networks.
Physics Reports 514, 89-119 (2012).

hbm’s website: http://www.cl.cam.ac.uk/~ys388/hbm/

See Also

hbm to learn how to build hierarchical block matrices
hbm’s tutorials at http://www.cl.cam.ac.uk/~ys388/hbm/

Examples

set.seed(2)
n = 100 # chain size
conf = generate.random.conf(n, scale = FALSE)

compute the HBM
hm.control = hbm(exp(-1*as.matrix(dist(conf))), 2)$hm

compute scale communicability
comm = communicability(hm.control)

explore for position 50
plot(1:n, comm[50,], xlab = "Position", ylab = "Communicability",
main = "Communicability for Position 50", pch=16)

plot in original configuration
cols = rep("black", n)
cols[which(comm[50,] > 100)] = "blue"
plot(conf, xlab = "X", ylab = "Y", type = "n")
text(conf, labels = 1:n, col = cols)

http://www.cl.cam.ac.uk/~ys388/hbm/
http://www.cl.cam.ac.uk/~ys388/hbm/

detect.movement 5

detect.movement Detect Movements Between Association Matrices using their HBMs

Description

detect.movement takes a reference and a target association matrices, typically contact maps of
chromosomes, and their hierarchical block matrices (computed with hbm) and detects movements
between the reference and the target. A detected movement represents a disposition of node in a the
reference, that gave rise to its new position in the target.

Usage

detect.movement(ref, target, ref.res, target.res,
motion.prop.thresh = 0.75, siglevel = 0.05, verbose = FALSE)

Arguments

ref the reference matrix. A numeric association matrix, typically a symmetric chro-
matin contact map.

target the target matrix to be compared to ref. A numeric association matrix, typically
a symmetric chromatin contact map.

ref.res the result of calling hbm with ref.
target.res the result of calling hbm with target.
motion.prop.thresh

numeric giving the threshold for detecting whether a region has moved based on
the proportions of changed neighbors in its cluster.

siglevel numeric giving the threshold for detecting a significant compactness/unfolding
in a given cluster, set to 0.05 by default.

verbose boolean indicating whether to print intermediate results.

Details

detect.movement iterates through the scales of the reference matrix (using its HBM) and through
the clusters at each scale and test for movements in the target. For each cluster it further tests for
significant differences in association probabilities and for changes in the neighbors of each node.

Value

detect.movement returns a numeric matrix, with the i,j-th entry taking one of the following values:
-1 if i has moved away from j,
1 if i has moved towards j,
0 if there was no movement, and
-0.5 and 0.5 for implicated away and towards movements, respectively.

Author(s)

Yoli Shavit

6 detect.movement

References

hbm’s website: http://www.cl.cam.ac.uk/~ys388/hbm/

See Also

get.movements to summarize the results of detect.movement
hbm to learn how to build hierarchical block matrices
hbm’s tutorials at http://www.cl.cam.ac.uk/~ys388/hbm/

Examples

set.seed(2)
n = 200 # chain size

control configuration
conf = generate.random.conf(n, sd = 0.5, scale = FALSE)
condition-1
conf.tr.1 = conf
conf.tr.1[99,] = conf.tr.1[77,]-0.5

generate contact map-like matrices
control = exp(-1*as.matrix(dist(conf)))
tr.1 = exp(-1*as.matrix(dist(conf.tr.1)))

control.res = hbm(control, 2)
tr.1.res = hbm(tr.1, 2)
m1 = detect.movement(control, tr.1, control.res, tr.1.res)
resm = get.movements(m1, control.res$hm)
resm

compare with configuration
par(mfrow = c(1,2))
cols = rep("black", n)
cols[unique(resm$from)] = "green"
plot(conf, xlab = "X", ylab = "Y", type = 'n', main = "Control")
text(conf[,1:2], labels = 1:n, cex = 0.75, col = cols)
cols = rep("black", n)
cols[unique(resm$from)] = "green"
cols[resm$to[which(resm$type == 0.5)]] = "pink"
cols[resm$to[which(resm$type == 1)]] = "red"
cols[resm$to[which(resm$type == -0.5)]] = "cyan"
cols[resm$to[which(resm$type == -1)]] = "blue"
plot(conf.tr.1, xlab = "X", ylab = "Y", type = 'n', main = "Condition-1", col = cols)
text(conf.tr.1[,1:2], labels = 1:n, cex = 0.75, col = cols)

http://www.cl.cam.ac.uk/~ys388/hbm/
http://www.cl.cam.ac.uk/~ys388/hbm/

generate.random.conf 7

generate.random.conf Generate a Random Chain Configuration

Description

generate.random.conf generates a random chain configuration following a random walk/giant
loop model (Sachs et al., 1995).

Usage

generate.random.conf(n, k = 3, perturb = NULL, scale = T, mean = 0, sd = 1)

Arguments

n integer giving the chain length (number of beads in the chain).

k integer giving the space dimension, set to 3 by default.

perturb integer vector of nodes (indices) to perturb. This argument can be used to gener-
ate a configuration that deviates from the chain constraints of successive beads
(nodes). Perturbation is achieved by sampling a new order for the beads to per-
turb and exchanging their coordinates in the original configuration accordingly.
By default perturb is set to NULL indicating no perturbation should not be
applied.

scale boolean indicating whether or not to scale the generated configuration, set to
TRUE by default.

mean numeric giving the mean of differences distribution along each axis, set to 0 by
default.

sd numeric giving the standard deviation of differences distribution along each axis,
set to 1 by default.

Details

generate.random.conf aims to generate a chromosome-like chain of n beads (nodes), in a k-D
Euclidean space (k=3 by default) that follows a random walk/giant loop model (Sachs et al., 1995).
This is achieved by sampling the differences between successive beads’ coordinates from a normal
distribution N(µ, σ) (µ = 0, σ = 1, by default), across each axis (see examples in Hu et al., 2013
and Shavit et al., 2014). The configuration is scaled by default so that the distance between the
first and last beads is approximately one unit. generate.random.conf can also be used to generate
configurations that deviate from the chain constraints by perturbing beads.

Value

generate.random.conf returns a n x k matrix, giving the coordinates of n beads (nodes) in a k-d
space.

Author(s)

Yoli Shavit

8 get.movements

References

Sachs, R. K., van den Engh, G., Trask, B., Yokota, H. and Hearst, J. E. A random-walk/giant-
loop model for interphase chromosomes. Proceedings of the National Academy of Sciences of the
United States of America, 92, 2710-4 (1995).

Hu, M. et al. Bayesian Inference of Spatial Organizations of Chromosomes. PLoS Computational
Biology. 9, e1002893 (2013).

Shavit, Y., Hamey, F. K. and Lio, P. FisHiCal: an R package for iterative FISH-based calibra-
tion of Hi-C data. Bioinformatics, 30, 3120-3122 (2014).

hbm’s website: http://www.cl.cam.ac.uk/~ys388/hbm/

See Also

hbm to learn how to build a hierarchical block matrix from a contact map of a random configuration.
hbm’s tutorials at http://www.cl.cam.ac.uk/~ys388/hbm/

Examples

set.seed(2)
n = 100
conf = generate.random.conf(n, k = 2)
plot(conf, xlab = "x", ylab = "y")

conf = generate.random.conf(n, k = 2, scale = FALSE)
plot(conf, xlab = "x", ylab = "y")

get.movements Summarize Detected Movements

Description

get.movements summarizes the results of detect.movement.

Usage

get.movements(movement, hm, features = NULL)

Arguments

movement numeric matrix computed with detect.movement.
hm a hierarchical block matrix computed with hbm, with:

hmi,j = the minimal scale (iteration) at which i and j were clustered together,
or 0 if i=j

features one or more feature matrices computed with hbm.features, used to indicate if
the movement is detected within a robust feature. Set to NULL by default. When
more than one matrix is provided features should be a list of matrices.

http://www.cl.cam.ac.uk/~ys388/hbm/
http://www.cl.cam.ac.uk/~ys388/hbm/

hbm 9

Value

get.movements returns a data frame with the following columns:
from: the moving node,
to: the node that from has moved towards or away from,
type: one of the following values: (-1.0, 0.5, 0.5, 1) where -1 indicates from moved away from
to, 1 indicates from moved towards to, and -0.5 and 0.5 indicate possible/implicated movements
correspondingly,
scale: the scale at which the movement was detected, and
robust an optional column (when features is not NULL) with 1 for non-NA elements in the features
matrix, and 0 otherwise.

Author(s)

Yoli Shavit

References

hbm’s website: http://www.cl.cam.ac.uk/~ys388/hbm/

See Also

detect.movement to see how changes between chains are detected
hbm to learn how to build hierarchical block matrices
hbm’s tutorials at http://www.cl.cam.ac.uk/~ys388/hbm/

hbm Build a Hierarchical Block Matrix (HBM)

Description

hbm builds a hierarchical block matrix from an association matrix, typically a symmetric chromatin
contact map, by iteratively aggregating clusters.

Usage

hbm(m, infl=2, ...)

Arguments

m a numeric association matrix, typically a chromatin contact map.

infl numeric giving the inflation parameter for mcl, set to 2 by default.

... additional parameters for mcl.

http://www.cl.cam.ac.uk/~ys388/hbm/
http://www.cl.cam.ac.uk/~ys388/hbm/

10 hbm

Details

hbm iteratively applies Markov Clustering (by calling mcl). In the first iteration, clustering is applied
on the input association matrix. The resulting clusters are used to generate a new association matrix
to cluster, whose i,j-th entry gives the mean association between all the nodes in the i-th and j-th
clusters found in the previous iteration. This is repeated until all clusters are aggregated to a single
cluster or when clusters can no longer be aggregated together.

Value

hbm returns a list with the following objects:

hm The hierarchical block matrix, defined as:
hmi,j = the minimal scale (iteration) at which i and j were clustered together,
or 0 if i=j

scales a list of length max(hm)-1 whose k-th entry gives the list of clusters found at
k-th scale (iteration).

Author(s)

Yoli Shavit

References

hbm’s website: http://www.cl.cam.ac.uk/~ys388/hbm/

See Also

mcl for the implementation of Markov Clustering
detect.movement to see how hbm’s results are used to detect movements
communicability to see how hbm’s results are used to compute the communicability between dif-
ferent locations.
hierarchy to see how hbm’s results are used to compute the hierarchy of the association matrix.
hbm’s tutorials at http://www.cl.cam.ac.uk/~ys388/hbm/

Examples

set.seed(2)
n = 200 # chain size
generate chain configuration (random walk/giant loop model)
conf = generate.random.conf(n, sd = 0.5, scale = FALSE)
generate a contact map like matrix using the model c ~ exp(-d)
control = exp(-1*as.matrix(dist(conf)))
res = hbm(control)
m = res$hm
image(t(m)[,nrow(m):1], axes = FALSE)
ats = seq(0,1,0.2)
lbls = as.character(n*ats)
axis(1, at= ats, labels = lbls, cex.axis = 0.8)
ats = seq(1,0,-1*0.2)

http://www.cl.cam.ac.uk/~ys388/hbm/
http://www.cl.cam.ac.uk/~ys388/hbm/

hbm.features 11

lbls = as.character(n*seq(0,1,0.2))
axis(2, at= ats, labels = lbls, cex.axis = 0.8)

res$scales

hbm.features Compute Robust Features in an HBM

Description

hbm.features computes the main features of a hierarchical block matrix.

Usage

hbm.features(m, noise.factor, ncores = 1, ref = NULL, ...)

Arguments

m a numeric association matrix, typically a chromatin contact map.

noise.factor numeric vector giving the noise factor to add with add.noise at each iteration.
The length of this vector will determine the number of iterations.

ncores integer giving the number of cores to register and use. If this is larger than one,
iterations will be executed in parallel.

ref hierarchical block matrix computed with hbm from m. If set to NULL this matrix
will be computed as part of the execution of hbm.features.

... additional parameters for hbm.

Details

hbm.features adds noise to the given association matrix and executes hbm to generate a hierar-
chical block matrix. Repeating this for multiple iterations (with the same or different noise factor
values) gives a mean hierarchical block matrix that can be compared with the matrix computed from
the non noisy association matrix.

Value

hbm.features returns a list with the following objects:

noisy.hm The average hierarchical block matrix. A numeric matrix whose i,j-th entry
gives the mean scale at which i and j were found in the same cluster across hbm
iterations.

features noisy.hm with entries set to NA when different from the entries in the original
non-noisy hierarchical block matrix.

12 hierarchy

Author(s)

Yoli Shavit

References

hbm’s website: http://www.cl.cam.ac.uk/~ys388/hbm/

See Also

add.noise to see how noise is added to matrices
hbm to learn how to build hierarchical block matrices
hbm’s tutorials at http://www.cl.cam.ac.uk/~ys388/hbm/

Examples

set.seed(2)
n = 100 # chain size
generate chain configuration (random walk/giant loop model)
conf = generate.random.conf(n, sd = 0.5, scale = FALSE)
generate a contact map -like matrix using the model c ~ exp(-d)
control = exp(-1*as.matrix(dist(conf)))
noise = rep(10, 10)
res = hbm.features(control, noise, prune = TRUE, pruning.prob = 0.01)

m = res$features
image(t(m)[,nrow(m):1], axes = FALSE)
ats = seq(0,1,0.2)
lbls = as.character(n*ats)
axis(1, at= ats, labels = lbls, cex.axis = 0.8)
ats = seq(1,0,-1*0.2)
lbls = as.character(n*seq(0,1,0.2))
axis(2, at= ats, labels = lbls, cex.axis = 0.8)

hierarchy Compute Hierarchy of an HBM

Description

hierarchy computes the hierarchy of a hierarchical block matrix computed with hbm.

http://www.cl.cam.ac.uk/~ys388/hbm/
http://www.cl.cam.ac.uk/~ys388/hbm/

hierarchy 13

Usage

hierarchy(hm)

Arguments

hm a hierarchical block matrix computed with hbm, with:
hmi,j = the minimal scale (iteration) at which i and j were clustered together,
or 0 if i=j

Details

In a hierarchical matrix, computed with hbm, the behavior around the diagonal reflects the hier-
archy of the association matrix. Specifically, for a hierarchical fractal-like structure we expect a
non-decreasing series in the upper triangle of the matrix and a non-increasing series in the lower
triangle. hierarchy counts the number of deviations from this behavior for each node: number of
negative successive differences up to the diagonal and number of positive successive changes after
the diagonal, and returns the negation of the mean number of changes across nodes.

Value

hierarchy returns a numeric value giving the hierarchy of the matrix.

Author(s)

Yoli Shavit

References

hbm’s website: http://www.cl.cam.ac.uk/~ys388/hbm/

See Also

generate.random.conf to see how to generate interesting chains
hbm learn how to build hierarchical block matrices
hbm’s tutorials at http://www.cl.cam.ac.uk/~ys388/hbm/

Examples

set.seed(2)

n = 100 # chain size
#generate configurations
conf = generate.random.conf(n, sd = 0.5, scale = FALSE)
#perturb the chain
conf.perturb.all = generate.random.conf(n, perturb = 1:n, sd = 0.5, scale = FALSE)
and again with less perturbration
conf.perturb = generate.random.conf(n, perturb = 10:50, sd = 0.5, scale = FALSE)

compute the HBMs
hm.control = hbm(exp(-1*as.matrix(dist(conf))), 2)$hm
hm.perturb.all = hbm(exp(-1*as.matrix(dist(conf.perturb.all))), 2)$hm

http://www.cl.cam.ac.uk/~ys388/hbm/
http://www.cl.cam.ac.uk/~ys388/hbm/

14 mcl

hm.perturb = hbm(exp(-1*as.matrix(dist(conf.perturb))), 2)$hm

h.control = hierarchy(hm.control)
h.perturb = hierarchy(hm.perturb)
h.perturb.all = hierarchy(hm.perturb.all)
h = c(h.control, h.perturb, h.perturb.all)

plot
plot(1:3, h, pch = 19, cex = 2, axes = FALSE, ylab = "Chain Hierarchy", xlab = "Condition")
axis(1, at = 1:3, labels = c("Control", "Perturbed-Partial", "Perturbed-All"))
axis(2)

mcl Markov Clustering

Description

mcl implements the Markov Clustering algorithm (van Dongen, 2000) with a fixed expansion pa-
rameter (=2).

Usage

mcl(m, infl, iter = 1000, remove.self.loops = FALSE, prune = FALSE,
thresh = 1e-06, pruning.prob = 1e-06, use.sparse = NULL, verbose = FALSE)

Arguments

m A numeric matrix, given as input to the Markov Clustering algorithm.

infl numeric. The inflation parameter for the Markov Clustering algorithm.

iter integer giving the maximal number of iterations for the Markov Clustering al-
gorithm, set to 1000 be default (in practice the algorithm is shown to converge
after 10-100 iterations).

remove.self.loops

boolean indicating whether to remove self loops (i.e. set diagonal entries to 0),
set to FALSE by default.

prune boolean indicating whether to prune small probabilities (i.e. set to 0) in the
transition matrix, set to FALSE by default.

thresh a numeric giving the difference threshold below which the transition matrix is
considered to have converged.

pruning.prob numeric giving the threshold below which pruning should be applied, when
prune is TRUE. Set to 1e-06 be default.

use.sparse a boolean indicating whether to use sparse matrices. By default this value is
set to NULL, so that sparse matrices are used only if the transition matrix is
sparse enough to justify this representation (50% sparsity and above). When set
to TRUE (FALSE), use.sparse will force (disable) the use of sparse matrices.

mcl 15

verbose boolean indicating whether to print the number of iterations before convergence
was achieved.

Details

mcl is called from hbm to build a hierarchical block matrix from an association matrix, typically a
chromatin contact map.

Value

mcl returns a vector whose i-th entry is the cluster identifier of the i-th node, and two nodes are in
the same cluster iff they have the same cluster identifier.

Author(s)

Yoli Shavit

References

Stijn van Dongen. A cluster algorithm for graphs. Technical Report INS-R0010, National Research
Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000.

hbm’s website: http://www.cl.cam.ac.uk/~ys388/hbm/

See Also

hbm to learn how to build hierarchical block matrices
hbm’s tutorials at http://www.cl.cam.ac.uk/~ys388/hbm/

http://www.cl.cam.ac.uk/~ys388/hbm/
http://www.cl.cam.ac.uk/~ys388/hbm/

Index

add.noise, 2, 11, 12

communicability, 3, 10

detect.movement, 5, 8–10

generate.random.conf, 7, 13
get.movements, 6, 8

hbm, 3–6, 8, 9, 9, 11–13, 15
hbm-package, 2
hbm.features, 3, 8, 11
hierarchy, 10, 12

jitter, 2, 3

mcl, 9, 10, 14

16

	hbm-package
	add.noise
	communicability
	detect.movement
	generate.random.conf
	get.movements
	hbm
	hbm.features
	hierarchy
	mcl
	Index

