Package 'gtfsrouter'

March 22, 2019

Title Routing with GTFS (General Transit Feed Specification) Data
Version 0.0.1
Description Use GTFS (General Transit Feed Specification) data for routing from nominated start and end stations, and for extracting isochrones from nominated start station.
License GPL-3
Depends R (>= 2.10)
Imports data.table, methods, Rcpp (>= 0.12.6)
Suggests alphahull, geodist, here, hms, lubridate, lwgeom, knitr, mapview, rmarkdown, sf, testthat
LinkingTo Rcpp
SystemRequirements C++11
NeedsCompilation yes
VignetteBuilder knitr
Encoding UTF-8
LazyData true
<pre>URL https://github.com/ATFutures/gtfs-router</pre>
<pre>BugReports https://github.com/ATFutures/gtfs-router/issues</pre>
RoxygenNote 6.1.1
Author Mark Padgham [aut, cre]
Maintainer Mark Padgham <mark.padgham@email.com></mark.padgham@email.com>
Repository CRAN
Date/Publication 2019-03-22 17:20:20 UTC
R topics documented:
berlin_gtfs

2 berlin_gtfs

	go_home	
	go_to_work	6
	gtfsrouter	7
	gtfs_isochrone	7
	gtfs_route	9
	gtfs_timetable	10
	plot.gtfs_ischrone	12
	process_gtfs_local	12
	summary.gtfs	13
Index		14

berlin_gtfs

berlin_gtfs

Description

Sample GTFS data from Verkehrsverbund Berlin-Brandenburg street, reduced to U and S Bahn only (underground and overground trains), and between the hours of 12:00-13:00. Only those components of the GTFS data necessary for routing have been retained. Note that non-ASCII characters have been removed from these data, so umlauts are simply removed and eszetts become "ss". The package will nevertheless work with full GTFS feeds and non-ASCII (UTF-8) characters.

Format

A list of five **data.table** items necessary for routing:

- calendar
- routes
- trips
- · stop_times
- stops
- transfers

Value

square matrix of distances between nodes

Note

 $Can be \ re-created \ with \ the \ script \ in \ https://github.com/ATFutures/gtfs-router/blob/master/data-raw/data-script.Rmd.$

berlin_gtfs_to_zip 3

Examples

```
berlin_gtfs_to_zip () # Write sample feed from Berlin, Germany to tempdir
f <- file.path (tempdir (), "vbb.zip") # name of feed</pre>
gtfs <- extract_gtfs (f)</pre>
from <- "Innsbrucker Platz" # U-bahn station, not "S"</pre>
to <- "Alexanderplatz"
start_time <- 12 * 3600 + 120 # 12:02
route <- gtfs_route (gtfs, from = from, to = to, start_time = start_time)
# Specify day of week
route <- gtfs_route (gtfs, from = from, to = to, start_time = start_time,
                      day = "Sunday")
# specify travel by "U" = underground only
route <- gtfs_route (gtfs, from = from, to = to, start_time = start_time,
                     day = "Sunday", route_pattern = "^U")
# specify travel by "S" = street-level only (not underground)
route <- gtfs_route (gtfs, from = from, to = to, start_time = start_time,</pre>
                     day = "Sunday", route_pattern = "^S")
# Route queries are generally faster if the GTFS data are pre-processed with
# `gtfs_timetable()`:
gt <- gtfs_timetable (gtfs, day = "Sunday", route_pattern = "^S")</pre>
route <- gtfs_route (gt, from = from, to = to, start_time = start_time)</pre>
```

```
berlin_gtfs_to_zip berlin_gtfs_to_zip
```

Description

Write a zip archive of the internal package data, berlin_gtfs to a file named "vbb.zip" to tempdir().

Usage

```
berlin_gtfs_to_zip()
```

Value

Nothing

go_home

extract_gtfs

extract_gtfs

Description

Extract "stop_times" and "transfers" table from a GTFS zip archive.

Usage

```
extract_gtfs(filename = NULL)
```

Arguments

filename

Name of GTFS archive

Value

List of 2 data.table objects, one for "stop_times" and one for "transfers"

Examples

```
berlin_gtfs_to_zip () # Write sample feed from Berlin, Germany to tempdir
f <- file.path (tempdir (), "vbb.zip") # name of feed
gtfs <- extract_gtfs (f)</pre>
```

go_home

go_home

Description

Use local environmental variables specifying home and work stations and locations of locally-stored GTFS data to route from work to home locationn with next available service.

Usage

```
go_home(wait = 0, start_time)
```

Arguments

wait An integer specifying the n-th next service. That is, wait = n will return the

n-th available service after the next immediate service.

start_time If given, search for connections after specified time; if not given, search for

connections from current time.

go_home 5

Details

This function, and the complementary function go_to_work, requires three local environmental variables specifying the names of home and work stations, and the location on local storage of the GTFS data set to be used for routing. These are respectively called gtfs_home, gtfs_work, and gtfs_data. This data set must also be pre-processed using the process_gtfs_local function.

See Startup for details on how to set environmental variables. Briefly, this can be done in two main ways: By setting them at the start of each session, in which case the variables may be set with:

Sys.setenv ("gtfs_home" = "<my home station>") Sys.setenv ("gtfs_work" = "<my work station>")

Sys.setenv ("gtfs_data" = "/full/path/to/gtfs.zip") Alternatively, to set these automatically for each session, paste those lines into the file ~/.Renviron - that is, a file named ".Renviron" in the user's home directory.

The process_gtfs_local function reduces the GTFS data set to the minimal possible size necessary for local routing. GTFS data are nevertheless typically quite large, and both the go_home and go_to_work functions may take some time to execute. Most of this time is devoted to loading the data in to the current workspace and as such is largley unavoidable.

Value

A data. frame specifying the next available route from work to home.

```
## Not run:
# For general use, please set these three variables:
Sys.setenv ("gtfs_home" = "<my home station>")
Sys.setenv ("gtfs_work" = "<my work station>")
Sys.setenv ("gtfs_data" = "/full/path/to/gtfs.zip")
## End(Not run)
# The following illustrate use with sample data bundled with package
Sys.setenv ("gtfs_home" = "Tempelhof")
Sys.setenv ("gtfs_work" = "Alexanderplatz")
Sys.setenv ("gtfs_data" = file.path (tempdir (), "vbb.zip"))
process_gtfs_local () # If not already done
go_home (start_time = "12:00") # next available service after 12:00
go_home (3, start_time = "12:00") # Wait until third service after that
# Generally, `start_time` will not be specified, in which case `go_home` will
# return next available service from current system time, so calls will
# generally be as simple as:
## Not run:
go_home ()
go_home (3)
## End(Not run)
```

6 go_to_work

go_to_work	go_to_work

Description

Use local environmental variables specifying home and work stations and locations of locally-stored GTFS data to route from home to work locationn with next available service.

Usage

```
go_to_work(wait = 0, start_time)
```

Arguments

wait An integer specifying the n-th next service. That is, wait = n will return the

n-th available service after the next immediate service.

start_time If given, search for connections after specified time; if not given, search for

connections from current time.

Details

This function, and the complementary function go_to_work, requires three local environmental variables specifying the names of home and work stations, and the location on local storage of the GTFS data set to be used for routing. These are respectively called gtfs_home, gtfs_work, and gtfs_data. This data set must also be pre-processed using the process_gtfs_local function.

See Startup for details on how to set environmental variables. Briefly, this can be done in two main ways: By setting them at the start of each session, in which case the variables may be set with:

Sys.setenv ("gtfs_home" = "<my home station>") Sys.setenv ("gtfs_work" = "<my work station>")

Sys.setenv ("gtfs_data" = "/full/path/to/gtfs.zip") Alternatively, to set these automatically for each session, paste those lines into the file ~/.Renviron - that is, a file named ".Renviron" in the user's home directory.

The process_gtfs_local function reduces the GTFS data set to the minimal possible size necessary for local routing. GTFS data are nevertheless typically quite large, and both the go_home and go_to_work functions may take some time to execute. Most of this time is devoted to loading the data in to the current workspace and as such is largley unavoidable.

Value

A data. frame specifying the next available route from work to home.

```
## Not run:
# For general use, please set these three variables:
Sys.setenv ("gtfs_home" = "<my home station>")
Sys.setenv ("gtfs_work" = "<my work station>")
Sys.setenv ("gtfs_data" = "/full/path/to/gtfs.zip")
```

gtfsrouter 7

```
## End(Not run)
# The following illustrate use with sample data bundled with package
Sys.setenv ("gtfs_home" = "Tempelhof")
Sys.setenv ("gtfs_work" = "Alexanderplatz")
Sys.setenv ("gtfs_data" = file.path (tempdir (), "vbb.zip"))
process_gtfs_local () # If not already done
go_to_work (start_time = "12:00") # next available service after 12:00
go_to_work (3, start_time = "12:00") # Wait until third service after that
# Generally, `start_time` will not be specified, in which case `go_to_work`
# will return next available service from current system time, so calls will
# generally be as simple as:
## Not run:
go_to_work ()
go_to_work (3)
## End(Not run)
```

gtfsrouter

gtfsrouter

Description

Routing engine for GTFS (General Transit Feed Specification) data, including one-to-one and one-to-many routing routines.

Main Functions

- gtfs_route(): Route between given start and end stations using a nominated GTFS data set.
- go_home(): Automatic routing between work and home stations specified with local environmental variables
- go_to_work(): Automatic routing between work and home stations specified with local environmental variables
- gtfs_isochrone(): One-to-many routing from a nominated start station to all stations reachable within a specified travel duration.

gtfs_isochrone

gtfs_isochrone

Description

Calculate a single isochrone from a given start station, returning the list of all stations reachable to the specified end_time.

8 gtfs_isochrone

Usage

```
gtfs_isochrone(gtfs, from, start_time, end_time, day = NULL,
route_pattern = NULL, hull_alpha = 0.1, quiet = FALSE)
```

Arguments

gtfs A set of GTFS data returned from extract_gtfs or, for more efficient queries,

pre-processed with gtfs_timetable.

from Name of start station

start_time Desired departure time at from station, either in seconds after midnight, a vector

of two or three integers (hours, minutes) or (hours, minutes, seconds), an object

of class difftime, hms, or lubridate.

end_time End time to calculate isochrone

day Day of the week on which to calculate route, either as an unambiguous string

(so "tu" and "th" for Tuesday and Thursday), or a number between 1 = Sunday and 7 = Saturday. If not given, the current day will be used. (Not used if gtfs

has already been prepared with gtfs_timetable.)

route_pattern Using only those routes matching given pattern, for example, "^U" for routes

starting with "U" (as commonly used for underground or subway routes. (Parameter not used at all if gtfs has already been prepared with gtfs timetable.)

hull_alpha alpha value of non-convex hulls returned as part of result (see ?alphashape::ashape

for details).

quiet Set to TRUE to suppress screen messages (currently just regarding timetable con-

struction).

Value

An object of class gtfs_isochrone, including **sf**-formatted points representing the from station (start_point), the terminal end stations (end_points), and all intermediate stations (mid_points), along with lines representing the individual routes. A non-convex ("alpha") hull is also returned (as an **sf** POLYGON object), including measures of area and "elongation", which equals zero for a circle, and increases towards one for more elongated shapes.

gtfs_route 9

End(Not run)

|--|

Description

Calculate single route between a start and end station departing at or after a specified time.

Usage

```
gtfs_route(gtfs, from, to, start_time = NULL, day = NULL,
route_pattern = NULL, earliest_arrival = TRUE, include_ids = FALSE,
max_transfers = NA, quiet = FALSE)
```

Arguments

day

gtfs A set of GTFS data returned from extract_gtfs or, for more efficient queries,

pre-processed with gtfs_timetable.

from Name of start station to Name of end station

start_time Desired departure time at from station, either in seconds after midnight, a vector

of two or three integers (hours, minutes) or (hours, minutes, seconds), an object

of class difftime, hms, or lubridate. If not provided, current time is used.

Day of the week on which to calculate route, either as an unambiguous string (so "tu" and "th" for Tuesday and Thursday), or a number between 1 = Sunday

and 7 = Saturday. If not given, the current day will be used. (Not used if gtfs

has already been prepared with gtfs_timetable.)

route_pattern Using only those routes matching given pattern, for example, "^U" for routes

starting with "U" (as commonly used for underground or subway routes. (Parameter not used at all if gtfs has already been prepared with gtfs_timetable.)

earliest_arrival

If FALSE, routing will be with the first-departing service, which may not provide the earliest arrival at the to station. This may nevertheless be useful for bulk queries, as earliest arrival searches require two routing queries, while earliest departure searches require just one, and so will be generally twice as fast.

include_ids If TRUE, result will include columns containing GTFS-specific identifiers for

routes, trips, and stops.

max_transfers If not NA, specify a maximum number of transfers (including but not exceeding

this number) for the route.

quiet Set to TRUE to suppress screen messages (currently just regarding timetable con-

struction).

10 gtfs_timetable

Value

square matrix of distances between nodes

Note

This function will by default calculate the route that departs on the first available service after the specified start_time, although this may arrive later than subsequent services. If the earliest arriving route is desired, ...

Examples

```
berlin_gtfs_to_zip () # Write sample feed from Berlin, Germany to tempdir
f <- file.path (tempdir (), "vbb.zip") # name of feed</pre>
gtfs <- extract_gtfs (f)</pre>
from <- "Innsbrucker Platz" # U-bahn station, not "S"</pre>
to <- "Alexanderplatz"
start_time <- 12 * 3600 + 120 # 12:02
route <- gtfs_route (gtfs, from = from, to = to, start_time = start_time)</pre>
# Specify day of week
route <- gtfs_route (gtfs, from = from, to = to, start_time = start_time,
                     day = "Sunday")
# specify travel by "U" = underground only
route <- gtfs_route (gtfs, from = from, to = to, start_time = start_time,
                     day = "Sunday", route_pattern = "^U")
# specify travel by "S" = street-level only (not underground)
route <- gtfs_route (gtfs, from = from, to = to, start_time = start_time,
                     day = "Sunday", route_pattern = "^S")
# Route queries are generally faster if the GTFS data are pre-processed with
# `gtfs_timetable()`:
gt <- gtfs_timetable (gtfs, day = "Sunday", route_pattern = "^S")</pre>
route <- gtfs_route (gt, from = from, to = to, start_time = start_time)</pre>
```

gtfs_timetable

gtfs_timetable

Description

Convert GTFS data into format able to be used to calculate routes.

Usage

```
gtfs_timetable(gtfs, day = NULL, route_pattern = NULL, quiet = FALSE)
```

gtfs_timetable 11

Arguments

gtfs	A set of GTFS data returned from extract_gtfs.
day	Day of the week on which to calculate route, either as an unambiguous string (so "tu" and "th" for Tuesday and Thursday), or a number between 1 = Sunday and 7 = Saturday. If not given, the current day will be used.
route_pattern	Using only those routes matching given pattern, for example, "^U" for routes starting with "U" (as commonly used for underground or subway routes.
quiet	Set to TRUE to suppress screen messages (currently just regarding timetable construction).

Value

The input data with an addition items, timetable, stations, and trips, containing data formatted for more efficient use with gtfs_route (see Note).

Note

This function is merely provided to speed up calls to the primary function, gtfs_route. If the input data to that function do not include a formatted timetable, it will be calculated anyway, but queries in that case will generally take longer.

```
berlin_gtfs_to_zip () # Write sample feed from Berlin, Germany to tempdir
f <- file.path (tempdir (), "vbb.zip") # name of feed</pre>
gtfs <- extract_gtfs (f)</pre>
from <- "Innsbrucker Platz" # U-bahn station, not "S"</pre>
to <- "Alexanderplatz"
start_time <- 12 * 3600 + 120 # 12:02
route <- gtfs_route (gtfs, from = from, to = to, start_time = start_time)
# Specify day of week
route <- gtfs_route (gtfs, from = from, to = to, start_time = start_time,
                     day = "Sunday")
# specify travel by "U" = underground only
route <- gtfs_route (gtfs, from = from, to = to, start_time = start_time,
                     day = "Sunday", route_pattern = "^U")
# specify travel by "S" = street-level only (not underground)
route <- gtfs_route (gtfs, from = from, to = to, start_time = start_time,
                     day = "Sunday", route_pattern = "^S")
# Route queries are generally faster if the GTFS data are pre-processed with
# `gtfs_timetable()`:
gt <- gtfs_timetable (gtfs, day = "Sunday", route_pattern = "^S")</pre>
route <- gtfs_route (gt, from = from, to = to, start_time = start_time)
```

process_gtfs_local

plot.gtfs_ischrone

plot.gtfs_isochrone

Description

```
plot.gtfs_isochrone
```

Usage

```
## S3 method for class 'gtfs_isochrone'
plot(x, ...)
```

Arguments

x object to be plotted

... ignored here

 $process_gtfs_local \qquad \textit{process_gtfs_local}$

Description

Process a local GTFS data set with environmental variables described in go_home into a condensed version for use in go_home and go_to_work functions.

Usage

```
process_gtfs_local(expand = 2)
```

Arguments

expand

The data set is reduced to the bounding box defined by the home and work stations, expanded by this multiple. If the function appears to behave strangely, try re-running this function with a higher value of this parameter.

summary.gtfs 13

summary.gtfs

summary.gtfs

Description

```
summary.gtfs
```

Usage

```
## S3 method for class 'gtfs'
summary(object, ...)
```

Arguments

object A gtfs object to be summarised ... ignored here

```
berlin_gtfs_to_zip ()
f <- file.path (tempdir (), "vbb.zip")
g <- extract_gtfs (f)
summary (g)
g <- gtfs_timetable (g)
summary (g) # also summarizes additional timetable information</pre>
```

Index

```
*Topic datasets
    berlin_gtfs, 2
berlin_gtfs, 2, 3
\texttt{berlin\_gtfs\_to\_zip}, \\ 3
difftime, 8, 9
extract_gtfs, 4, 8, 9, 11
go_home, 4, 5, 6, 12
go_home(), 7
go_to_work, 5, 6, 6
go_to_work(), 7
gtfs_isochrone, 7
gtfs_isochrone(), 7
gtfs_route, 9, 11
gtfs_route(), 7
gtfs_timetable, 8, 9, 10
gtfsrouter, 7
gtfsrouter-package (gtfsrouter), 7
plot.gtfs_ischrone, 12
plot.gtfs_isochrone
         (plot.gtfs_ischrone), 12
process_gtfs_local, 5, 6, 12
Startup, 5, 6
summary.gtfs, 13
```