Package 'haarfisz'

February 20, 2015

Version 4.5 Date 25/11/2009 Title Software to perform Haar Fisz transforms Author Piotr Fryzlewicz <P.Fryzlewicz@lse.ac.uk> Maintainer Guy Nason <G.P.Nason@bristol.ac.uk> Depends R (>= 2.0), wavethresh Description A Haar-Fisz algorithm for Poisson intensity estimation License GPL (>= 2) Repository CRAN Date/Publication 2010-03-16 17:23:50

NeedsCompilation no

R topics documented:

denoise.poisson	2
hf.bt	3
hf.cv	3
hf.tiu	4
hf.u	5
hft	6
hft.inv	7
shift.sequence	7
xquake	8
	- 9

Index

denoise.poisson denoise.poisson

Description

Main routine of the package. Estimates the deterministic discretised intensity of a one-dimensional Poisson process using the Haar-Fisz transformation and partial cycle spinning. Requires WaveThresh3.

Usage

denoise.poisson(y, meth.1 = hf.bt, cs.1 = 50, meth.2 = hf.cv, cs.2 = 50, hybrid = TRUE)

Arguments

The vector of Poisson counts, its length must be a power of 2.
Unquoted name of an S-Plus routine for denoising Gaussian contaminated vectors. Must take and return a vector of length 2^J where J is an integer. The following routines supplied in this package can be used here: hf.u, hf.cv, hf.bt, hf.tiu. The user can define and plug in his or her own routines here.
The number of cycle spins to be performed with meth.1. Must be between 1 and N-1, where N is the length of y.
Of the same type as meth.1.
The number of cycle spins to be performed with meth.2.
If set to TRUE, then the estimates are computed using both meth.1 with $cs.1$ cycle spins, and meth.2 with $cs.2$ cycle spins, and the final estimate is taken to be the average of these two. If set to FALSE, only meth.1 with $cs.1$ cycle spins is used to compute the final estimate.

Value

Returns: est The estimate of the intensity which underlies y (a vector of the same length as y).

Author(s)

Piotr Fryzlewicz

hf.bt

Description

Denoises a Gaussian contaminated vector using a version of the wavelet-based "greedy tree" algorithm by Baraniuk, see the reference in the thesis.

Usage

```
hf.bt(x, filter.number = 1, family = "DaubExPhase", min.level = 3, noise.level = NULL)
```

Arguments

х	The noisy vector, its length must be a power of 2.
filter.number	The filter number of the analysing wavelet. Can be set to 1, 2,, 10 for family == "DaubExPhase", or to 4, 5,, 10 for family == "DaubLeAsymm".
family	The family of wavelet bases from which the wavelet filter.number is chosen. Can be set to "DaubExPhase" or "DaubLeAsymm".
min.level	The minimum level thresholded.
noise.level	Standard deviation of the noise, can be set to a positive number or NULL; in the latter case it will be estimated using MAD.

Value

Returns: itemestDenoised version of x.

Author(s)

Piotr Fryzlewicz

hf.cv

hf.cv

Description

Denoises a Gaussian contaminated vector using wavelet thresholding with a threshold chosen by "leave-half-out" cross-validation. Requires WaveThresh3. Also see help to wd, threshold and wr in WaveThresh.

Usage

```
hf.cv(x, filter.number = 1, family = "DaubExPhase", min.level = 3, type = "hard")
```

Arguments

Х	The noisy vector, its length must be a power of 2.
filter.number	The filter number of the analysing wavelet. Can be set to 1, 2,, 10 for family == "DaubExPhase", or to 4, 5,, 10 for family == "DaubLeAsymm".
family	The family of wavelet bases from which the wavelet filter.number is chosen. Can be set to "DaubExPhase" or "DaubLeAsymm".
min.level	The minimum level thresholded.
type	Type of thresholding, can be set to "hard" or "soft".

Value

Returns:

est Denoised version of x

Author(s)

Piotr Fryzlewicz

hf.tiu	hf.tiu		

Description

Denoises a Gaussian contaminated vector using translation-invariant hard wavelet thresholding with the universal threshold. Requires WaveThresh3. Also see help to wd, threshold, convert and AvBasis in WaveThresh.

Usage

```
hf.tiu(x, filter.number = 1, family = "DaubExPhase", min.level = 3, noise.level = 1)
```

Arguments

х	The noisy vector, its length must be a power of 2.		
filter.number	The filter number of the analysing wavelet. Can be set to 1, 2,, 10 for family == "DaubExPhase", or to 4, 5,, 10 for family == "DaubLeAsymm".		
family	The family of wavelet bases from which the wavelet filter.number is chosen. Can be set to "DaubExPhase" or "DaubLeAsymm".		
min.level	The minimum level thresholded.		
noise.level	Standard deviation of the noise, can be set to a positive number or to an estimate (a function of x).		

hf.u

Value

Returns:	
est	Denoised version of x.

Author(s)

Piotr Fryzlewicz

hf.u

Description

Denoises a Gaussian contaminated vector using wavelet thresholding with the universal threshold. Requires WaveThresh3. Also see help to wd, threshold,and link{wr} in WaveThresh.

Usage

hf.u(x, filter.number = 10, family = "DaubLeAsymm", min.level = 3, type = "hard")

Arguments

х	The noisy vector, its length must be a power of 2.
filter.number	The filter number of the analysing wavelet. Can be set to 1, 2,, 10 for family == "DaubExPhase", or to 4, 5,, 10 for family == "DaubLeAsymm".
family	The family of wavelet bases from which the wavelet filter.number is chosen. Can be set to "DaubExPhase" or "DaubLeAsymm".
min.level	The minimum level thresholded.
type	Type of thresholding, can be set to hard or soft

Value

Returns:

est Denoised version of x.

Author(s)

Piotr Fryzlewicz

hft

Description

Performs the Haar-Fisz transform.

Usage

hft(data)

Arguments data

The vector of Poisson counts, its length must be a power of 2

Details

The inverse transform is hft.inv

Value

Returns:

hfy The Haar-Fisz transform of codedata (vector of the same length as data).

Author(s)

Piotr Fryzlewicz

See Also

denoise.poisson, hft.inv, hf.bt, hf.cv, hf.u, hf.tiu

Examples

```
#
# Generate Poisson data, half with one intensity, and half with a larger one
#
v <- c( rpois(64, lambda=1), rpois(64, lambda=10))
#
# Plot it to note that the variation is bigger in the second half
# (and the mean, but this is not important for this bit)
#
## Not run: ts.plot(v)
#
# Now do the Haar-Fisz transform
#
vhft <- hft(v)
#
# Now plot this, and see that the variance of the second bit is now comparable</pre>
```

hft.inv

```
# to the first
#
## Not run: ts.plot(vhft)
```

hft.inv

Description

Performs the inverse Haar-Fisz transform.

Usage

hft.inv(data)

Arguments

data Vector of length 2^J	where J is an integer
-----------------------------	-----------------------

hft.inv

Value

Returns:

ihfx The	inverse Haar-Fisz tra	sform of x (vector o	of the same l	length as c	lata).
----------	-----------------------	----------------------	---------------	-------------	--------

Author(s)

Piotr Fryzlewicz

shift.sequence shift.sequence

Description

One of my functions to resolve issues for a similar function that seems to have been forgotten in haarfisz.

Usage

shift.sequence(v, places, dir="right")

Arguments

V	Vector to shift
places	The number of places to shift
dir	Whether the shift should be right or left

Details

This function takes a sequence input and shifs it to the left or right by the specified number of places.

Value

a shifted output sequence.

Author(s)

Piotr Fryzlewicz

Description

Time series of the number of earthquakes of magnitude >= 3.0 which occurred in Northern California in 1024 weeks, the last week being 29/11 - 05/12/2000.

Usage

data(xquake)

Source

The series was composed using the data obtained from the Northern California Earthquake Data Center.

Index

*Topic datasets
 xquake, 8
*Topic manip
 denoise.poisson, 2
 hf.bt, 3
 hf.cv, 3
 hf.tiu, 4
 hf.u, 5
 hft, 6
 hft.inv, 7
 shift.sequence, 7
denoise.poisson, 2, 6

hf.bt, 2, 3, 6 hf.cv, 2, 3, 6 hf.tiu, 2, 4, 6 hf.u, 2, 5, 6 hft, 6 hft.inv, 6, 7

shift.sequence, 7

xquake, 8