Package ‘hal9001’

June 27, 2020

Title The Scalable Highly Adaptive Lasso

Version 0.2.6

Description A scalable implementation of the highly adaptive lasso algorithm,
including routines for constructing sparse matrices of basis functions of the
observed data, as well as a custom implementation of Lasso regression tailored
to enhance efficiency when the matrix of predictors is composed exclusively of
indicator functions. For ease of use and increased flexibility, the Lasso
fitting routines invoke code from the 'glmnet' package by default. The highly
adaptive lasso was first formulated and described by MJ van der Laan (2017)
<doi:10.1515/ijb-2015-0097>, with practical demonstrations of its performance
given by Benkeser and van der Laan (2016) <doi:10.1109/DSAA.2016.93>.

Depends R (>=3.1.0), Rcpp

License GPL-3
URL https://github.com/tlverse/hal9001

BugReports https://github.com/tlverse/hal9001/issues

Encoding UTF-8

LazyData true

Imports Matrix, stats, utils, methods, assertthat, origami (>= 1.0.3),
glmnet

Suggests testthat, knitr, rmarkdown, microbenchmark, future, ggplot2,
dplyr, tidyr, stringr, survival, data.table, SuperLearner

LinkingTo Rcpp, ReppEigen

VignetteBuilder knitr

RoxygenNote 7.1.0

NeedsCompilation yes

Author Jeremy Coyle [aut, cre] (<https://orcid.org/0000-0002-9874-6649>),
Nima Hejazi [aut] (<https://orcid.org/0000-0002-7127-2789>),
David Benkeser [ctb] (<https://orcid.org/0000-0002-1019-8343>),
Oleg Sofrygin [ctb],
Weixin Cai [ctb] (<https://orcid.org/0000-0003-2680-3066>),
Mark van der Laan [aut, cph, ths]
(<https://orcid.org/0000-0003-1432-5511>)

https://github.com/tlverse/hal9001
https://github.com/tlverse/hal9001/issues

2 apply_copy_map

Maintainer Jeremy Coyle <jeremyrcoyle@gmail.com>

Repository CRAN

Date/Publication 2020-06-27 04:50:07 UTC

R topics documented:
apply_Copy_map e e e e e e e e e e 2
as_dgCMatrix e e e e e 3
basis_list_cOIS e 4
basis_of degree 4
CV_1aSSO . . . L e 5
cv_lasso_early_stopping e e e 5
enumerate_basisS e e e e e e 6
evaluate basis L e 7
fit_hal e e e 7
hal9000 e e e e 10
hal9001 e e 10
hal_quotes e e 10
index_first_copy 11
lassi_fit module 11
lassi_origamio e 11
make_basis_liSt e 12
make _CoOPY_MAaP v o vt e e e e e e e e e e e e e 12
make_design_matriX e e e e e 13
meets_DasiS e e e 14
predict.hal9001 15
predict.SL.hal9001 16
SL.hal9001 e e 16
squash_hal_fit L 17

Index 19

apply_copy_map Apply copy map
Description

OR duplicate training set columns together

Usage

apply_copy_map(X, copy_map)

Arguments

X Sparse matrix containing columns of indicator functions.

copy_map the copy map

as_dgCMatrix 3

Value

A dgCMatrix sparse matrix corresponding to the design matrix for a zero-th order highly adaptive
lasso, but with all duplicated columns (basis functions) removed.

Examples

gendata <- function(n) {
W1 <- runif(n, -3, 3)
W2 <- rnorm(n)
W3 <- runif(n)
W4 <- rnorm(n)
g0 <- plogis(@0.5 * (-0.8 x W1 + ©.39 * W2 + 0.08 * W3 - 0.12 * W4))
A <- rbinom(n, 1, g0)
Q0 <- plogis(0.15 * (2 x A+ 2 *x A x Wl +6 *x A x W3 x W4 - 3))
Y <- rbinom(n, 1, Q@)
data.frame(A, W1, W2, W3, W4, Y)
3
set.seed(1234)
data <- gendata(100)
covars <- setdiff(names(data), "Y")
X <- as.matrix(data[, covars, drop = FALSE])
basis_list <- enumerate_basis(X)
x_basis <- make_design_matrix(X, basis_list)
copy_map <- make_copy_map(x_basis)
x_basis_uniq <- apply_copy_map(x_basis, copy_map)

as_dgCMatrix Fast Coercion to Sparse Matrix

Description

Fast and efficient coercion of standard matrix objects to sparse matrices. Borrowed from http://gallery.rcpp.org/articles/sparse
matrix-coercion/. INTERNAL USE ONLY.

Usage

as_dgCMatrix(XX_)

Arguments
XX_ An object of class Matrix that has a sparse structure suitable for coercion to a
sparse matrix format of dgCMatrix.
Value

An object of class dgCMatrix, coerced from input XX_.

4 basis_of_degree

basis_list_cols List Basis Functions

Description

Build a list of basis functions from a set of columns

Usage

basis_list_cols(cols, x)

Arguments
cols Index or indices (as numeric) of covariates (columns) of interest in the data ma-
trix x for which basis functions ought to be generated. Note that basis functions
for interactions of these columns are computed automatically.
X A matrix containing observations in the rows and covariates in the columns.
Basis functions are computed for these covariates.
Value

A list containing the basis functions generated from a set of input columns.

basis_of_degree Compute Degree of Basis Functions

Description

Find the full list of basis functions up to a particular degree

Usage

basis_of_degree(x, degree)

Arguments
X An input matrix containing observations and covariates following standard con-
ventions in problems of statistical learning.
degree The highest order of interaction terms for which the basis functions ought to be
generated. The default (NULL) corresponds to generating basis functions for the
full dimensionality of the input matrix.
Value

A list containing basis functions and cutoffs generated from a set of input columns up to a partic-
ular pre-specified degree.

cv_lasso 5

cv_lasso Cross-validated Lasso on Indicator Bases

Description

Fits Lasso regression using a customized procedure, with cross-validation based on origami

Usage

cv_lasso(x_basis, y, n_lambda = 100, n_folds = 10, center = FALSE)

Arguments

x_basis A dgCMatrix object corresponding to a sparse matrix of the basis functions
generated for the HAL algorithm.

y A numeric vector of the observed outcome variable values.

n_lambda A numeric scalar indicating the number of values of the L1 regularization pa-
rameter (lambda) to be obtained from fitting the Lasso to the full data. Cross-
validation is used to select an optimal lambda (that minimizes the risk) from
among these.

n_folds A numeric scalar for the number of folds to be used in the cross-validation
procedure to select an optimal value of lambda.

center binary. If TRUE, covariates are centered. This is much slower, but matches the

glmnet implementation. Default FALSE.

cv_lasso_early_stopping
Cross-validated LASSO on Indicator Bases

Description

Fits the LASSO regression using a customized procedure with cross-validation based on origami

Usage

cv_lasso_early_stopping(x_basis, y, n_lambda = 100, n_folds = 10)

Arguments

x_basis A dgCMatrix object corresponding to a sparse matrix of the basis functions
generated for the HAL algorithm.

y A numeric vector of the observed outcome variable values.

6 enumerate_basis

n_lambda A numeric scalar indicating the number of values of the L1 regularization pa-
rameter (lambda) to be obtained from fitting the LASSO to the full data. Cross-
validation is used to select an optimal lambda (that minimizes the risk) from
among these.

n_folds A numeric scalar for the number of folds to be used in the cross-validation
procedure to select an optimal value of lambda.

enumerate_basis Enumerate Basis Functions

Description

Generate basis functions for all covariates and interaction terms thereof up to a specified order/degree

Usage

enumerate_basis(x, max_degree = NULL)

Arguments
X An input matrix containing observations and covariates following standard con-
ventions in problems of statistical learning.
max_degree The highest order of interaction terms for which the basis functions ought to be
generated. The default (NULL) corresponds to generating basis functions for the
full dimensionality of the input matrix.
Value

A list of basis functions generated for all covariates and interaction thereof up to a pre-specified
degree.

Examples

gendata <- function(n) {
W1 <- runif(n, -3, 3)
W2 <- rnorm(n)
W3 <- runif(n)
W4 <- rnorm(n)
g0 <- plogis(0.5 * (-0.8 * W1 + ©0.39 * W2 + 0.08 *x W3 - 0.12 * W4))
A <- rbinom(n, 1, g0)
Q0 <- plogis(0.15 * (2 x A+ 2 x A x Wl +6 x A x W3 x W4 - 3))
Y <- rbinom(n, 1, Q@)
data.frame(A, W1, W2, W3, W4, Y)
3
set.seed(1234)
data <- gendata(100)
covars <- setdiff(names(data), "Y")

evaluate_basis

X <- as.matrix(datal, covars, drop = FALSE])
basis_list <- enumerate_basis(X)

evaluate_basis Generate Basis Functions

Description

Populates a column (indexed by basis_col) of x_basis with basis indicators.

Usage

evaluate_basis(basis, X, x_basis, basis_col)

Arguments
basis The basis function.
X The design matrix, containing the original data.
X_basis The HAL design matrix, containing indicator functions.
basis_col Numeric indicating which column to populate.
fit_hal HAL: The Highly Adaptive Lasso
Description

Estimation procedure for HAL, the Highly Adaptive Lasso

Usage

fit_hal(
X,
Y,
X_unpenalized = NULL,
max_degree = 3,
fit_type = c("glmnet”, "lassi"),
n_folds = 10,
foldid = NULL,
use_min = TRUE,
reduce_basis = NULL,
family = c("gaussian”, "binomial”, "cox"),
return_lasso = TRUE,
return_x_basis = FALSE,

fit_hal

basis_list = NULL,
lambda = NULL,

id = NULL,

offset = NULL,
cv_select = TRUE,

yolo = TRUE

Arguments

X
Y

X_unpenalized
max_degree
fit_type

n_folds

foldid

use_min

reduce_basis

family

return_lasso

return_x_basis

An input matrix containing observations and covariates.
A numeric vector of obervations of the outcome variable.

An input matrix with the same format as X, that directly get appended into the
design matrix (no basis expansion). No L-1 penalization is performed on these
covariates.

The highest order of interaction terms for which the basis functions ought to be
generated. The default (NULL) corresponds to generating basis functions for the
full dimensionality of the input matrix.

The specific routine to be called when fitting the Lasso regression in a cross-
validated manner. Choosing the glmnet option will result in a call to cv.glmnet
while lassi will produce a (faster) call to a custom Lasso routine.

Integer for the number of folds to be used when splitting the data for V-fold
cross-validation. This defaults to 10.

An optional vector of values between 1 and n_folds identifying what fold each
observation is in. If supplied, n_folds can be missing. When supplied, this is
passed to cv.glmnet.

Determines which lambda is selected from cv.glmnet. TRUE corresponds to
"lambda.min"” and FALSE corresponds to "lambda.1se”.

A numeric value bounded in the open interval (0,1) indicating the minimum
proportion of 1’s in a basis function column needed for the basis function to
be included in the procedure to fit the Lasso. Any basis functions with a lower
proportion of 1’s than the cutoff will be removed. This argument defaults to
NULL, in which case all basis functions are used in the lasso-fitting stage of the
HAL algorithm.

A character corresponding to the error family for a generalized linear model.
Options are limited to "gaussian" for fitting a standard linear model, "binomial"
for penalized logistic regression, "cox" for a penalized proportional hazards
model. Note that in the case of "binomial" and "cox" the argument fit_type
is limited to "glmnet"; thus, documentation of the glmnet package should be
consulted for any errors resulting from the Lasso fitting step in these cases.

A logical indicating whether or not to return the glmnet fit of the lasso model.

A logical indicating whether or not to return the matrix of (possibly reduced)
basis functions used in the HAL lasso fit.

fit_hal

basis_list

lambda

id

offset

cv_select

yolo

Details

The full set of basis functions generated from the input data X (via a call to
enumerate_basis). The dimensionality of this structure is dim = (n * 2°(d -
1)), where n is the number of observations and d is the number of columns in X.

User-specified array of values of the lambda tuning parameter of the Lasso L1
regression. If NULL, cv.glmnet will be used to automatically select a CV-
optimal value of this regularization parameter. If specified, the Lasso L1 re-
gression model will be fit via glmnet, returning regularized coefficient values
for each value in the input array.

a vector of ID values, used to generate cross-validation folds for cross-validated
selection of the regularization parameter lambda.

a vector of offset values, used in fitting.

A logical specifying whether the array of values specified should be passed to
cv.glmnet in order to pick the optimal value (based on cross-validation) (when
set to TRUE) or to simply fit along the sequence of values (or single value) using
glmnet (when set to FALSE).

Other arguments passed to cv.glmnet. Please consult its documentation for a
full list of options.

A logical indicating whether to print one of a curated selection of quotes from
the HAL9000 computer, from the critically acclaimed epic science-fiction film
"2001: A Space Odyssey" (1968).

The procedure uses a custom C++ implementation to generate a design matrix consisting of ba-
sis functions corresponding to covariates and interactions of covariates and to remove duplicate
columns of indicators. The Lasso regression is fit to this (usually) very wide matrix using either a
custom implementation (based on origami) or by a call to cv.glmnet.

Value

Object of class hal9001, containing a list of basis functions, a copy map, coefficients estimated for
basis functions, and timing results (for assessing computational efficiency).

Examples
n <- 100
p <-3

x <- xmat <- matrix(rnorm(n * p), n, p)

y_prob <- plogis(3 * sin(x[, 1]) + sin(x[, 21))

y <= rbinom(n = n, size = 1, prob = y_prob)

ml_hal_fit <- fit_hal(X = x, Y =y, family = "binomial”, yolo = FALSE)
preds <- predict(ml_hal_fit, new_data = x)

10 hal_quotes

hal9000 HAL 9000 Quotes

Description

Prints a quote from the HAL 9000 robot from 2001: A Space Odyssey

Usage

hal9000 ()

hal9eo1 hal9001

Description

Package for fitting the Highly Adaptive LASSO (HAL) estimator

hal_quotes HAL9000 Quotes from "2001: A Space Odyssey"

Description

Curated selection of quotes from the HAL9000 computer, from the critically acclaimed epic science-
fiction film "2001: A Space Odyssey" (1968).

Usage

hal_quotes

Format

A vector of quotes.

index_first_copy 11

index_first_copy Find Copies of Columns

Description

Index vector that, for each column in X, indicates the index of the first copy of that column

Usage

index_first_copy(X)

Arguments
X Sparse matrix containing columns of indicator functions.
lassi_fit_module Repp module: lassi_fit_module
Description

Repp module: lassi_fit_module

lassi_origami Single Lasso estimation for cross-validation with Origami

Description

Fits Lasso regression over a single fold of a cross-validated data set. This is meant to be called
using cross_validate, which is done through cv_lasso. Note that this procedure is NOT meant
to be invoked by itself. INTERNAL USE ONLY.

Usage

lassi_origami(fold, data, lambdas, center = FALSE)

Arguments

fold A fold object produced by a call to make_folds from the origami.

data A dgCMatrix object containing the outcome values (Y) in its first column and
vectors corresponding to the basis functions of HAL in all other columns. Con-
sult the description of HAL regression for details.

lambdas A numeric vector corresponding to a sequence of lambda values obtained by
fitting the Lasso on the full data.

center binary. If TRUE, covariates are centered. This is much slower, but matches the

glmnet implementation. Default FALSE.

12 make_copy_map

make_basis_list Sort Basis Functions

Description

Build a sorted list of unique basis functions based on columns, where each basis function is a list

Usage

make_basis_list(X_sub, cols)

Arguments
X_sub A subset of the columns of X, the original design matrix.
cols An index of the columns that were reduced to by sub-setting.
Details

Note that sorting of columns is performed such that the basis order equals cols.length() and each
basis function is a list(cols, cutoffs).

make_copy_map Build Copy Maps

Description

Build Copy Maps

Usage

make_copy_map(x_basis)

Arguments
x_basis A design matrix consisting of basis (indicator) functions for covariates (X) and
terms for interactions thereof.
Value

A list of numeric vectors indicating indices of basis functions that are identical in the training set.

make_design_matrix

Examples

gendata
W1 <-
W2 <-
W3 <-
W4 <-
go <-

}

<- function(n) {

runif(n,
rnorm(n)
runif(n)
rnorm(n)

-3, 3)

plogis(@0.5 * (-0.8 x W1 + ©0.39 * W2 + 0.08 *x W3 - 0.12 * W4))
A <= rbinom(n, 1, g0)

Q0 <- plogis(@.15 * (2 * A+ 2 x A * Wl +6 x A * W3 * W4 - 3))

Y <- rbinom(n, 1, Q@)

data.frame(A, W1, W2, W3, W4, Y)

set.seed(1234)
data <- gendata(100)

covars <- setdiff(names(data), "Y")

X <- as.matrix(datal, covars, drop = FALSE])
basis_list <- enumerate_basis(X)

x_basis <- make_design_matrix(X, basis_list)
copy_map <- make_copy_map(x_basis)

13

make_design_matrix Build HAL Design Matrix

Description

Make a HAL design matrix based on original design matrix X and a list of basis functions in
argument blist

Usage

make_design_matrix(X, blist)

Arguments

X
blist

Value

Matrix of covariates containing observed data in the columns.

List of basis functions with which to build HAL design matrix.

A dgCMatrix sparse matrix of indicator basis functions corresponding to the design matrix in a
zero-order highly adaptive lasso.

14

Examples

gendata
W1 <-
W2 <-
W3 <-
W4 <-
g0 <-

<- function(n) {

runif(n,
rnorm(n)
runif(n)
rnorm(n)
plogis(@.

A <- rbinom(n,

Q0 <-

plogis(@.

Y <- rbinom(n,
data.frame(A, W1, W2, W3, W4, Y)

}

set.seed(1234)
data <- gendata(100)

covars <- setdiff(names(data), "Y")

X <- as.matrix(datal, covars, drop = FALSE])
basis_list <- enumerate_basis(X)

Xx_basis <- make_design_matrix(X, basis_list)

-3, 3)

5% (-0.8 * W1 + 0.39 x W2 + 0.08 * W3 - 0.12 * W4))
1, g0)

5% (2*xA+2*%AxW +6*Ax*xW3*x W4 - 3))

1, Q@)

meets_basis

meets_basis

Compute Values of Basis Functions

Description

Computes and returns the indicator value for the basis described by cols and cutoffs for a given row
of X (X[row_num,])

Usage

meets_basis(X, row_num, cols, cutoffs)

Arguments
X
row_num
cols

cutoffs

The design matrix, containing the original data.
Numeri for a row index over which to evaluate.
Numeric for the column indices of the basis function.

Numeric providing thresholds.

predict.hal9001 15

predict.hal9001 Prediction from HAL fits

Description

Prediction from HAL fits
Usage

S3 method for class 'hal9ee01'’

predict(object, offset = NULL, ..., new_data, new_X_unpenalized = NULL)
Arguments

object An object of class hal90@1, containing the results of fitting the Highly Adaptive

Lasso, as produced by fit_hal.
offset A vector of offsets. Must be provided if provided at training
Additional arguments passed to predict as necessary.

new_data A matrix or data.frame containing new data (observations NOT used in fitting
the hal90@1 object passed in via the object argument above) for which the
hal9001 object will compute predicted values.

new_X_unpenalized
If the user supplied X_unpenalized during training, the user should also supply
this matrix with the same number of observations as new_data. Optional.

Details

Method for computing and extracting predictions from fits of the Highly Adaptive Lasso estimator,
returned as a single S3 objects of class hal9001.

Value

A numeric vector of predictions from a hal9001 object.

Note

This prediction method does not function similarly to the equivalent method from glmnet. In par-
ticular, this procedure will NOT return a subset of lambdas originally specified in callingo fit_hal
nor result in re-fitting. Instead, it will return predictions for all of the lambdas specified in the call to
fit_hal that constructs object, when cv_select = FALSE. When cv_select = TRUE, predictions
will only be returned for the value of lambda selected by cross-validation.

16 SL.hal9001

predict.SL.hal9001 predict.SL.hal9001

Description

Predict method for objects of class SL.hal9001

Usage
S3 method for class 'SL.hal9001'
predict(object, newdata, ...)
Arguments
object A fitted object of class hal9001.
newdata A matrix of new observations on which to obtain predictions.
Placeholder (ignored).
Value

A numeric vector of predictions from a SL.hal900@1 object based on the provide newdata.

SL.hal9ee1 Wrapper for Classic SuperLearner

Description

Wrapper for SuperLearner for objects of class hal9001

Usage
SL.hal9001(
Y,
X,
newX = NULL,

max_degree = 3,

fit_type = c("glmnet”, "lassi"),
n_folds = 10,

use_min = TRUE,

family = stats::gaussian(),
obsWeights = rep(1, length(Y)),

squash_hal_fit 17

Arguments

Y A numeric of outcomes.

X A matrix of predictors/covariates.

newX A matrix of new observations on which to obtain predictions. The default of
NULL computes predictions on training inputs X.

max_degree The highest order of interaction terms for which the basis functions ought to be
generated. NULL corresponds to generating basis functions for the full dimen-
sionality of the input matrix.

fit_type The specific routine to be called when fitting the Lasso regression via cross-
validation. Choosing cv.glmnet option results in option results in a call to
cv.glmnet while lassi produces a (faster) call to a custom routine based on a
custom routine for fitting the Lasso.

n_folds Integer for the number of folds to be used when splitting the data for cross-
validation. This defaults to 10 as this is the convention for V-fold cross-validation.

use_min Determines which lambda is selected from cv.glmnet. TRUE corresponds to
"lambda.min” and FALSE corresponds to "lambda.1se”.

family Not used by the function directly, but meant to ensure compatibility with SuperLearner.

obsWeights Not used by the function directly, but meant to ensure compatibility with SuperLearner.
These are passed to cv.glmnet through the . .. argument of fit_hal.
Placeholder (ignored).

Value

An object of class SL.hal9001 with a fitted hal90@1 object and corresponding predictions based
on the input data.

squash_hal_fit Squash HAL objects

Description

Reduce footprint by dropping basis functions with coefficients of zero

Usage

squash_hal_fit(object)

Arguments

object An object of class hal9001, containing the results of fitting the Highly Adaptive
LASSO, as produced by a call to fit_hal.

18 squash_hal_fit

Value

Object of class hal9001, similar to the input object but reduced such that coefficients belonging to
bases with coefficients equal to zero removed.

Examples
generate simple test data
n <- 100
p <-3
x <= matrix(rnorm(n * p), n, p)
y <= sin(x[, 11) * sin(x[, 2]) + rnorm(n, mean = @, sd = 0.2)

fit HAL model and squash resulting object to reduce footprint
hal_fit <- fit_hal(X = x, Y =y, yolo = FALSE)
squashed <- squash_hal_fit(hal_fit)

Index

+Topic datasets
hal_quotes, 10

apply_copy_map, 2
as_dgCMatrix, 3

basis_list_cols, 4
basis_of_degree, 4

cross_validate, //
cv.glmnet, 8, 9, 17
cv_lasso, 5, 11
cv_lasso_early_stopping, 5

enumerate_basis, 6
evaluate_basis, 7

fit_hal,7,15,17
glmnet, 9

halgeoe, 10
halgeo1, 10
hal_quotes, 10

index_first_copy, 11

lassi_fit_module, 11
lassi_origami, 11

make_basis_list, 12
make_copy_map, 12
make_design_matrix, 13
meets_basis, 14

predict.hal9eo1, 15
predict.SL.hal9001, 16

SL.hal90o1, 16
squash_hal_fit, 17

	apply_copy_map
	as_dgCMatrix
	basis_list_cols
	basis_of_degree
	cv_lasso
	cv_lasso_early_stopping
	enumerate_basis
	evaluate_basis
	fit_hal
	hal9000
	hal9001
	hal_quotes
	index_first_copy
	lassi_fit_module
	lassi_origami
	make_basis_list
	make_copy_map
	make_design_matrix
	meets_basis
	predict.hal9001
	predict.SL.hal9001
	SL.hal9001
	squash_hal_fit
	Index

