The meuse data set: a brief tutorial for the gstat R package

Edzer Pebesma

May 18, 2020

1 Introduction

The meuse data set provided by package sp is a data set comprising of four heavy metals measured in the top soil in a flood plain along the river Meuse, along with a handful of covariates. The process governing heavy metal distribution seems that polluted sediment is carried by the river, and mostly deposited close to the river bank, and areas with low elevation. This document shows a geostatistical analysis of this data set. The data set was introduced by Burrough and McDonnell, 1998.

This tutorial introduced the functionality of the R package gstat, used in conjunction with package sp. Package gstat provides a wide range of univariable and multivariable geostatistical modelling, prediction and simulation functions, where package sp provides general purpose classes and methods for defining, importing/exporting and visualizing spatial data.

2 R geostatistics packages

Package gstat (Pebesma, 2004) is an R package that provides basic functionality for univariable and multivariable geostatistical analysis, including

- variogram modelling, residual variogram modelling, and cross variogram modelling using fitting of parametric models to sample variograms
- geometric anisotropy specfied for each partial variogram model
- restricted maximum likelihood fitting of partial sills
- variogram and cross variogram maps
- simple, ordinary, universal and external drift (co)kriging
- (sequential) Gaussian (co)simulation equivalents for each of the kriging varieties
- indicator (co)kriging and sequential indicator (co)simulation
- kriging in a local or global neighbourhood
- block (co)kriging or simulation for each of the varieties, for rectangular or irregular blocks

Other geostatistical packages for R usually lack part of these options (e.g. block kriging, local kriging, or cokriging) but provide others: e.g. package geoR and geoRglm (by Paulo Ribeiro and Ole Christensen) provide the model-based geostatistics framework described in Diggle et al. (1998), package fields (Doug Nychka and others) provides thin plate spline interpolation, covariance functions for spherical coordinates (unprojected data), and routines for spatial sampling design optimization.

3 Spatial data frames

As an example, we will look at the meuse data set, which is a regular data frame that comes with package gstat (remove the 88 from the colour strings to make a plot without alpha transparency on windows or X11):

```
> library(sp)
> data(meuse)
> class(meuse)
```

[1] "data.frame"
> names (meuse)

$$
\begin{array}{llllll}
{[1] ~ " x " ~ " y " ~ " c a d m i u m " ~ " c o p p e r " ~ " l e a d " ~} & \text { "zinc" } & \text { "elev" } \\
\text { [8] "dist" } & \text { "om" } & \text { "ffreq" } & \text { "soil" } & \text { "lime" } & \text { "landuse" "dist.m" }
\end{array}
$$

$>$ coordinates(meuse) $=\sim^{\sim} x+y$
> class (meuse)

```
[1] "SpatialPointsDataFrame"
attr(,"package")
[1] "sp"
```

> summary(meuse)
Object of class SpatialPointsDataFrame
Coordinates:
min max
x 178605181390
y 329714333611
Is projected: NA
proj4string : [NA]
Number of points: 155
Data attributes:

cadmium	copper	lead	zinc
Min. : 0.200	Min. : 14.00	Min. : 37.0	Min. : 113.0
1st Qu.: 0.800	1st Qu.: 23.00	1st Qu.: 72.5	1st Qu.: 198.0
Median : 2.100	Median : 31.00	Median :123.0	Median : 326.0
Mean : 3.246	Mean : 40.32	Mean : 153.4	Mean : 469.7
3rd Qu.: 3.850	3rd Qu.: 49.50	3rd Qu.:207.0	3rd Qu.: 674.5
Max. :18.100	Max. : 128.00	Max. :654.0	Max. :1839

elev	dist	om	ffreq	soil	lime
Min. : 5.180	Min. $: 0.00000$	Min. : 1.000	1:84	1:97	0:111
1st Qu.: 7.546	1st Qu.:0.07569	1st Qu.: 5.300	2:48	2:46	1: 44
Median : 8.180	Median :0.21184	Median : 6.900	3:23	3:12	
Mean : 8.165	Mean :0.24002	Mean : 7.478			
3rd Qu.: 8.955	3rd Qu.:0.36407	3rd Qu.: 9.000			
Max. : 10.520	Max. 00.88039	$\begin{array}{ll} \text { Max. } & : 17.000 \\ \text { NA's } & : 2 \end{array}$			
landuse	dist.m				
W :50 M	. : 10.0				
Ah :39	Qu.: 80.0				
Am :22 M	ian : 270.0				
Fw : 10 M	n : 290.3				
Ab : 8 3	Qu.: 450.0				
(Other):25 M	. 1000.0				
NA's : 1					

> coordinates(meuse) [1:5,]
x y
1181072333611
2181025333558
3181165333537
4181298333484
5181307333330
> bubble(meuse, "zinc",

+ col=c("\#00ff0088", "\#00ff0088"), main = "zinc concentrations (ppm)")
zinc concentrations (ppm)

and note the following:

1. the function coordinates, when assigned (i.e. on the left-hand side of an $=$ or <- sign), promotes the data.frame meuse into a SpatialPointsDataFrame, which knows about its spatial coordinates; coordinates may be specified by a formula, a character vector, or a numeric matrix or data frame with the actual coordinates
2. the function coordinates, when not assigned, retrieves the spatial coordinates from a SpatialPointsDataFrame.
3. the two plotting functions used, plot and bubble assume that the x - and y-axis are the spatial coordinates.

4 Spatial data on a regular grid

```
> data(meuse.grid)
> summary(meuse.grid)
```

x	y	part.a	part.b
Min. :178460	Min. :329620	Min. $: 0.0000$	Min. $: 0.0000$
1st Qu.:179420	1st Qu.:330460	1st Qu.:0.0000	1st Qu.:0.0000
Median :179980	Median :331220	Median :0.0000	Median :1.0000
Mean :179985	Mean :331348	Mean :0.3986	Mean :0.6014
3rd Qu.:180580	3rd Qu.:332140	3rd Qu.:1.0000	3rd Qu.:1.0000
	$\begin{array}{lr} \text { Max. } & : 333740 \\ \text { soil } & \text { ffreq } \end{array}$	Max. :1.0000	Max. :1.0000
Min. 00.0000	1:1665 1: 779		
1st Qu.:0.1193	2:1084 2:1335		
Median :0.2715	3: 354 3: 989		
Mean :0.2971			
3rd Qu.:0.4402			
Max. :0.9926			

```
[1] "data.frame"
```

$>$ coordinates(meuse.grid) $=\sim_{x}+y$
> class (meuse.grid)

```
[1] "SpatialPointsDataFrame"
attr(,"package")
[1] "sp"
> gridded(meuse.grid) = TRUE
> class(meuse.grid)
[1] "SpatialPixelsDataFrame"
attr(,"package")
[1] "sp"
```

> image(meuse.grid["dist"])
> title("distance to river (red = 0)")
> library(gstat)
> zinc.idw $=$ idw(zinc~1, meuse, meuse.grid)
[inverse distance weighted interpolation]
> class (zinc.idw)
[1] "SpatialPixelsDataFrame"
attr(, "package")
[1] "sp"
> spplot(zinc.idw["var1.pred"], main = "zinc inverse distance weighted interpolations")
distance to river (red $=0$)

zinc inverse distance weighted interpolations

If you compare the bubble plot of zinc measurements with the map with distances to the river, it becomes evident that the larger concentrations are measured at locations close to the river. This relationship can be linearized by log-transforming the zinc concentrations, and taking the square root of distance to the river:

```
> plot(log(zinc)~sqrt(dist), meuse)
> abline(lm(log(zinc) ~sqrt(dist), meuse))
```


5 Variograms

Variograms are calculated using the function variogram, which takes a formula as its first argument: $\log (\operatorname{zinc}) \sim 1$ means that we assume a constant trend for the variable \log (zinc).

```
> lzn.vgm = variogram(log(zinc)~1, meuse)
> lzn.vgm
```

	np	dist	gamma dir.hor dir.ver	id		
1	57	79.29244	0.1234479	0	0	$\operatorname{var} 1$
2	299	163.97367	0.2162185	0	0	$\operatorname{var} 1$
3	419	267.36483	0.3027859	0	0	$\operatorname{var} 1$
4	457	372.73542	0.4121448	0	0	$\operatorname{var} 1$
5	547	478.47670	0.4634128	0	0	$\operatorname{var} 1$
6	533	585.34058	0.5646933	0	0	$\operatorname{var} 1$
7	574	693.14526	0.5689683	0	0	$\operatorname{var} 1$
8	564	796.18365	0.6186769	0	$0 \operatorname{var} 1$	
9	589	903.14650	0.6471479	0	0	$\operatorname{var} 1$
10	543	1011.29177	0.6915705	0	0	$\operatorname{var} 1$
11	500	1117.86235	0.7033984	0	0	$\operatorname{var} 1$
12	477	1221.32810	0.6038770	0	0	$\operatorname{var} 1$
13	452	1329.16407	0.6517158	0	0	$\operatorname{var} 1$
14	457	1437.25620	0.5665318	0	0	$\operatorname{var} 1$
15	415	1543.20248	0.5748227	0	0	$\operatorname{var} 1$

> lzn.fit = fit.variogram(lzn.vgm, model = vgm(1, "Sph", 900, 1))
> lzn.fit
model psill range
1 Nug 0.050662430 .0000
2 Sph 0.59060780897 .0209
> plot(lzn.vgm, lzn.fit)

Instead of the constant mean, denoted by ~ 1, we can specify a mean function, e.g. using ~sqrt (dist) as a predictor variable:
> lznr.vgm = variogram(log(zinc) ${ }^{\text {sqrt (dist), meuse) }}$
> lznr.fit = fit.variogram(lznr.vgm, model = vgm(1, "Exp", 300, 1))
> lznr.fit

model		psill	range
1	Nug	0.05712231	0.0000
2	Exp	0.17641559	340.3201

> plot(lznr.vgm, lznr.fit)

In this case, the variogram of residuals with respect to a fitted mean function are shown. Residuals were calculated using ordinary least squares.

6 Kriging

> lzn.kriged = krige(log(zinc) 1, meuse, meuse.grid, model = lzn.fit) [using ordinary kriging]
> spplot(lzn.kriged["var1.pred"])

7 Conditional simulation

> lzn.condsim $=$ krige(log(zinc) $\sim 1, ~ m e u s e, ~ m e u s e . g r i d, ~ m o d e l ~=~ l z n . f i t, ~$
$+\quad n \max =30, n s i m=4)$
drawing 4 GLS realisations of beta...
[using conditional Gaussian simulation]
> spplot(lzn.condsim, main = "four conditional simulations")

four conditional simulations

For UK/residuals:
> lzn.condsim2 = krige(log(zinc) ${ }^{\sim}$ sqrt(dist), meuse, meuse.grid, model = lznr.fit,
$+\quad n \max =30, n$ sim $=4)$
drawing 4 GLS realisations of beta...
[using conditional Gaussian simulation]
> spplot(lzn.condsim2, main = "four UK conditional simulations")

four UK conditional simulations

8 Directional variograms

The following command calculates a directional sample variogram, where directions are binned by direction angle alone. For two point pairs, $Z(s)$ and $Z(s+h)$, the separation vector is h, and it has a direction. Here, we will classify directions into four direction intervals:

```
> lzn.dir = variogram(log(zinc)~1, meuse, alpha = c(0, 45, 90, 135))
> lzndir.fit = vgm(.59, "Sph", 1200, .05, anis = c(45, .4))
> plot(lzn.dir, lzndir.fit, as.table = TRUE)
```


Looking at directions between 180 and 360 degrees will repeat the image shown above, because the variogram is a symmetric measure: $(Z(s)-Z(s+$ $h))^{2}=(Z(s+h)-Z(s))^{2}$.

The first plot gives the variogram in the zero direction, which is North; 90 degrees is East. By default, point pairs are assigned to the directional variorgram panel with their nearest direction, so North contains everything between -22.5 and 22.5 degrees (North-West to North-East). After classifying by direction, point pairs are binned by separation distance class, as is done in the usual omnidirectional case.

In the figure, the partial sill, nugget and model type of the model are equal to those of the omnidirectional model fitted above; the range is that in the direction with the largest range $\left(45^{\circ}\right)$, and the anisotropy ratio, the range in the 135 direction and the range in the 45 direction, estimated "by eye" by comparing the 45 and 135 degrees sample variograms. Gstat does not fit anisotropy parameters automatically.

We do not claim that the model fitted here is "best" in some way; in order to get to a better model we may want to look at more directions, other directions (e.g. try alpha $=c(22,67,112,157)$), and to variogram maps (see below). More elaborate approaches may use directions in three dimensions, and want to further control the direction tolerance (which may be set such that direction intervals overlap).

For the residual variogram from the linear regression model using sqrt (dist) as covariate, the directional dependence is much less obvious; the fitted model here is the fitted isotropic model (equal in all directions).

```
> lznr.dir = variogram(log(zinc) ~sqrt(dist), meuse, alpha = c(0, 45, 90, 135))
> plot(lznr.dir, lznr.fit, as.table = TRUE)
```


$9 \quad$ Variogram maps

Another means of looking at directional dependence in semivariograms is obtained by looking at variogram maps. Instead of classifying point pairs $Z(s)$ and $Z(s+h)$ by direction and distance class separately, we can classify them jointly. If $h=\{x, y\}$ be the two-dimentional coordinates of the separation vector, in the variogram map the semivariance contribution of each point pair $(Z(s)-Z(s+h))^{2}$ is attributed to the grid cell in which h lies. The map is centered around (0,0), as h is geographical distance rather than geographical location. Cutoff and width correspond to some extent to map extent and cell size; the semivariance map is point symmetric around $(0,0)$, as $\gamma(h)=\gamma(-h)$.

```
> vgm.map = variogram(log(zinc) ~sqrt(dist), meuse, cutoff = 1500, width = 100,
+ map = TRUE)
> plot(vgm.map, threshold = 5)
```


The threshold assures that only semivariogram map values based on at least 5 point pairs are shown, removing too noisy estimation.

10 Cross variography

Fitting a linear model of coregionalization.

```
> g = gstat(NULL, "log(zn)", log(zinc)~sqrt(dist), meuse)
> g = gstat(g, "log(cd)", log(cadmium)~sqrt(dist), meuse)
> g = gstat(g, "log(pb)", log(lead)~sqrt(dist), meuse)
> g = gstat(g, "log(cu)", log(copper)~sqrt(dist), meuse)
> v = variogram(g)
> g = gstat(g, model = vgm(1, "Exp", 300, 1), fill.all = TRUE)
> g.fit = fit.lmc(v, g)
> g.fit
data:
log(zn) : formula = log(zinc)`~`sqrt(dist) ; data dim = 155 x 12
log(cd) : formula = log(cadmium)` ~ sqrt(dist) ; data dim = 155 x 12
log(pb) : formula = log(lead)`~`sqrt(dist) ; data dim = 155 x 12
log(cu) : formula = log(copper) ` ~ sqrt(dist) ; data dim = 155 x 12
variograms:
\begin{tabular}{lrrr} 
& model & psill & range \\
\(\log (\mathrm{zn})[1]\) & Nug 0.05141798 & 0 \\
\(\log (\mathrm{zn})[2]\) & Exp 0.17556219 & 300 \\
\(\log (c d)[1]\) & Nug 0.39996573 & 0 \\
\(\log (c d)[2]\) & Exp 0.47893816 & 300
\end{tabular}
```

$\log (\mathrm{pb})$ [1]	Nug 0.04770893	0
$\log (\mathrm{pb})$ [2]	Exp 0.21323027	300
$\log (\mathrm{cu})$ [1]	Nug 0.04577523	0
$\log (\mathrm{cu})$ [2]	Exp 0.07827374	300
$\log (\mathrm{zn}) . \log (\mathrm{cd})[1]$	Nug 0.09190848	0
$\log (\mathrm{zn}) . \log (\mathrm{cd})[2]$	Exp 0.24542024	300
$\log (\mathrm{zn}) . \log (\mathrm{pb})[1]$	Nug 0.04528367	0
$\log (\mathrm{zn}) \cdot \log (\mathrm{pb})[2]$	Exp 0.18407011	300
$\log (\mathrm{cd}) . \log (\mathrm{pb})[1]$	Nug 0.06425412	0
$\log (\mathrm{cd}) . \log (\mathrm{pb})[2]$	Exp 0.25525359	300
$\log (\mathrm{zn}) . \log (\mathrm{cu})[1]$	Nug 0.02912806	0
$\log (\mathrm{zn}) . \log (\mathrm{cu})[2]$	Exp 0.10438748	300
$\log (\mathrm{cd}) . \log (\mathrm{cu})[1]$	Nug 0.09441635	0
$\log (\mathrm{cd}) . \log (\mathrm{cu})[2]$	Exp 0.13073936	300
$\log (\mathrm{pb}) . \log (\mathrm{cu})[1]$	Nug 0.02369778	0
$\log (\mathrm{pb}) . \log (\mathrm{cu})[2]$	Exp 0.10267516	300
> plot(v, g.fit)		
> vgm.map = variogram(g, cutoff = 1500, width = 100, map = TRUE)		
> plot(vgm.map, thr	hold = 5, col.r	gion

References

- Burrough, P.A., R.A. McDonnell, 1998. Principles of Geographical Information Systems, 2nd Edition. Oxford University Press.
- Diggle, P.J., J.A. Tawn, R.A. Moyeed, 1998. Model-based geostatistics. Applied Statistics 47(3), pp 299-350.
- Pebesma, E.J., 2004. Multivariable geostatistics in S: the gstat package. Computers \& Geosciences 30: 683-691.
- Wackernagel, H., 1998. Multivariate Geostatistics; an introduction with applications, $2^{\text {nd }}$ edn., Springer, Berlin, 291 pp.

