Package 'gstat'

May 18, 2020
Version 2.0-6
Title Spatial and Spatio-Temporal Geostatistical Modelling, Predictionand Simulation
Description Variogram modelling; simple, ordinary and universal point or block (co)kriging; spatio-temporal kriging; sequential Gaussian or indicator (co)simulation; variogram and vari-ogram map plotting utility functions; supports sf and stars.
Depends R (>=2.10)
Imports utils, stats, graphics, methods, lattice, $\mathrm{sp}(>=0.9-72)$, zoo,spacetime ($>=1.0-0$), FNN
Suggests fields, maps, mapdata, maptools, rgdal (>=0.5.2), rgeos, sf($>=0.7-2$), stars ($>=0.3-0$), xts, raster, future, future.apply
License GPL (>= 2.0)
URL https://github.com/r-spatial/gstat/
Encoding UTF-8
BugReports https://github.com/r-spatial/gstat/issues/
NeedsCompilation yes
RoxygenNote 6.1.1
Author Edzer Pebesma [aut, cre] (https://orcid.org/0000-0001-8049-7069),Benedikt Graeler [aut]
Maintainer Edzer Pebesma edzer.pebesma@uni-muenster.de
Repository CRAN
Date/Publication 2020-05-18 12:30:02 UTC
R topics documented:
coalash 3
DE_RB_2005 4
estiStAni 5
extractPar 6
fit.lmc 7
fit.StVariogram 8
fit.variogram 11
fit.variogram.gls 13
fit.variogram.reml 14
fulmar 15
get.contr 16
gstat 17
hscat 21
image 22
jura 24
krige 26
krige.cv 30
krigeSimCE 33
krigeST 34
krigeSTSimTB 36
krigeTg 38
map.to.lev 40
meuse.all 40
meuse.alt 42
ncp.grid 43
ossfim 44
oxford 45
pcb 47
plot.gstatVariogram 48
plot.pointPairs 50
plot.variogramCloud 52
predict 53
progress 57
show.vgms 58
sic2004 59
sic97 61
spplot.vcov 62
tull 63
variogram 65
variogramLine 69
variogramST 70
variogramSurface 72
vgm 73
vgm.panel.xyplot 76
vgmArea 78
vgmAreaST 79
vgmST 80
vv 82
walker 83
wind 84
Index 87

```
    coalash Coal ash samples from a mine in Pennsylvania
```


Description

Data obtained from Gomez and Hazen (1970, Tables 19 and 20) on coal ash for the Robena Mine Property in Greene County Pennsylvania.

Usage

data(coalash)

Format

This data frame contains the following columns:
\mathbf{x} a numeric vector; x -coordinate; reference unknown
\mathbf{y} a numeric vector; x-coordinate; reference unknown
coalash the target variable

Note

data are also present in package fields, as coalash.

Author(s)

unknown; R version prepared by Edzer Pebesma; data obtained from http://www. stat. uiowa. edu/~dzimmer/spatialstats/, Dale Zimmerman’s course page

References

N.A.C. Cressie, 1993, Statistics for Spatial Data, Wiley.

Gomez, M. and Hazen, K. (1970). Evaluating sulfur and ash distribution in coal seems by statistical response surface regression analysis. U.S. Bureau of Mines Report RI 7377.

```
see also fields manual: http://www.image.ucar.edu/GSP/Software/Fields/fields.manual.
``` coalashEX.Krig.shtml

\section*{Examples}
```

data(coalash)
summary(coalash)

```
DE_RB_2005 Spatio-temporal data set with rural background PM10 concentrations in Germany 2005

\section*{Description}

Spatio-temporal data set with rural background PM10 concentrations in Germany 2005 (airbase v6).

\section*{Usage \\ data("DE_RB_2005")}

\section*{Format}

The format is: Formal class 'STSDF' [package "spacetime"] with 5 slots ..@ data :'data.frame': 23230 obs. of 2 variables:\$ PM10 : num [1:23230] 16.731 .7522 .426 .8 \(\$ \log P M 10\) : num [1:23230] 2.823 .461 .613 .113 .29@ index : int [1:23230, 1:2] 12345678910@ sp :Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots@ data :'data.frame': 69 obs. of 9 variables:\$ station_altitude : int [1:69] 837001535503433394545\$ station_european_code: Factor w/ 7965 levels "AD0942A","AD0944A",..: 1991 164813672350111310981437204317411998 \(\$\) country_iso_code : Factor w/ 39 levels "AD","AL","AT",..: 10101010101010101010 \(\$\) station_start_date : Factor w/ 2409 levels "1900-01-01","1951-04-01",..: 152118415771132744328120215551148 407\$ station_end_date : Factor w/ 864 levels "","1975-02-06",..: 1115791111 11\$ type_of_station : Factor w/ 5 levels "","Background",..: 222222222\$ station_type_of_area : Factor w/ 4 levels "rural","suburban",..: 11111111111\$ street_type : Factor w/ 5 levels "","Canyon street: L/H < 1.5",..: 4111111111 \(\$\) annual_mean_PM10 : num [1:69] 20.921 .816 .520 .323 .3@ coords.nrs : num(0)@ coords : num [1:69, 1:2] 538709545414665711551796815738- \(\operatorname{attr}(*\), "dimnames")=List of 2\$: chr [1:69] "DESH001" "DENI063" "DEBY109" "DEUB038"\$: chr [1:2] "coords.x1" "coords.x2"@ bbox : num [1:2, 1:2] 30780952957529073756086661- \(\operatorname{attr}{ }^{*}\) *, "dimnames")=List of 2 \(\$\) : chr [1:2] "coords.x1" "coords.x2"\$: chr [1:2] "min" "max"@ proj4string:Formal class 'CRS' [package "sp"] with 1 slot@ projargs: chr "+init=epsg: 32632 +proj=utm +zone=32 +datum=WGS84 +units=m +no_defs +ellps=WGS84 +towgs \(84=0,0,0\) " ..@ time :An ?xts? object on 2005-01-01/2005-12-31 containing: Data: int [1:365, 1] 5115511651175118511951205121 512251235124 ... - attr(*, "dimnames")=List of 2 .. \$: NULL ..\$: chr "..1" Indexed by objects of class: [POSIXct,POSIXt] TZ: GMT xts Attributes: NULL ..@ endTime: POSIXct[1:365], format: "2005-01-02" "2005-01-03" "2005-01-04" "2005-01-05" ...

\section*{Source}

EEA, airbase v6

\section*{Examples}
```

data(DE_RB_2005)
str(DE_RB_2005)

```
estiStAni Estimation of the spatio-temporal anisotropy

\section*{Description}

Estimation of the spatio-temporal anisotropy without an underlying spatio-temporal model. Different methods are implemented using a linear model to predict the temporal gamma values or the ratio of the ranges of a spatial and temporal variogram model or a spatial variogram model to predict the temporal gamma values or the spatio-temporal anisotropy value as used in a metric spatio-temporal variogram.

\section*{Usage}
estiStAni(empVgm, interval, method = "linear", spatialVgm, temporalVgm, s.range=NA, t.range=NA)

\section*{Arguments}
empVgm An empirical spatio-temporal variogram.
interval A search interval for the optimisation of the spatio-temporal anisotropy parameter
method A character string determining the method to be used (one of linear, range, vgm or metric, see below for details)
spatialVgm A spatial variogram definition from the call to vgm. The model is optimised based on the pure spatial values in empVgm.
temporalVgm A temporal variogram definition from the call to vgm. The model is optimised based on the pure temporal values in empVgm.
s.range A spatial cutoff value applied to the empirical variogram empVgm.
\(t\). range A temporal cutoff value applied to the empirical variogram empVgm.

\section*{Details}
linear A linear model is fitted to the pure spatial gamma values based on the spatial distances. An optimal scaling is searched to stretch the temporal distances such that the linear model explains best the pure temporal gamma values. This assumes (on average) a linear relationship between distance and gamma, hence it is advisable to use only those pairs of pure spatial (pure temporal) distance and gamma value that show a considerable increase (i.e. drop all values beyond the range by setting values for s.range and \(t\). range).
range A spatial and temporal variogram model is fitted to the pure spatial and temporal gamma values respectively. The spatio-temporal anisotropy estimate is the ratio of the spatial range over the temporal range.
vgm A spatial variogram model is fitted to the pure spatial gamma values. An optimal scaling is used to stretch the temporal distances such that the spatial variogram model explains best the pure temporal gamma values.
metric A metric spatio-temporal variogram model is fitted with joint component according to the defined spatial variogram spatialVgm. The starting value of stAni is the mean of the interval parameter (see vgmST for the metric variogram definition). The spatio-temporal anisotropy as estimated in the spatio-temporal variogram is returned. Note that the parameter interval is only used to set the starting value. Hence, the estimate might exceed the given interval.

Value
A scalar representing the spatio-temporal anisotropy estimate.

\section*{Note}

Different methods might lead to very different estimates. All but the linear approach are sensitive to the variogram model selection.

\section*{Author(s)}

Benedikt Graeler

\section*{Examples}
```

data(vv)
estiStAni(vv, c(10, 150))
estiStAni(vv, c(10, 150), "vgm", vgm(80, "Sph", 120, 20))

```
extractPar \begin{tabular}{l}
Extracting parameters and their names from a spatio-temporal vari- \\
ogram model
\end{tabular}

\section*{Description}

All spatio-temporal variogram models have a different set of parameters. These functions extract the parameters and their names from the spatio-temporal variogram model. Note, this function is as well used to pass the parameters to the optim function. The arguments lower and upper passed to optim should follow the same structure.

\section*{Usage}
extractPar(model)
extractParNames(model)

\section*{Arguments}
model a spatio-temporal variogram model from vgmST

\section*{Value}

A named numeric vector of parameters or a vector of characters holding the parameters' names.

\section*{Author(s)}

Benedikt Graeler

\section*{See Also}
fit.StVariogram and vgmST

\section*{Examples}
```

sumMetricModel <- vgmST("sumMetric",
space=vgm(30, "Sph", 200, 6),
time =vgm(30, "Sph", 15, 7),
joint=vgm(60, "Exp", 84, 22),
stAni=100)

```
extractPar(sumMetricModel)
extractParNames(sumMetricModel)

Fit a Linear Model of Coregionalization to a Multivariable Sample Variogram

\section*{Description}

Fit a Linear Model of Coregionalization to a Multivariable Sample Variogram; in case of a single variogram model (i.e., no nugget) this is equivalent to Intrinsic Correlation

\section*{Usage}
fit.lmc(v, g, model, fit.ranges = FALSE, fit.lmc = !fit.ranges, correct.diagonal = 1.0, ...)

\section*{Arguments}

V
g
model
fit.ranges
fit.lmc logical; if TRUE, each coefficient matrices of partial sills is guaranteed to be positive definite
correct.diagonal
multiplicative correction factor to be applied to partial sills of direct variograms only; the default value, 1.0, does not correct. If you encounter problems with singular covariance matrices during cokriging or cosimulation, you may want to try to increase this to e.g. 1.01
... parameters that get passed to fit.variogram

\section*{Value}
returns an object of class gstat, with fitted variograms;

\section*{Note}

This function does not use the iterative procedure proposed by M. Goulard and M. Voltz (Math. Geol., 24(3): 269-286; reproduced in Goovaerts’ 1997 book) but uses simply two steps: first, each variogram model is fitted to a direct or cross variogram; next each of the partial sill coefficient matrices is approached by its in least squares sense closest positive definite matrices (by setting any negative eigenvalues to zero).
The argument correct. diagonal was introduced by experience: by zeroing the negative eigenvalues for fitting positive definite partial sill matrices, apparently still perfect correlation may result, leading to singular cokriging/cosimulation matrices. If someone knows of a more elegant way to get around this, please let me know.

\section*{Author(s)}

Edzer Pebesma

\section*{References}
http://www.gstat.org/

\section*{See Also}
variogram, vgm, fit.variogram, demo(cokriging)

\section*{Description}

Fits a spatio-temporal variogram of a given type to spatio-temporal sample variogram.

\section*{Usage}
fit.StVariogram(object, model, ..., method = "L-BFGS-B", lower, upper, fit.method \(=6\), stAni=NA, wles)

\section*{Arguments}
\begin{tabular}{ll}
object & The spatio-temporal sample variogram. Typically output from variogramST \\
model & \begin{tabular}{l}
The desired spatio-temporal model defined through vgmST. \\
further arguments passed to optim. extractParNames provides the parame- \\
ter structure of spatio-temporal variogram models that help to provide sensible \\
upper and lower limits.
\end{tabular} \\
lower & \begin{tabular}{l}
Lower limits used by optim. If missing, the smallest well defined values are \\
used (mostly near 0).
\end{tabular} \\
upper & \begin{tabular}{l}
Upper limits used by optim. If missing, the largest well defined values are used \\
(mostly Inf).
\end{tabular} \\
method & \begin{tabular}{l}
fit method, pass to optim \\
an integer between 0 and 13 determine the fitting routine (i.e. weighting of the
\end{tabular} \\
fit.method & \begin{tabular}{l}
squared residuals in the LSE). Values 0 to 6 correspond with the pure spatial \\
version (see fit.variogram). See the details section for the meaning of the \\
other values (partly experimental).
\end{tabular} \\
stAni & \begin{tabular}{l}
The spatio-temporal anisotropy that is used in the weighting. Might be missing \\
if the desired spatio-temporal variogram model does contain a spatio-temporal \\
anisotropy parameter (this might cause bad convergence behaviour). The default
\end{tabular} \\
is NA and will be understood as identity (1 temporal unit = 1 spatial unit). As
\end{tabular}

\section*{Details}

The following list summarizes the meaning of the fit.method argument which is essential a weighting of the squared residuals in the least-squares estimation. Please note, that weights based on the models gamma value might fail to converge properly due to the dependence of weights on the variogram estimate:
fit. method \(=0\) no fitting, however the MSE between the provided variogram model and sample variogram surface is calculated.
fit.method \(=1\) Number of pairs in the spatio-temporal bin: \(N_{j}\)
fit.method \(=2\) Number of pairs in the spatio-temporal bin divided by the square of the current variogram model's value: \(N_{j} / \gamma\left(h_{j}, u_{j}\right)^{2}\)
fit.method=3 Same as fit.method=1 for compatibility with fit.variogram but as well evaluated in R .
fit.method \(=4\) Same as fit.method \(=2\) for compatibility with fit. variogram but as well evaluated in R .
fit.method = 5 Reserved for REML for compatibility with fit.variogram, not yet implemented.
fit.method \(=6\) No weights.
fit.method \(=7\) Number of pairs in the spatio-temporal bin divided by the square of the bin's metric distance. If stAni is not specified, the model's parameter is used to calculate the metric distance across space and time: \(N_{j} /\left(h_{j}^{2}+\operatorname{stAni}^{2} \cdot u_{j}^{2}\right)\)
fit.method \(=8\) Number of pairs in the spatio-temporal bin divided by the square of the bin's spatial distance. \(N_{j} / h_{j}^{2}\). Note that the 0 distances are replaced by the smallest non-zero distances to avoid division by zero.
fit.method \(=9\) Number of pairs in the spatio-temporal bin divided by the square of the bin's temporal distance. \(N_{j} / u_{j}^{2}\). Note that the 0 distances are replaced by the smallest non-zero distances to avoid division by zero.
fit.method = 10 Reciprocal of the square of the current variogram model's value: \(1 / \gamma\left(h_{j}, u_{j}\right)^{2}\)
fit.method \(=11\) Reciprocal of the square of the bin's metric distance. If stAni is not specified, the model's parameter is used to calculate the metric distance across space and time: \(1 /\left(h_{j}^{2}+\right.\) stAni \(\left.{ }^{2} \cdot u_{j}^{2}\right)\)
fit. method \(=12\) Reciprocal of the square of the bin's spatial distance. \(1 / h_{j}^{2}\). Note that the 0 distances are replaced by the smallest non-zero distances to avoid division by zero.
fit.method \(=13\) Reciprocal of the square of the bin's temporal distance. \(1 / u_{j}^{2}\). Note that the 0 distances are replaced by the smallest non-zero distances to avoid division by zero.

See also Table 4.2 in the gstat manual for the original spatial version.

\section*{Value}

Returns a spatio-temporal variogram model, as S3 class StVariogramModel. It carries the temporal and spatial unit as attributes "temporal unit" and "spatial unit" in order to allow krigeST to adjust for different units. The units are obtained from the provided empirical variogram. Further attributes are the optim output "optim. output" and the always not weighted mean squared error "MSE".

\section*{Author(s)}

Benedikt Graeler

\section*{See Also}
fit. variogram for the pure spatial case. extractParNames helps to understand the parameter structure of spatio-temporal variogram models.

\section*{Examples}
```


# separable model: spatial and temporal sill will be ignored

# and kept constant at 1-nugget respectively. A joint sill is used.

## Not run:

separableModel <- vgmST("separable",
method = "Nelder-Mead", \# no lower \& upper needed
space=vgm(0.9,"Exp", 123, 0.1),
time =vgm(0.9,"Exp", 2.9, 0.1),
sill=100)
data(vv)
separableModel <- fit.StVariogram(vv, separableModel,
method="L-BFGS-B",
lower=c(10,0,0.01,0,1),

```
plot(vv, separableModel)
\#\# End(Not run) \# dontrun
fit.variogram Fit a Variogram Model to a Sample Variogram

\section*{Description}

Fit ranges and/or sills from a simple or nested variogram model to a sample variogram

\section*{Usage}
fit.variogram(object, model, fit.sills = TRUE, fit.ranges = TRUE,
fit.method \(=7\), debug.level = 1, warn.if.neg = FALSE, fit.kappa = FALSE)

\section*{Arguments}
\begin{tabular}{ll}
object & \begin{tabular}{l}
sample variogram, output of variogram \\
variogram model, output of vgm; see Details below for details on how NA values \\
in model are initialised.
\end{tabular} \\
fit.sills & \begin{tabular}{l}
logical; determines whether the partial sill coefficients (including nugget vari- \\
ance) should be fitted; or logical vector: determines for each partial sill param- \\
eter whether it should be fitted or fixed.
\end{tabular} \\
fit.ranges & \begin{tabular}{l}
logical; determines whether the range coefficients (excluding that of the nugget \\
component) should be fitted; or logical vector: determines for each range pa- \\
rameter whether it should be fitted or fixed. \\
fitting method, used by gstat. The default method uses weights \(\$ \mathrm{~N} _\mathrm{h} / \mathrm{h} \wedge 2 \$\) with
\end{tabular} \\
fit.method & \begin{tabular}{l}
\$N_h\$ the number of point pairs and \(\$ \mathrm{~h} \$\) the distance. This criterion is not sup- \\
ported by theory, but by practice. For other values of fit.method, see details. \\
integer; set gstat internal debug level \\
logical; if TRUE a warning is issued whenever a sill value of a direct variogram \\
becomes negative
\end{tabular} \\
debug.level \\
warn.if.neg & \begin{tabular}{l}
logical; if TRUE, a sequence of \(0.3,0.4, \ldots, 5\) will be searched for optimal fit; \\
alternatively another sequence can be given to this argument
\end{tabular} \\
fit.kappa
\end{tabular}

\section*{Details}

If any of the initial parameters of model are NA, they are given default values as follows. The range parameter is given one third of the maximum value of object\$dist. The nugget value is given the mean value of the first three values of object\$gamma. The partial sill is given the mean of the last five values of object\$gamma.
Values for fit.method are 1: weights equal to \(\$ N_{-} \mathrm{j} \$\); 2 : weights equal to \(\$ \mathrm{~N}_{\mathrm{J}} \mathrm{j} /\left(\left(\operatorname{gamma}\left(\mathrm{h} _\mathrm{j}\right)\right)^{\wedge} 2\right)\); 5 (ignore, use fit.variogram.reml); 6: unweighted (OLS); 7: \$N_j/(h_j^2)\$. (from: http://www. gstat.org/gstat.pdf, table 4.2).

\section*{Value}
returns a fitted variogram model (of class variogramModel).
This is a data.frame with two attributes: (i) singular a logical attribute that indicates whether the non-linear fit converged (FALSE), or ended in a singularity (TRUE), and (ii) SSErr a numerical attribute with the (weighted) sum of squared errors of the fitted model. See Notes below.

\section*{Note}

If fitting the range(s) is part of the job of this function, the results may well depend on the starting values, given in argument model, which is generally the case for non-linear regression problems. This function uses internal C code, which uses Levenberg-Marquardt.
If for a direct (i.e. not a cross) variogram a sill parameter (partial sill or nugget) becomes negative, fit.variogram is called again with this parameter set to zero, and with a FALSE flag to further fit this sill. This implies that the search does not move away from search space boundaries.

On singular model fits: If your variogram turns out to be a flat, horizontal or sloping line, then fitting a three parameter model such as the exponential or spherical with nugget is a bit heavy: there's an infinite number of possible combinations of sill and range (both very large) to fit to a sloping line. In this case, the returned, singular model may still be useful: just try and plot it. Gstat converges when the parameter values stabilize, and this may not be the case. Another case of singular model fits happens when a model that reaches the sill (such as the spherical) is fit with a nugget, and the range parameter starts, or converges to a value smaller than the distance of the second sample variogram estimate. In this case, again, an infinite number of possibilities occur essentially for fitting a line through a single (first sample variogram) point. In both cases, fixing one or more of the variogram model parameters may help you out.

\section*{Author(s)}

Edzer Pebesma

\section*{References}
http://www.gstat.org/
Pebesma, E.J., 2004. Multivariable geostatistics in S: the gstat package. Computers \\& Geosciences, 30: 683-691.

\section*{See Also}
variogram, vgm

\section*{Examples}
```

library(sp)
data(meuse)
coordinates(meuse) = ~x+y
vgm1 <- variogram(log(zinc)~1, meuse)
fit.variogram(vgm1, vgm(1, "Sph", 300, 1))
fit.variogram(vgm1, vgm("Sph"))

```
```


# optimize the value of kappa in a Matern model, using ugly <<- side effect:

f = function(x) attr(m.fit <<- fit.variogram(vgm1, vgm(,"Mat",nugget=NA,kappa=x)),"SSErr")
optimize(f, c(0.1, 5))
plot(vgm1, m.fit)

# best fit from the (0.3, 0.4, 0.5. ... , 5) sequence:

(m <- fit.variogram(vgm1, vgm("Mat"), fit.kappa = TRUE))
attr(m, "SSErr")

```
```

fit.variogram.gls GLS fitting of variogram parameters

```

\section*{Description}

Fits variogram parameters (nugget, sill, range) to variogram cloud, using GLS (generalized least squares) fitting. Only for direct variograms.

\section*{Usage}
fit.variogram.gls(formula, data, model, maxiter = 30, eps \(=.01\), trace \(=\) TRUE, ignoreInitial \(=\) TRUE, cutoff \(=\) Inf, plot = FALSE)

\section*{Arguments}
\begin{tabular}{ll}
formula & \begin{tabular}{l}
formula defining the response vector and (possible) regressors; in case of ab- \\
sence of regressors, use e.g. \(z \sim 1\)
\end{tabular} \\
data & \begin{tabular}{l}
object of class Spatial
\end{tabular} \\
model & variogram model to be fitted, output of vgm \\
maxiter & maximum number of iterations \\
eps & convergence criterium \\
trace & logical; if TRUE, prints parameter trace \\
ignoreInitial & \(\begin{array}{l}\text { logical; if FALSE, initial parameter are taken from model; if TRUE, initial val- } \\
\text { ues of model are ignored and taken from variogram cloud: nugget: mean }(y) / 2, \\
\text { sill: mean }(y) / 2, ~ r a n g e ~ m e d i a n ~\end{array}\) h \() / 4\) with y the semivariance cloud value and
\end{tabular},

\section*{Value}
an object of class "variogramModel"; see fit.variogram; if plot is TRUE, a plot is returned instead.

\section*{Note}

Inspired by the code of Mihael Drinovac, which was again inspired by code from Ernst Glatzer, author of package vardiag.

\section*{Author(s)}

Edzer Pebesma

\section*{References}

Mueller, W.G., 1999: Least-squares fitting from the variogram cloud. Statistics \\& Probability Letters, 43, 93-98.
Mueller, W.G., 2007: Collecting Spatial Data. Springer, Heidelberg.

\section*{See Also}
fit.variogram,

\section*{Examples}
```

library(sp)
data(meuse)
coordinates(meuse) = ~x+y

## Not run:

fit.variogram.gls(log(zinc)~1, meuse[1:40,], vgm(1, "Sph", 900,1))

## End(Not run)

```
fit.variogram.reml REML Fit Direct Variogram Partial Sills to Data

\section*{Description}

Fit Variogram Sills to Data, using REML (only for direct variograms; not for cross variograms)

\section*{Usage}
fit.variogram.reml(formula, locations, data, model, debug.level \(=1\), set, degree \(=0\))

\section*{Arguments}
\begin{tabular}{ll}
formula & \begin{tabular}{l}
formula defining the response vector and (possible) regressors; in case of ab- \\
sence of regressors, use e.g. \(z^{\sim 1}\)
\end{tabular} \\
locations & \begin{tabular}{l}
spatial data locations; a formula with the coordinate variables in the right hand \\
(dependent variable) side.
\end{tabular} \\
data & data frame where the names in formula and locations are to be found \\
model & variogram model to be fitted, output of vgm \\
debug.level & \begin{tabular}{l}
debug level; set to 65 to see the iteration trace and log likelihood \\
additional options that can be set; use set=list (iter=100) to set the max.
\end{tabular} \\
set & \begin{tabular}{l}
number of iterations to 100.
\end{tabular} \\
degree & order of trend surface in the location, between 0 and 3
\end{tabular}

\section*{Value}
an object of class "variogramModel"; see fit.variogram

\section*{Note}

This implementation only uses REML fitting of sill parameters. For each iteration, an \(n \times n\) matrix is inverted, with \(\$ \mathrm{n} \$\) the number of observations, so for large data sets this method becomes demanding. I guess there is much more to likelihood variogram fitting in package geoR, and probably also in nlme.

\section*{Author(s)}

Edzer Pebesma

\section*{References}

Christensen, R. Linear models for multivariate, Time Series, and Spatial Data, Springer, NY, 1991.
Kitanidis, P., Minimum-Variance Quadratic Estimation of Covariances of Regionalized Variables, Mathematical Geology 17 (2), 195-208, 1985

\section*{See Also}
fit.variogram,

\section*{Examples}
```

library(sp)
data(meuse)
fit.variogram.reml(log(zinc)~1, ~x+y, meuse, model = vgm(1, "Sph", 900,1))

```

Fulmaris glacialis data

\section*{Description}

Airborne counts of Fulmaris glacialis during the Aug/Sept 1998 and 1999 flights on the Dutch (Netherlands) part of the North Sea (NCP, Nederlands Continentaal Plat).

\section*{Usage}
data(fulmar)

\section*{Format}

This data frame contains the following columns:
year year of measurement: 1998 or 1999
\(\mathbf{x}\) x-coordinate in UTM zone 31
y y-coordinate in UTM zone 31
depth sea water depth, in \(m\)
coast distance to coast of the Netherlands, in km.
fulmar observed density (number of birds per square km)

\section*{Author(s)}

Dutch National Institute for Coastal and Marine Management (RIKZ)

\section*{See Also}
ncp.grid
E.J. Pebesma, R.N.M. Duin, P.A. Burrough, 2005. Mapping Sea Bird Densities over the North Sea: Spatially Aggregated Estimates and Temporal Changes. Environmetrics 16, (6), p 573-587.

\section*{Examples}
```

data(fulmar)
summary(fulmar)

## Not run:

demo(fulmar)

## End(Not run)

```
get.contr Calculate contrasts from multivariable predictions

\section*{Description}

Given multivariable predictions and prediction (co)variances, calculate contrasts and their (co)variance

\section*{Usage}
get.contr(data, gstat.object, X, ids = names(gstat.object\$data))

\section*{Arguments}
\begin{tabular}{ll}
data & data frame, output of predict \\
gstat. object & \begin{tabular}{l}
object of class gstat, used to extract ids; may be missing if ids is used \\
contrast vector or matrix; the number of variables in gstat. object should equal \\
the number of elements in \(X\) if \(X\) is a vector, or the number of rows in \(X\) if \(X\) is a \\
matrix. \\
character vector with (selection of) id names, present in data
\end{tabular} \\
ids & \begin{tabular}{l}
cher
\end{tabular}
\end{tabular}

\section*{Details}

From data, we can extract the \(n \times 1\) vector with multivariable predictions, say \(\$ \mathrm{y} \$\), and its \(n \times n\) covariance matrix \(\$ V \$\). Given a contrast matrix in \(\$ \mathrm{X} \$\), this function computes the contrast vector \(\$ C=X^{\prime} y \$\) and its variance \(\$ \operatorname{Var}(C)=X^{\prime} V X \$\).

\section*{Value}
a data frame containing for each row in data the generalized least squares estimates (named beta.1, beta. \(2, \ldots\)), their variances (named var.beta.1, var.beta.2, ...) and covariances (named cov.beta.1.2, cov.beta.1.3, ...)

\section*{Author(s)}

Edzer Pebesma

\section*{References}
http://www.gstat.org/

\section*{See Also}
predict
```

gstat Create gstat objects, or subset it

```

\section*{Description}

Function that creates gstat objects; objects that hold all the information necessary for univariate or multivariate geostatistical prediction (simple, ordinary or universal (co)kriging), or its conditional or unconditional Gaussian or indicator simulation equivalents. Multivariate gstat object can be subsetted.

\section*{Usage}
```

gstat(g, id, formula, locations, data, model = NULL, beta,
nmax = Inf, nmin = 0, omax = 0, maxdist = Inf, force = FALSE,
dummy = FALSE, set, fill.all = FALSE,
fill.cross = TRUE, variance = "identity", weights = NULL, merge,
degree = 0, vdist = FALSE, lambda = 1.0)

## S3 method for class 'gstat'

print(x, ...)

```

\section*{Arguments}
g
data data frame; contains the dependent variable, independent variables, and locations.
model variogram model for this id; defined by a call to vgm; see argument id to see how cross variograms are entered
beta
nmin for local kriging: if the number of nearest observations within distance maxdist is less than nmin, a missing value will be generated, unless force==TRUE; see maxdist
omax
maxdist
force for local kriging, force neighbourhood selection: in case nmin is given, search beyond maxdist until nmin neighbours are found. A missing value is returned if this is not possible.
dummy
set named list with optional parameters to be passed to gstat (only set commands of gstat are allowed, and not all of them may be relevant; see the manual for gstat stand-alone, URL below)
\begin{tabular}{ll}
x & gstat object to print \\
fill.all & \begin{tabular}{l}
logical; if TRUE, fill all of the direct variogram and, depending on the value of \\
fill.cross also all cross variogram model slots in \(g\) with the given variogram \\
model
\end{tabular} \\
fill.cross & \begin{tabular}{l}
logical; if TRUE, fill all of the cross variograms, if FALSE fill only all direct \\
variogram model slots in g with the given variogram model (only if fill.all \\
is used)
\end{tabular} \\
variance & \begin{tabular}{l}
character; variance function to transform to non-stationary covariances; "iden- \\
tity" does not transform, other options are "mu" (Poisson) and "mu(1-mu)" (bi- \\
nomial)
\end{tabular} \\
weights & \begin{tabular}{l}
numeric vector; if present, covariates are present, and variograms are missing \\
weights are passed to OLS prediction routines resulting in WLS; if variograms \\
are given, weights should be 1/variance, where variance specifies location-specific \\
measurement error; see references section below
\end{tabular} \\
merge & \begin{tabular}{l}
either character vector of length 2, indicating two ids that share a common mean; \\
the more general gstat merging of any two coefficients across variables is ob- \\
tained when a list is passed, with each element a character vector of length 4, \\
in the form c " id1", 1, "id2", 2). This merges the first parameter for variable
\end{tabular} \\
id1 to the second of variable id2.
\end{tabular}

\section*{Details}
to print the full contents of the object \(g\) returned, use as.list (g) or print. default (g)

\section*{Value}
an object of class gstat, which inherits from list. Its components are:
data list; each element is a list with the formula, locations, data, nvars, beta, etc., for a variable
model list; each element contains a variogram model; names are those of the elements of data; cross variograms have names of the pairs of data elements, separated by a . (e.g.: var1 . var2
)
set list; named list, corresponding to set name=value; gstat commands (look up the set command in the gstat manual for a full list)

\section*{Note}

The function currently copies the data objects into the gstat object, so this may become a large object. I would like to copy only the name of the data frame, but could not get this to work. Any help is appreciated.
Subsetting (see examples) is done using the id's of the variables, or using numeric subsets. Subsetted gstat objects only contain cross variograms if (i) the original gstat object contained them and (ii) the order of the subset indexes increases, numerically, or given the order they have in the gstat object.

The merge item may seem obscure. Still, for colocated cokriging, it is needed. See texts by Goovaerts, Wackernagel, Chiles and Delfiner, or look for standardised ordinary kriging in the 1992 Deutsch and Journel or Isaaks and Srivastava. In these cases, two variables share a common mean parameter. Gstat generalises this case: any two variables may share any of the regression coefficients; allowing for instance analysis of covariance models, when variograms were left out (see e.g. R. Christensen's "Plane answers" book on linear models). The tests directory of the package contains examples in file merge.R. There is also demo (pcb) which merges slopes across years, but with year-dependent intercept.

\section*{Author(s)}

Edzer Pebesma

\section*{References}
http://www.gstat.org/ Pebesma, E.J., 2004. Multivariable geostatistics in S: the gstat package. Computers \\& Geosciences, 30: 683-691.
for kriging with known, varying measurement errors (weights), see e.g. Delhomme, J.P. Kriging in the hydrosciences. Advances in Water Resources, 1(5):251-266, 1978; see also the section Kriging with known measurement errors in the gstat user's manual, http://www.gstat.org/

\section*{See Also}
predict, krige

\section*{Examples}
```

library(sp)
data(meuse)
coordinates(meuse) = ~x+y

# let's do some manual fitting of two direct variograms and a cross variogram

g <- gstat(id = "ln.zinc", formula = log(zinc)~1, data = meuse)
g <- gstat(g, id = "ln.lead", formula = log(lead)~1, data = meuse)

# examine variograms and cross variogram:

plot(variogram(g))

# enter direct variograms:

g <- gstat(g, id = "ln.zinc", model = vgm(.55, "Sph", 900, .05))
g <- gstat(g, id = "ln.lead", model = vgm(.55, "Sph", 900, .05))

# enter cross variogram:

g <- gstat(g, id = c("ln.zinc", "ln.lead"), model = vgm(.47, "Sph", 900, .03))

# examine fit:

```
```

plot(variogram(g), model = g\$model, main = "models fitted by eye")

# see also demo(cokriging) for a more efficient approach

g["ln.zinc"]
g["ln.lead"]
g[c("ln.zinc", "ln.lead")]
g[1]
g[2]

# Inverse distance interpolation with inverse distance power set to .5:

# (kriging variants need a variogram model to be specified)

data(meuse.grid)
gridded(meuse.grid) = ~x+y
meuse.gstat <- gstat(id = "zinc", formula = zinc ~ 1, data = meuse,
nmax = 7, set = list(idp = .5))
meuse.gstat
z <- predict(meuse.gstat, meuse.grid)
spplot(z["zinc.pred"])

# see demo(cokriging) and demo(examples) for further examples,

# and the manuals for predict and image

# local universal kriging

gmeuse <- gstat(id = "log_zinc", formula = log(zinc)~sqrt(dist), data = meuse)

# variogram of residuals

vmeuse.res <- fit.variogram(variogram(gmeuse), vgm(1, "Exp", 300, 1))

# prediction from local neighbourhoods within radius of 170 m or at least 10 points

gmeuse <- gstat(id = "log_zinc", formula = log(zinc)~sqrt(dist),
data = meuse, maxdist=170, nmin=10, force=TRUE, model=vmeuse.res)
predmeuse <- predict(gmeuse, meuse.grid)
spplot(predmeuse)

```
hscat Produce h-scatterplot

\section*{Description}

Produces h -scatterplots, where point pairs having specific separation distances are plotted. This function is a wrapper around xyplot.

\section*{Usage}
hscat(formula, data, breaks, pch = 3, cex = .6, mirror = FALSE, variogram.alpha \(=0\), as.table \(=\) TRUE,...)

\section*{Arguments}
\begin{tabular}{ll}
formula & specifies the dependent variable \\
data & data where the variable in formula is resolved \\
breaks & distance class boundaries
\end{tabular}
```

pch plotting symbol
cex plotting symbol size
mirror logical; duplicate all points mirrored along x=y? (note that correlations are those
of the points plotted)
variogram.alpha
parameter to be passed as alpha parameter to variogram; if alpha is specified it
will only affect xyplot by being passed through ...
as.table logical; if TRUE, panels plot top-to-bottom
... parameters, passed to variogram and xyplot

```

\section*{Value}
an object of class trellis; normally the h scatter plot

\section*{Note}

Data pairs are plotted once, so the h -scatterplot are not symmetric.

\section*{Author(s)}

Edzer Pebesma

\section*{References}
http://www.gstat.org/
Pebesma, E.J., 2004. Multivariable geostatistics in S: the gstat package. Computers \(\backslash \&\) Geosciences, 30: 683-691.

\section*{Examples}
```

library(sp)
data(meuse)
coordinates(meuse) = ~x+y
hscat(log(zinc)~1, meuse, c(0, 80, 120, 250, 500, 1000))

```
```

image Image Gridded Coordinates in Data Frame

```

\section*{Description}

Image gridded data, held in a data frame, keeping the right aspect ratio for axes, and the right cell shape

\section*{Usage}
```


## S3 method for class 'data.frame'

image(x, zcol = 3, xcol = 1, ycol = 2, asp = 1, ...)
xyz2img(xyz, zcol = 3, xcol = 1, ycol = 2, tolerance = 10 * .Machine\$double.eps)

```

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline x & data frame (or matrix) with x -coordinate, y -coordinate, and z -coordinate in its columns \\
\hline zcol & column number or name of z-variable \\
\hline xcol & column number or name of \(x\)-coordinate \\
\hline ycol & column number or name of \(y\)-coordinate \\
\hline asp & aspect ratio for the x and y axes \\
\hline & arguments, passed to image.default \\
\hline xyz & data frame (same as x) \\
\hline tolerance & maximum allowed deviation for coordinats from being exactly on a regularly spaced grid \\
\hline
\end{tabular}

\section*{Value}
image.data.frame plots an image from gridded data, organized in arbritrary order, in a data frame. It uses xyz2img and image.default for this. In the S-Plus version, xyz2img tries to make an image object with a size such that it will plot with an equal aspect ratio; for the \(R\) version, image.data.frame uses the asp=1 argument to guarantee this.
xyz2img returns a list with components: \(z\), a matrix containing the \(z\)-values; \(x\), the increasing coordinates of the rows of \(z ; y\), the increasing coordinates of the columns of \(z\). This list is suitable input to image.default.

\section*{Note}

I wrote this function before I found out about levelplot, a Lattice/Trellis function that lets you control the aspect ratio by the aspect argument, and that automatically draws a legend, and therefore I now prefer levelplot over image. Plotting points on a levelplots is probably done with providing a panel function and using lpoints.
(for S-Plus only -) it is hard (if not impossible) to get exactly right cell shapes (e.g., square for a square grid) without altering the size of the plotting region, but this function tries hard to do so by extending the image to plot in either x - or y -direction. The larger the grid, the better the approximation. Geographically correct images can be obtained by modifiying par("pin"). Read the examples, image a \(2 \times 2\) grid, and play with par("pin") if you want to learn more about this.

\section*{Author(s)}

Edzer Pebesma

\section*{Examples}
```

library(sp)
data(meuse)
data(meuse.grid)
g <- gstat(formula=log(zinc)~1,locations=~x+y,data=meuse,model=vgm(1, "Exp", 300))
x <- predict(g, meuse.grid)
image(x, 4, main="kriging variance and data points")
points(meuse$x, meuse$y, pch = "+")

```

\section*{Description}

The jura data set from Pierre Goovaerts' book (see references below). It contains four data. frames: prediction.dat, validation.dat and transect.dat and juragrid.dat, and three data.frames with consistently coded land use and rock type factors, as well as geographic coordinates. The examples below show how to transform these into spatial (sp) objects in a local coordinate system and in geographic coordinates, and how to transform to metric coordinate reference systems.

\section*{Usage}
data(jura)

\section*{Format}

The data.frames prediction.dat and validation.dat contain the following fields:
Xloc X coordinate, local grid km
Yloc Y coordinate, local grid km
Landuse see book and below
Rock see book and below
Cd mg cadmium \(\mathrm{kg}^{\wedge}-1\) topsoil
Co mg cobalt \(\mathrm{kg}^{\wedge}-1\) topsoil
Cr mg chromium \(\mathrm{kg}^{\wedge}\) - 1 topsoil
\(\mathbf{C u}\) mg copper \(\mathrm{kg}^{\wedge}-1\) topsoil
Ni mg nickel \(\mathrm{kg}^{\wedge}-1\) topsoil
\(\mathbf{P b} \mathbf{m g}\) lead \(\mathrm{kg}^{\wedge}-1\) topsoil
\(\mathbf{Z n}\) mg zinc \(\mathrm{kg}^{\wedge}\) - 1 topsoil
The data.frame juragrid.dat only has the first four fields. In addition the data.frames jura.pred, jura.val and jura.grid also have inserted third and fourth fields giving geographic coordinates:
long Longitude, WGS84 datum
lat Latitude, WGS84 datum

\section*{Note}

The points data sets were obtained from http://home.comcast.net/~pgoovaerts/book.html, which seems to be no longer available; the grid data were kindly provided by Pierre Goovaerts.
The following codes were used to convert prediction. dat and validation.dat to jura.pred and jura.val (see examples below):
Rock Types: 1: Argovian, 2: Kimmeridgian, 3: Sequanian, 4: Portlandian, 5: Quaternary.

Land uses: 1: Forest, 2: Pasture (Weide(land), Wiese, Grasland), 3: Meadow (Wiese, Flur, Matte, Anger), 4: Tillage (Ackerland, bestelltes Land)
Points 22 and 100 in the validation set (validation. dat \([c(22,100)]\),\() seem not to lie exactly on\) the grid originally intended, but are kept as such to be consistent with the book.

Georeferencing was based on two control points in the Swiss grid system shown as Figure 1 of Atteia et al. (see above) and further points digitized on the tentatively georeferenced scanned map. RMSE 2.4 m . Location of points in the field was less precise.

\section*{Author(s)}

Data preparation by David Rossiter (dgr2@cornell.edu) and Edzer Pebesma; georeferencing by David Rossiter

\section*{References}

Goovaerts, P. 1997. Geostatistics for Natural Resources Evaluation. Oxford Univ. Press, New-York, 483 p. Appendix C describes (and gives) the Jura data set.
Atteia, O., Dubois, J.-P., Webster, R., 1994, Geostatistical analysis of soil contamination in the Swiss Jura: Environmental Pollution 86, 315-327

Webster, R., Atteia, O., Dubois, J.-P., 1994, Coregionalization of trace metals in the soil in the Swiss Jura: European Journal of Soil Science 45, 205-218

\section*{Examples}
```

data(jura)
summary(prediction.dat)
summary(validation.dat)
summary(transect.dat)
summary(juragrid.dat)

# the following commands were used to create objects with factors instead

# of the integer codes for Landuse and Rock:

## Not run:

    jura.pred = prediction.dat
    jura.val = validation.dat
    jura.grid = juragrid.dat
    jura.pred$Landuse = factor(prediction.dat$Landuse,
    labels=levels(juragrid.dat$Landuse))
    jura.pred$Rock = factor(prediction.dat$Rock,
labels=levels(juragrid.dat$Rock))
jura.val$Landuse = factor(validation.dat$Landuse,
labels=levels(juragrid.dat$Landuse))
    jura.val$Rock = factor(validation.dat$Rock,
labels=levels(juragrid.dat$Rock))

## End(Not run)

# the following commands convert data.frame objects into spatial (sp) objects

# in the local grid:

```
```

require(sp)
coordinates(jura.pred) = ~Xloc+Yloc
coordinates(jura.val) = ~Xloc+Yloc
coordinates(jura.grid) = ~Xloc+Yloc
gridded(jura.grid) = TRUE

# the following commands convert the data.frame objects into spatial (sp) objects

# in WGS84 geographic coordinates

# example is given only for jura.pred, do the same for jura.val and jura.grid

# EPSG codes can be found by searching make_EPSG()

jura.pred <- as.data.frame(jura.pred)
coordinates(jura.pred) = ~ long + lat
proj4string(jura.pred) = CRS("+init=epsg:4326")

# display in Google Earth

## Not run:

if (require(maptools)) {
kmlPoints(jura.pred,
kmlfile="JuraPred.kml",
kmlname="Jura Prediction Points",name=row.names(jura.pred@data),
description=paste(jura.pred$Landuse, jura.pred$Rock, sep="/"))
if (require(rgdal)) {
\# transform to UTM 32N
jura.pred.utm32n = spTransform(jura.pred,
CRS("+init=epsg:32632"))
coordnames(jura.pred.utm32n) = c("E","N")
\# transform to Swiss grid system CH1903 / LV03
jura.pred.ch = spTransform(jura.pred,
CRS("+init=epsg:21781"))
coordnames(jura.pred.ch) = c("X","Y")
}
}

## End(Not run)

```

\section*{Description}

Function for simple, ordinary or universal kriging (sometimes called external drift kriging), kriging in a local neighbourhood, point kriging or kriging of block mean values (rectangular or irregular blocks), and conditional (Gaussian or indicator) simulation equivalents for all kriging varieties, and function for inverse distance weighted interpolation. For multivariable prediction, see gstat and predict

\section*{Usage}
krige(formula, locations, ...)
krige.locations(formula, locations, data, newdata, model, ..., beta, nmax
\(=\) Inf, nmin = 0, omax = 0, maxdist = Inf, block, nsim = 0, indicators = FALSE,
na.action = na.pass, debug.level = 1)
krige.spatial(formula, locations, newdata, model, ..., beta, nmax
\(=\) Inf, nmin = 0, omax = 0, maxdist = Inf, block, nsim = 0, indicators = FALSE, na.action = na.pass, debug.level = 1)
krige0(formula, data, newdata, model, beta, y, ..., computeVar = FALSE, fullCovariance = FALSE)
idw(formula, locations, ...)
idw.locations(formula, locations, data, newdata, nmax = Inf,
nmin \(=0\), omax \(=0\), maxdist \(=\) Inf, block, na.action \(=\) na.pass, idp \(=2.0\),
debug.level = 1)
idw.spatial(formula, locations, newdata, nmax \(=\operatorname{Inf}, n m i n=0\),
omax \(=0\), maxdist \(=\operatorname{Inf}\), block \(=\) numeric(0), na.action \(=\) na.pass, \(i d p=2.0\),
debug.level = 1)
idw0(formula, data, newdata, y, idp = 2.0)

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline formula & formula that defines the dependent variable as a linear model of independent variables; suppose the dependent variable has name \(z\), for ordinary and simple kriging use the formula \(z^{\sim}\); for simple kriging also define beta (see below); for universal kriging, suppose \(z\) is linearly dependent on \(x\) and \(y\), use the formula \(z^{\sim} x+y\) \\
\hline locations & object of class Spatial or sf, or (deprecated) formula defines the spatial data locations (coordinates) such as \(\sim x+y\) \\
\hline data & data frame: should contain the dependent variable, independent variables, and coordinates, should be missing if locations contains data. \\
\hline newdata & object of class Spatial, sf or stars with prediction/simulation locations; should contain attributes with the independent variables (if present). \\
\hline model & variogram model of dependent variable (or its residuals), defined by a call to vgm or fit.variogram; for krige0 also a user-supplied covariance function is allowed (see example below) \\
\hline beta & for simple kriging (and simulation based on simple kriging): vector with the trend coefficients (including intercept); if no independent variables are defined the model only contains an intercept and beta should be the simple kriging mean \\
\hline nmax & for local kriging: the number of nearest observations that should be used for a kriging prediction or simulation, where nearest is defined in terms of the space of the spatial locations. By default, all observations are used \\
\hline nmin & for local kriging: if the number of nearest observations within distance maxdist is less than nmin, a missing value will be generated; see maxdist \\
\hline omax & see gstat \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline maxdist & for local kriging: only observations within a distance of maxdist from the prediction location are used for prediction or simulation; if combined with nmax, both criteria apply \\
\hline block & block size; a vector with 1,2 or 3 values containing the size of a rectangular in x -, y - and z -dimension respectively (0 if not set), or a data frame with 1,2 or 3 columns, containing the points that discretize the block in the \(x\)-, \(y\) - and z-dimension to define irregular blocks relative to \((0,0)\) or \((0,0,0)\)-see also the details section of predict. By default, predictions or simulations refer to the support of the data values. \\
\hline nsim & integer; if set to a non-zero value, conditional simulation is used instead of kriging interpolation. For this, sequential Gaussian or indicator simulation is used (depending on the value of indicators), following a single random path through the data. \\
\hline indicators & logical, only relevant if nsim is non-zero; if TRUE, use indicator simulation; else use Gaussian simulation \\
\hline na.action & function determining what should be done with missing values in 'newdata'. The default is to predict 'NA'. Missing values in coordinates and predictors are both dealt with. \\
\hline debug.level & debug level, passed to predict; use -1 to see progress in percentage, and 0 to suppress all printed information \\
\hline & for krige: arguments that will be passed to gstat; for krige0: arguments that will be passe to model \\
\hline idp & numeric; specify the inverse distance weighting power \\
\hline y & matrix; to krige multiple fields in a single step, pass data as columns of matrix \(y\). This will ignore the value of the response in formula. \\
\hline computeVar & logical; if TRUE, prediction variances will be returned \\
\hline fullCovariance & logical; if FALSE a vector with prediction variances will be returned, if TRUE the full covariance matrix of all predictions will be returned \\
\hline
\end{tabular}

\section*{Details}

Function krige is a simple wrapper method around gstat and predict for univariate kriging prediction and conditional simulation methods available in gstat. For multivariate prediction or simulation, or for other interpolation methods provided by gstat (such as inverse distance weighted interpolation or trend surface interpolation) use the functions gstat and predict directly.
Function idw performs just as krige without a model being passed, but allows direct specification of the inverse distance weighting power. Don't use with predictors in the formula.
For further details, see predict.

\section*{Value}
if locations is not a formula, object of the same class as newdata (deriving from Spatial); else a data frame containing the coordinates of newdata. Attributes columns contain prediction and prediction variance (in case of kriging) or the abs (nsim) columns of the conditional Gaussian or indicator simulations
krige0 and idw0 are alternative functions with reduced functionality and larger memory requirements; they return numeric vectors (or matrices, in case of multiple dependent) with predicted values only; in case computeVar is TRUE, a list with elements pred and var is returned, containing predictions, and (co)variances (depending on argument fullCovariance).

\section*{Methods}
formula = 'formula", locations = "formula" locations specifies which coordinates in data refer to spatial coordinates
formula = 'formula', locations = 'Spatial" Object locations knows about its own spatial locations
formula = 'formula", locations = 'NULL" used in case of unconditional simulations; newdata needs to be of class Spatial

\section*{Note}

Daniel G. Krige is a South African scientist who was a mining engineer when he first used generalised least squares prediction with spatial covariances in the 50's. George Matheron coined the term kriging in the 60 's for the action of doing this, although very similar approaches had been taken in the field of meteorology. Beside being Krige's name, I consider "krige" to be to "kriging" what "predict" is to "prediction".

\section*{Author(s)}

Edzer Pebesma

\section*{References}
N.A.C. Cressie, 1993, Statistics for Spatial Data, Wiley.
http://www.gstat.org/
Pebesma, E.J., 2004. Multivariable geostatistics in S: the gstat package. Computers \\& Geosciences, 30: 683-691.

\section*{See Also}
gstat, predict

\section*{Examples}
```

library(sp)
data(meuse)
coordinates(meuse) = ~x+y
data(meuse.grid)
gridded(meuse.grid) = ~x+y
m <- vgm(.59, "Sph", 874, .04)

# ordinary kriging:

x <- krige(log(zinc)~1, meuse, meuse.grid, model = m)
spplot(x["var1.pred"], main = "ordinary kriging predictions")
spplot(x["var1.var"], main = "ordinary kriging variance")

```
```


# simple kriging:

x <- krige(log(zinc)~1, meuse, meuse.grid, model = m, beta = 5.9)

# residual variogram:

m <- vgm(.4, "Sph", 954, .06)

# universal block kriging:

x <- krige(log(zinc)~x+y, meuse, meuse.grid, model = m, block = c(40,40))
spplot(x["var1.pred"], main = "universal kriging predictions")

# krige0, using user-defined covariance function and multiple responses in y:

# exponential variogram with range 500, defined as covariance function:

v = function(x, y = x) { exp(-spDists(coordinates(x),coordinates(y))/500) }

# krige two variables in a single pass (using 1 covariance model):

y = cbind(meuse$zinc,meuse$copper,meuse$lead,meuse$cadmium)
x <- krige0(zinc~1, meuse, meuse.grid, v, y = y)
meuse.grid$zinc = x[,1]
spplot(meuse.grid["zinc"], main = "zinc")
meuse.grid$copper = x[,2]
spplot(meuse.grid["copper"], main = "copper")

# the following has NOTHING to do with kriging, but --

# return the median of the nearest 11 observations:

x = krige(zinc~1, meuse, meuse.grid, set = list(method = "med"), nmax = 11)

# get 25%- and 75%-percentiles of nearest 11 obs, as prediction and variance:

x = krige(zinc~1, meuse, meuse.grid, nmax = 11,
set = list(method = "med", quantile = 0.25))

# get diversity (\# of different values) and mode from 11 nearest observations:

x = krige(zinc~1, meuse, meuse.grid, nmax = 11, set = list(method = "div"))

```
krige.cv (co)kriging cross validation, n-fold or leave-one-out

\section*{Description}

Cross validation functions for simple, ordinary or universal point (co)kriging, kriging in a local neighbourhood.

\section*{Usage}
gstat.cv(object, nfold, remove.all = FALSE, verbose = interactive(), all.residuals = FALSE, ...)
krige.cv(formula, locations, ...)
krige.cv.locations(formula, locations, data, model = NULL, ..., beta = NULL, nmax = Inf, nmin = 0, maxdist = Inf, nfold = nrow(data),
verbose = interactive(), debug.level = 0)
krige.cv.spatial(formula, locations, model = NULL, ..., beta = NULL, nmax \(=\) Inf, \(n m i n=0\), maxdist \(=\) Inf, nfold \(=\) nrow(locations), verbose = interactive(), debug.level = 0)

\section*{Arguments}
object
nfold integer; if larger than 1 , then apply n-fold cross validation; if nfold equals nrow(data) (the default), apply leave-one-out cross validation; if set to e.g. 5 , five-fold cross validation is done. To specify the folds, pass an integer vector of length nrow(data) with fold indexes.
remove.all logical; if TRUE, remove observations at cross validation locations not only for the first, but for all subsequent variables as well
verbose logical; if FALSE, progress bar is suppressed
all.residuals logical; if TRUE, residuals for all variables are returned instead of for the first variable only
\(\ldots\)
other arguments that will be passed to predict in case of gstat. cv , or to gstat in case of krige.cv
formula formula that defines the dependent variable as a linear model of independent variables; suppose the dependent variable has name \(z\), for ordinary and simple kriging use the formula \(z^{\sim}\); for simple kriging also define beta (see below); for universal kriging, suppose \(z\) is linearly dependent on \(x\) and \(y\), use the formula \(z^{\sim} x+y\)
locations data object deriving from class Spatial or sf
data data frame (deprecated); should contain the dependent variable, independent variables, and coordinates; only to be provided if locations is a formula
model variogram model of dependent variable (or its residuals), defined by a call to vgm or fit.variogram
beta only for simple kriging (and simulation based on simple kriging); vector with the trend coefficients (including intercept); if no independent variables are defined the model only contains an intercept and this should be the simple kriging mean
nmax for local kriging: the number of nearest observations that should be used for a kriging prediction or simulation, where nearest is defined in terms of the space of the spatial locations. By default, all observations are used
nmin for local kriging: if the number of nearest observations within distance maxdist is less than nmin, a missing value will be generated; see maxdist
maxdist for local kriging: only observations within a distance of maxdist from the prediction location are used for prediction or simulation; if combined with nmax, both criteria apply
debug. level print debugging information; 0 suppresses debug information

\section*{Details}

Leave-one-out cross validation (LOOCV) visits a data point, and predicts the value at that location by leaving out the observed value, and proceeds with the next data point. (The observed value is left out because kriging would otherwise predict the value itself.) N -fold cross validation makes a partitions the data set in N parts. For all observation in a part, predictions are made based on the remaining \(\mathrm{N}-1\) parts; this is repeated for each of the N parts. N -fold cross validation may be faster than LOOCV.

\section*{Value}
data frame containing the coordinates of data or those of the first variable in object, and columns of prediction and prediction variance of cross validated data points, observed values, residuals, zscore (residual divided by kriging standard error), and fold.
If all.residuals is true, a data frame with residuals for all variables is returned, without coordinates.

\section*{Methods}
formula = 'formula', locations = 'formula" locations specifies which coordinates in data refer to spatial coordinates
formula \(=\) 'formula', locations \(=\) 'Spatial" Object locations knows about its own spatial locations

\section*{Note}

Leave-one-out cross validation seems to be much faster in plain (stand-alone) gstat, apparently quite a bit of the effort is spent moving data around from R to gstat.

\section*{Author(s)}

Edzer Pebesma

\section*{References}
http://www.gstat.org/

\section*{See Also}
krige, gstat, predict

\section*{Examples}
```

library(sp)
data(meuse)
coordinates(meuse) <- ~x+y
m <- vgm(.59, "Sph", 874, .04)

# five-fold cross validation:

x <- krige.cv(log(zinc)~1, meuse, m, nmax = 40, nfold=5)
bubble(x, "residual", main = "log(zinc): 5-fold CV residuals")

# multivariable; thanks to M. Rufino:

meuse.g <- gstat(id = "zn", formula = log(zinc) ~ 1, data = meuse)
meuse.g <- gstat(meuse.g, "cu", log(copper) ~ 1, meuse)
meuse.g <- gstat(meuse.g, model = vgm(1, "Sph", 900, 1), fill.all = TRUE)
x <- variogram(meuse.g, cutoff = 1000)
meuse.fit = fit.lmc(x, meuse.g)
out = gstat.cv(meuse.fit, nmax = 40, nfold = 5)
summary(out)
out = gstat.cv(meuse.fit, nmax = 40, nfold = c(rep(1,100), rep(2,55)))

```
```

summary(out)

# mean error, ideally 0:

mean(out\$residual)

# MSPE, ideally small

mean(out\$residual^2)

# Mean square normalized error, ideally close to 1

mean(out\$zscore^2)

# correlation observed and predicted, ideally 1

cor(out$observed, out$observed - out\$residual)

# correlation predicted and residual, ideally 0

cor(out$observed - out$residual, out\$residual)

```
krigeSimCE Simulation based on circulant embedding

\section*{Description}

Simulating a conditional/unconditional Gaussian random field via kriging and circulant embedding

\section*{Usage}
krigeSimCE(formula, data, newdata, model, \(\mathrm{n}=1\), ext = 2)

\section*{Arguments}
\begin{tabular}{ll}
formula & the formula of the kriging predictor \\
data & spatial data frame that conditions the simulation \\
newdata & locations in space where the Gaussian random field shall be simulated \\
model & a vgm model that defines the spatial covariance structure \\
n & number of simulations \\
ext & extension factor of the circulant embedding, defaults to 2
\end{tabular}

\section*{Value}

A spatial data frame as defined in newdata with n simulations.

\section*{Author(s)}

Benedikt Graeler

\section*{References}

Davies, Tilman M., and David Bryant: "On circulant embedding for Gaussian random fields in R." Journal of Statistical Software 55.9 (2013): 1-21. See i.e. the supplementary files at (retrieved 2018-05-25): https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v055i09/v55i09.R
```

See Also
krigeSTSimTB

```

\section*{Examples}
\# see demo('circEmbeddingMeuse')
krigeST Ordinary global Spatio-Temporal Kriging

\section*{Description}

Function for ordinary global and local and trans Gaussian spatio-temporal kriging on point support

\section*{Usage}
krigeST(formula, data, newdata, modelList, beta, y, ..., nmax \(=\operatorname{Inf}\), stAni \(=\) NULL,
 computeVar \(=\) FALSE, fullCovariance \(=\) FALSE,
 bufferNmax=2, progress=TRUE)
 krigeSTTg(formula, data, newdata, modelList, y, nmax=Inf, stAni=NULL,
 bufferNmax \(=2\), progress=TRUE, lambda \(=0\))

\section*{Arguments}
\begin{tabular}{ll}
formula & \begin{tabular}{l}
formula that defines the dependent variable as a linear model of independent \\
variables; suppose the dependent variable has name \(z\), for ordinary and simple \\
kriging use the formula \(\sim \sim 1\); for simple kriging also define beta (see below); for \\
universal kriging, suppose \(z\) is linearly dependent on \(x\) and \(y\), use the formula \\
\(z^{\sim} x+y\)
\end{tabular} \\
data & ST object: should contain the dependent variable and independent variables. \\
newdata & \begin{tabular}{l}
ST object with prediction/simulation locations in space and time; should contain \\
attribute columns with the independent variables (if present). \\
object of class StVariogramModel, created by vgmST - see below or the function \\
vgmAreaST for area-to-point kriging. For the general kriging case: a list with \\
named elements: space, time and/or joint depending on the spatio-temporal \\
covariance family, and an entry stModel. Currently implemented families that \\
may be used for stModel are separable, productSum, metric, sumMetric and \\
simpleSumMetric. See the examples section in fit. StVariogram or variogramSurface \\
for details on how to define spatio-temporal covariance models. krigeST will \\
look for a "temporal unit" attribute in the provided modelList in order to adjust
\end{tabular} \\
the temporal scales.
\end{tabular}
\begin{tabular}{ll}
nmax & \begin{tabular}{l}
The maximum number of neighbouring locations for a spatio-temporal local \\
neighbourhood
\end{tabular} \\
stAni & \begin{tabular}{l}
a spatio-temporal anisotropy scaling assuming a metric spatio-temporal space. \\
Used only for the selection of the closest neighbours. This scaling needs only to \\
be provided in case the model does not have a stAni parameter, or if a different \\
one should be used for the neighbourhood selection. Mind the correct spatial \\
unit. Currently, no coordinate conversion is made for the neighbourhood selec- \\
tion (i.e. Lat and Lon require a spatio-temporal anisotropy scaling in degrees \\
per second). \\
further arguments used for instance to pass the model into vgmAreaST for area- \\
to-point kriging
\end{tabular} \\
\(\ldots\) & \begin{tabular}{l}
logical; if TRUE, prediction variances will be returned
\end{tabular} \\
computeVar \\
fullCovariance & \begin{tabular}{l}
logical; if FALSE a vector with prediction variances will be returned, if TRUE \\
the full covariance matrix of all predictions will be returned \\
factor with which nmax is multiplied for an extended search radius (default=2).
\end{tabular} \\
bufferNmax & \begin{tabular}{l}
Set to 1 for no extension of the search radius.
\end{tabular} \\
progress & \begin{tabular}{l}
whether a progress bar shall be printed for local spatio-temporal kriging; de- \\
fault=TRUE
\end{tabular} \\
lambda & \begin{tabular}{l}
The value of lambda used in the box-cox transformation.
\end{tabular} \\
\hline
\end{tabular}

\section*{Details}

Function krigeST is a R implementation of the kriging function from gstat using spatio-temporal covariance models following the implementation of krige0. Function krigeST offers some particular methods for ordinary spatio-temporal (ST) kriging. In particular, it does not support block kriging or kriging in a distance-based neighbourhood, and does not provide simulation.

\section*{Value}

An object of the same class as newdata (deriving from ST). Attributes columns contain prediction and prediction variance.

\section*{Author(s)}

Edzer Pebesma, Benedikt Graeler

\section*{References}

Spatio-Temporal Geostatistics using gstat. Benedikt Graeler, Edzer Pebesma, Gerard Heuvelink. The R Journal, accepted.
N.A.C. Cressie, 1993, Statistics for Spatial Data, Wiley.
http://www.gstat.org/
Pebesma, E.J., 2004. Multivariable geostatistics in S: the gstat package. Computers \\& Geosciences, 30: 683-691.

\section*{See Also}
krige0, gstat, predict, krigeTg

\section*{Examples}
```

library(sp)
library(spacetime)
sumMetricVgm <- vgmST("sumMetric",
space = vgm( 4.4, "Lin", 196.6, 3),
time = vgm( 2.2, "Lin", 1.1, 2),
joint = vgm(34.6, "Exp", 136.6, 12),
stAni = 51.7)
data(air)
suppressWarnings(proj4string(stations) <- CRS(proj4string(stations)))
rural = STFDF(stations, dates, data.frame(PM10 = as.vector(air)))
rr <- rural[,"2005-06-01/2005-06-03"]
rr <- as(rr,"STSDF")
x1 <- seq(from=6,to=15,by=1)
x2 <- seq(from=48,to=55,by=1)
DE_gridded <- SpatialPoints(cbind(rep(x1,length(x2)), rep(x2,each=length(x1))),
proj4string=CRS(proj4string(rr@sp)))
gridded(DE_gridded) <- TRUE
DE_pred <- STF(sp=as(DE_gridded,"SpatialPoints"), time=rr@time)
DE_kriged <- krigeST(PM10~1, data=rr, newdata=DE_pred,
modelList=sumMetricVgm)
gridded(DE_kriged@sp) <- TRUE
stplot(DE_kriged)

```
 krigeSTSimTB conditional/unconditional spatio-temporal simulation

\section*{Description}
conditional/unconditional spatio-temporal simulation based on turning bands

\section*{Usage}
krigeSTSimTB(formula, data, newdata, modelList, nsim, progress = TRUE, nLyrs \(=500\), tGrid \(=\) NULL, sGrid \(=\) NULL, ceExt \(=2\), nmax \(=\) Inf)

\section*{Arguments}
\begin{tabular}{ll}
formula & the formula of the kriging predictor \\
data & conditioning data
\end{tabular}
\begin{tabular}{ll}
newdata & locations in space and time where the simulation is carried out \\
modelList & \begin{tabular}{l}
the spatio-temporal variogram (from vgmST) defining the spatio-temporal co- \\
variance structure of the simulated Gaussian random field
\end{tabular} \\
nsim & \begin{tabular}{l}
number of simulations
\end{tabular} \\
progress & boolean; whether the progress should be shown in progress bar \\
nLyrs & number of layers used in the turning bands approach (default = 500) \\
tGrid & \begin{tabular}{l}
optional explicit temporal griding that shall be used
\end{tabular} \\
sGrid & \begin{tabular}{l}
optional explicit spatial griding that shall be used \\
ceExt
\end{tabular} \\
nmax & \begin{tabular}{l}
number of nearest neighbours that shall e used, defaults to 'Inf' meaning all \\
available points are used
\end{tabular}
\end{tabular}

\section*{Value}
a spatio-temporal data frame with nSim simulations

\section*{Author(s)}

Benedikt Graeler

\section*{References}

Turning bands
Lantuejoul, C. (2002) Geostatistical Simulation: Models and Algorithms. Springer.
Matheron, G. (1973). The intrinsic random functions and their applications. Adv. Appl. Probab., 5, 439-468.

Strokorb, K., Ballani, F., and Schlather, M. (2014) Tail correlation functions of max-stable processes: Construction principles, recovery and diversity of some mixing max-stable processes with identical TCF. Extremes, Submitted.
Turning layers
Schlather, M. (2011) Construction of covariance functions and unconditional simulation of random fields. In Porcu, E., Montero, J.M. and Schlather, M., Space-Time Processes and Challenges Related to Environmental Problems. New York: Springer.

\section*{See Also}
krigeSimCE

\section*{Examples}
\# see demo('circEmbeddingMeuse')

\section*{Description}

TransGaussian (ordinary) kriging function using Box-Cox transforms

\section*{Usage}
krigeTg(formula, locations, newdata, model \(=\) NULL, \(\ldots\), nmax \(=\) Inf, nmin \(=0\), maxdist \(=\) Inf, block \(=\) numeric(0), nsim \(=0\), na.action = na.pass, debug.level \(=1\), lambda \(=1.0\))

\section*{Arguments}
formula formula that defines the dependent variable as a linear model of independent variables; suppose the dependent variable has name \(z\), for ordinary and use a formula like \(z^{\sim} 1\); the dependent variable should be NOT transformed.
locations object of class Spatial, with observations
newdata Spatial object with prediction/simulation locations; the coordinates should have names as defined in locations
model variogram model of the TRANSFORMED dependent variable, see vgm, or fit.variogram
nmax for local kriging: the number of nearest observations that should be used for a kriging prediction or simulation, where nearest is defined in terms of the space of the spatial locations. By default, all observations are used
nmin for local kriging: if the number of nearest observations within distance maxdist is less than nmin, a missing value will be generated; see maxdist
maxdist for local kriging: only observations within a distance of maxdist from the prediction location are used for prediction or simulation; if combined with nmax, both criteria apply
block does not function correctly, afaik
nsim does not function correctly, afaik
na.action function determining what should be done with missing values in 'newdata'. The default is to predict 'NA'. Missing values in coordinates and predictors are both dealt with.
lambda value for the Box-Cox transform
debug. level debug level, passed to predict; use -1 to see progress in percentage, and 0 to suppress all printed information
... other arguments that will be passed to gstat

\section*{Details}

Function krigeTg uses transGaussian kriging as explained in http://www.math.umd.edu/~bnk/ bak/Splus/kriging.html.
As it uses the R/gstat krige function to derive everything, it needs in addition to ordinary kriging on the transformed scale a simple kriging step to find \(m\) from the difference between the OK and SK prediction variance, and a kriging/BLUE estimation step to obtain the estimate of \(\mu\).
For further details, see krige and predict.

\section*{Value}
an SpatialPointsDataFrame object containing the fields: \(m\) for the \(m\) (Lagrange) parameter for each location; var1SK.pred the \(c_{0} C^{-1}\) correction obtained by muhat for the mean estimate at each location; var1SK. var the simple kriging variance; var1. pred the OK prediction on the transformed scale; var1.var the OK kriging variance on the transformed scale; var1TG. pred the transGaussian kriging predictor; var 1 TG . var the transGaussian kriging variance, obtained by \(\phi^{\prime}(\hat{\mu}, \lambda)^{2} \sigma_{O K}^{2}\)

\section*{Author(s)}

Edzer Pebesma

\section*{References}
N.A.C. Cressie, 1993, Statistics for Spatial Data, Wiley.
http://www.gstat.org/

\section*{See Also}
gstat, predict

\section*{Examples}
```

library(sp)
data(meuse)
coordinates(meuse) = ~x+y
data(meuse.grid)
gridded(meuse.grid) = ~x+y
v = vgm(1, "Exp", 300)
x1 = krigeTg(zinc~1,meuse,meuse.grid,v, lambda=1) \# no transform
x2 = krige(zinc~1,meuse,meuse.grid,v)
summary(x2$var1.var-x1$var1TG.var)
summary(x2$var1.pred-x1$var1TG.pred)
lambda = -0.25
m = fit.variogram(variogram((zinc^lambda-1)/lambda ~ 1,meuse), vgm(1, "Exp", 300))
x = krigeTg(zinc~1,meuse,meuse.grid,m,lambda=-.25)
spplot(x["var1TG.pred"], col.regions=bpy.colors())
summary(meuse$zinc)
summary(x$var1TG.pred)

```

\section*{Description}
rearrange data frame for plotting with levelplot

\section*{Usage}
map.to.lev(data, \(x \operatorname{col}=1, y c o l=2, z c o l=c(3,4), n s=n a m e s(d a t a)[z c o l])\)

\section*{Arguments}
\begin{tabular}{ll}
data & data frame, e.g. output from krige or predict \\
xcol & x-coordinate column number \\
ycol & y-coordinate column number \\
zcol & z-coordinate column number range \\
ns & names of the set of z-columns to be viewed
\end{tabular}

\section*{Value}
data frame with the following elements:
\(x \quad x\)-coordinate for each row
\(y \quad y\)-coordinate for each row
z column vector with each of the elements in columns zcol of data stacked
name factor; name of each of the stacked \(z\) columns

\section*{See Also}
image.data.frame, krige; for examples see predict; levelplot in package lattice.
```

meuse.all Meuse river data set - original, full data set

```

\section*{Description}

This data set gives locations and top soil heavy metal concentrations (ppm), along with a number of soil and landscape variables, collected in a flood plain of the river Meuse, near the village Stein. Heavy metal concentrations are bulk sampled from an area of approximately 15 mx 15 m .

\section*{Usage}
data(meuse.all)

\section*{Format}

This data frame contains the following columns:
sample sample number
\(\mathbf{x}\) a numeric vector; x-coordinate (m) in RDM (Dutch topographical map coordinates)
\(\mathbf{y}\) a numeric vector; y-coordinate (m) in RDM (Dutch topographical map coordinates)
cadmium topsoil cadmium concentration, ppm.; note that zero cadmium values in the original data set have been shifted to 0.2 (half the lowest non-zero value)
copper topsoil copper concentration, ppm.
lead topsoil lead concentration, ppm.
zinc topsoil zinc concentration, ppm.
elev relative elevation
om organic matter, as percentage
ffreq flooding frequency class
soil soil type
lime lime class
landuse landuse class
dist.m distance to river Meuse (metres), as obtained during the field survey
in.pit logical; indicates whether this is a sample taken in a pit
in.meuse155 logical; indicates whether the sample is part of the meuse (i.e., filtered) data set; in addition to the samples in a pit, an sample (139) with outlying zinc content was removed
in.BMcD logical; indicates whether the sample is used as part of the subset of 98 points in the various interpolation examples of Burrough \\& McDonnell

\section*{Note}
sample refers to original sample number. Eight samples were left out because they were not indicative for the metal content of the soil. They were taken in an old pit. One sample contains an outlying zinc value, which was also discarded for the meuse (155) data set.

\section*{Author(s)}

The actual field data were collected by Ruud van Rijn and Mathieu Rikken; data compiled for R by Edzer Pebesma

\section*{References}
P.A. Burrough, R.A. McDonnell, 1998. Principles of Geographical Information Systems. Oxford University Press.
http://www.gstat.org/

\section*{See Also}
meuse.alt

\section*{Examples}
data(meuse.all)
summary (meuse.all)
```

    meuse.alt Meuse river altitude data set
    ```

\section*{Description}

This data set gives a point set with altitudes, digitized from the \(1: 10,000\) topographical map of the Netherlands.

\section*{Usage}
```

data(meuse.alt)

```

\section*{Format}

This data frame contains the following columns:
\(\mathbf{x}\) a numeric vector; x-coordinate (m) in RDM (Dutch topographical map coordinates)
y a numeric vector; y-coordinate (m) in RDM (Dutch topographical map coordinates)
alt altitude in m. above NAP (Dutch zero for sea level)

\section*{References}
```

http://www.gstat.org/

```

\section*{See Also}
meuse.all

\section*{Examples}
```

data(meuse.alt)
library(lattice)
xyplot(y~x, meuse.alt, aspect = "iso")

```

\section*{Description}

Gridded data for the NCP (Nederlands Continentaal Plat, the Dutch part of the North Sea), for a 5 \(\mathrm{km} \times 5 \mathrm{~km}\) grid; stored as data.frame.

\section*{Usage}
data(ncp.grid)

\section*{Format}

This data frame contains the following columns:
x x-coordinate, UTM zone 31
y y-coordinate, UTM zone 31
depth sea water depth, \(m\).
coast distance to the coast of the Netherlands, in km.
area identifier for administrative sub-areas

\section*{Author(s)}

Dutch National Institute for Coastal and Marine Management (RIKZ); data compiled for R by Edzer Pebesma

\section*{See Also}
fulmar

\section*{Examples}
```

data(ncp.grid)
summary(ncp.grid)

```

\section*{Description}

Calculate, for a given variogram model, ordinary block kriging standard errors as a function of sampling spaces and block sizes

\section*{Usage}
ossfim(spacings = 1:5, block.sizes = 1:5, model, nmax = 25, debug = 0)

\section*{Arguments}
spacings range of grid (data) spacings to be used
block.sizes range of block sizes to be used
model variogram model, output of vgm
nmax set the kriging neighbourhood size
debug debug level; set to 32 to see a lot of output

\section*{Value}
data frame with columns spacing (the grid spacing), block. size (the block size), and kriging. se (block kriging standard error)

\section*{Note}

The idea is old, simple, but still of value. If you want to map a variable with a given accuracy, you will have to sample it. Suppose the variogram of the variable is known. Given a regular sampling scheme, the kriging standard error decreases when either (i) the data spacing is smaller, or (ii) predictions are made for larger blocks. This function helps quantifying this relationship. Ossfim probably refers to "optimal sampling scheme for isarithmic mapping".

\section*{Author(s)}

Edzer Pebesma

\section*{References}

Burrough, P.A., R.A. McDonnell (1999) Principles of Geographical Information Systems. Oxford University Press (e.g., figure 10.11 on page 261)
Burgess, T.M., R. Webster, A.B. McBratney (1981) Optimal interpolation and isarithmic mapping of soil properties. IV Sampling strategy. The journal of soil science 32(4), 643-660.
McBratney, A.B., R. Webster (1981) The design of optimal sampling schemes for local estimation and mapping of regionalized variables: 2 program and examples. Computers and Geosciences 7: 335-365.

\section*{See Also}

\section*{krige}

\section*{Examples}
```


## Not run:

x <- ossfim(1:15,1:15, model = vgm(1,"Exp",15))
library(lattice)
levelplot(kriging.se~spacing+block.size, x,
main = "Ossfim results, variogram 1 Exp(15)")

## End(Not run)

# if you wonder about the decrease in the upper left corner of the graph,

# try the above with nmax set to 100, or perhaps 200.

```

\section*{oxford Oxford soil samples}

\section*{Description}

Data: 126 soil augerings on a \(100 \times 100 \mathrm{~m}\) square grid, with 6 columns and 21 rows. Grid is oriented with long axis North-north-west to South-south-east Origin of grid is South-south-east point, 100m outside grid.
Original data are part of a soil survey carried out by P.A. Burrough in 1967. The survey area is located on the chalk downlands on the Berkshire Downs in Oxfordshire, UK. Three soil profile units were recognised on the shallow Rendzina soils; these are Ia - very shallow, grey calcareous soils less than 40 cm deep over chalk; Ct - shallow to moderately deep, grey-brown calcareous soils on calcareous colluvium, and Cr : deep, moderately acid, red-brown clayey soils. These soil profile classes were registered at every augering.
In addition, an independent landscape soil map was made by interpolating soil boundaries between these soil types, using information from the changes in landform. Because the soil varies over short distances, this field mapping caused some soil borings to receive a different classification from the classification based on the point data.
Also registered at each auger point were the site elevation (m), the depth to solid chalk rock (in cm) and the depth to lime in cm . Also, the percent clay content, the Munsell colour components of VALUE and CHROMA, and the lime content of the soil (as tested using HCl) were recorded for the top two soil layers \((0-20 \mathrm{~cm}\) and \(20-40 \mathrm{~cm})\).

Samples of topsoil taken as a bulk sample within a circle of radius 2.5 m around each sample point were used for the laboratory determination of Mg (ppm), OM1 \%, CEC as mequ/100g air dry soil, \(\mathrm{pH}, \mathrm{P}\) as ppm and K (ppm).

\section*{Usage}
data(oxford)

\section*{Format}

This data frame contains the following columns:
PROFILE profile number
XCOORD x-coordinate, field, non-projected
YCOORD y-coordinate, field, non-projected
ELEV elevation, m.
PROFCLASS soil class, obtained by classifying the soil profile at the sample site
MAPCLASS soil class, obtained by looking up the site location in the soil map
VAL1 Munsell colour component VALUE, 0-20 cm
CHR1 Munsell colour component CHROMA, 20-40 cm
LIME1 Lime content (tested using HCl), \(0-20 \mathrm{~cm}\)
VAL2 Munsell colour component VALUE, \(0-20 \mathrm{~cm}\)
CHR2 Munsell colour component CHROMA, 20-40 cm
LIME2 Lime content (tested using HCl), 20-40 cm
DEPTHCM soil depth, cm
DEP2LIME depth to lime, cm
PCLAY1 percentage clay, \(0-20 \mathrm{~cm}\)
PCLAY2 percentage clay, \(20-40 \mathrm{~cm}\)
MG1 Magnesium content (ppm), 0-20 cm
OM1 organic matter (\%), \(0-20 \mathrm{~cm}\)
CEC1 CES as mequ/ 100 g air dry soil, \(0-20 \mathrm{~cm}\)
PH1 \(\mathrm{pH}, 0-20 \mathrm{~cm}\)
PHOS1 Phosphorous, 0-20 cm, ppm
POT1 K (potassium), 0-20 cm, ppm

\section*{Note}
oxford.jpg, in the gstat package external directory (see example below), shows an image of the soil map for the region

\section*{Author(s)}
P.A. Burrough; compiled for R by Edzer Pebesma

\section*{References}
P.A. Burrough, R.A. McDonnell, 1998. Principles of Geographical Information Systems. Oxford University Press.

\section*{Examples}
```

data(oxford)
summary(oxford)

# open the following file with a jpg viewer:

system.file("external/oxford.jpg", package="gstat")

```

\section*{pcb \\ PCB138 measurements in sediment at the NCP, the Dutch part of the North Sea}

\section*{Description}

PCB138 measurements in sediment at the NCP, which is the Dutch part of the North Sea

\section*{Usage}
data(pcb)

\section*{Format}

This data frame contains the following columns:
year measurement year
x x-coordinate; UTM zone 31
y y-coordinate; UTM zone 31
coast distance to coast of the Netherlands, in km.
depth sea water depth, \(m\).
PCB138 PCB-138, measured on the sediment fraction smaller than \(63 \mu\), in \(\mu \mathrm{g} / \mathrm{kg}\) dry matter; BUT SEE NOTE BELOW
yf year; as factor

\section*{Note}

A note of caution: The PCB-138 data are provided only to be able to re-run the analysis done in Pebesma and Duin (2004; see references below). If you want to use these data for comparison with PCB measurements elsewhere, or if you want to compare them to regulation standards, or want to use these data for any other purpose, you should first contact mailto: basisinfodesk@rikz.rws. minvenw.nl. The reason for this is that several normalisations were carried out that are not reported here, nor in the paper below.

\section*{References}

Pebesma, E. J., \& Duin, R. N. M. (2005). Spatial patterns of temporal change in North Sea sediment quality on different spatial scales. In P. Renard, H. Demougeot-Renard \& R. Froidevaux (Eds.), Geostatistics for Environmental Applications: Proceedings of the Fifth European Conference on Geostatistics for Environmental Applications (pp. 367-378): Springer.

\section*{See Also}
ncp.grid

\section*{Examples}
```

data(pcb)
library(lattice)
xyplot(y~x|as.factor(yf), pcb, aspect = "iso")

# demo(pcb)

```
plot.gstatVariogram Plot a sample variogram, and possibly a fitted model

\section*{Description}

Creates a variogram plot

\section*{Usage}
```


## S3 method for class 'gstatVariogram'

plot(x, model = NULL, ylim, xlim, xlab = "distance",
ylab = attr(x, "what"), panel = vgm.panel.xyplot, multipanel = TRUE,
plot.numbers = FALSE, scales, ids = x\$id, group.id = TRUE, skip,
layout, ...)

## S3 method for class 'variogramMap'

plot(x, np = FALSE, skip, threshold, ...)

## S3 method for class 'StVariogram'

plot(x, model = NULL, ..., col = bpy.colors(), xlab, ylab,
map = TRUE, convertMonths = FALSE, as.table = TRUE, wireframe = FALSE,
diff = FALSE, all = FALSE)

```

\section*{Arguments}
x
model in case of a single variogram: a variogram model, as obtained from vgm or fit.variogram, to be drawn as a line in the variogram plot; in case of a set of variograms and cross variograms: a list with variogram models; in the spatiotemporal case, a single or a list of spatio-temporal models that will be plotted next to each other for visual comparison.
ylim numeric; vector of length 2, limits of the \(y\)-axis
\(x \lim \quad\) numeric; vector of length 2 , limits of the \(x\)-axis
xlab character; \(x\)-axis label
ylab character; \(y\)-axis label
panel panel function
multipanel logical; if TRUE, directional variograms are plotted in different panels, if FALSE, directional variograms are plotted in the same graph, using color, colored lines and symbols to distinguish them
\begin{tabular}{|c|c|}
\hline plot.num & logical or numeric; if TRUE, plot number of point pairs next to each plotted semivariance symbol, if FALSE these are omitted. If numeric, TRUE is assumed and the value is passed as the relative distance to be used between symbols and numeric text values (default 0.03). \\
\hline scales & optional argument that will be passed to xyplot in case of the plotting of variograms and cross variograms; use the value list(relation = "same") if yaxes need to share scales \\
\hline ids & ids of the data variables and variable pairs \\
\hline group.id & logical; control for directional multivariate variograms: if TRUE, panels divide direction and colors indicate variables (ids), if FALSE panels divide variables/variable pairs and colors indicate direction \\
\hline skip & logical; can be used to arrange panels, see xyplot \\
\hline layout & integer vector; can be used to set panel layout: c(ncol,nrow) \\
\hline np & logical (only for plotting variogram maps); if TRUE, plot number of point pairs, if FALSE plot semivariances \\
\hline threshold & semivariogram map values based on fewer point pairs than threshold will not be plotted \\
\hline & any arguments that will be passed to the panel plotting functions (such as auto. key in examples below) \\
\hline col & colors to use \\
\hline map & logical; if TRUE, plot space-time variogram map \\
\hline convertMonths & logical; if TRUE, yearmon time lags will be unit converted and plotted as (integer) months, and no longer match the numeric representation of yearmon, which has years as unit \\
\hline as.table & controls the plotting order for multiple panels, see xyplot for details. \\
\hline wireframe & logical; if TRUE, produce a wireframe plot \\
\hline diff & logical; if TRUE, plot difference between model and sample variogram; ignores all. \\
\hline all & logical; if TRUE, plot sample and model variogram(s) in single wireframes. \\
\hline
\end{tabular}

\section*{Details}

Please note that in the spatio-temporal case the levelplot and wireframe plots use the spatial distances averaged for each time lag avgDist. For strongly varying spatial locations over time, please check the distance columns dist and avgDist of the spatio-temporal sample variogram. The lattice: : cloud function is one option to plot irregular 3D data.

\section*{Value}
returns (or plots) the variogram plot

\section*{Note}
currently, plotting models and/or point pair numbers is not supported when a variogram is both directional and multivariable; also, three-dimensional directional variograms will probably not be displayed correctly.

\section*{Author(s)}

Edzer Pebesma

\section*{References}
http://www.gstat.org

\section*{See Also}
variogram, fit.variogram, vgm variogramLine,

\section*{Examples}
```

library(sp)
data(meuse)
coordinates(meuse) = ~x+y
vgm1 <- variogram(log(zinc)~1, meuse)
plot(vgm1)
model.1 <- fit.variogram(vgm1,vgm(1,"Sph",300,1))
plot(vgm1, model=model.1)
plot(vgm1, plot.numbers = TRUE, pch = "+")
vgm2 <- variogram(log(zinc)~1, meuse, alpha=c(0,45,90,135))
plot(vgm2)

# the following demonstrates plotting of directional models:

model.2 <- vgm(.59,"Sph",926,.06,anis=c(0,0.3))
plot(vgm2, model=model.2)
g = gstat(NULL, "zinc < 200", I(zinc<200)~1, meuse)
g = gstat(g, "zinc < 400", I(zinc<400)~1, meuse)
g = gstat(g, "zinc < 800", I(zinc<800)~1, meuse)

# calculate multivariable, directional variogram:

v = variogram(g, alpha=c(0,45,90,135))
plot(v, group.id = FALSE, auto.key = TRUE) \# id and id pairs panels
plot(v, group.id = TRUE, auto.key = TRUE) \# direction panels

# variogram maps:

plot(variogram(g, cutoff=1000, width=100, map=TRUE),
main = "(cross) semivariance maps")
plot(variogram(g, cutoff=1000, width=100, map=TRUE), np=TRUE,
main = "number of point pairs")

```
plot. pointPairs

\section*{Description}

Plot a point pairs, identified from a variogram cloud

\section*{Usage}
```


## S3 method for class 'pointPairs'

    plot(x, data, xcol = data$x, ycol = data$y, xlab = "x coordinate",
    ylab = "y coordinate", col.line = 2, line.pch = 0, main = "selected point pairs", ...)
    ```

\section*{Arguments}
x
data data frame to which the indices refer (from which the variogram cloud was calculated)
xcol numeric vector with \(x\)-coordinates of data
ycol numeric vector with y-coordinates of data
\(x\) lab \(\quad x\)-axis label
ylab \(y\)-axis label
col.line color for lines connecting points
line.pch if non-zero, symbols are also plotted at the middle of line segments, to mark lines too short to be visible on the plot; the color used is col.line; the value passed to this argument will be used as plotting symbol (pch)
main title of plot
... arguments, further passed to xyplot

\section*{Value}
plots the data locations, with lines connecting the point pairs identified (and refered to by indices in) \(x\)

\section*{Author(s)}

Edzer Pebesma

\section*{References}
http://www.gstat.org

\section*{See Also}
plot.variogramCloud

\section*{Examples}
```


### The following requires interaction, and is therefore outcommented

\#data(meuse)
\#coordinates(meuse) = ~x+y
\#vgm1 <- variogram(log(zinc)~1, meuse, cloud = TRUE)
\#pp <- plot(vgm1, id = TRUE)

### Identify the point pairs

\#plot(pp, data = meuse) \# meuse has x and y as coordinates

```
plot.variogramCloud Plot and Identify Data Pairs on Sample Variogram Cloud

\section*{Description}

Plot a sample variogram cloud, possibly with identification of individual point pairs

\section*{Usage}
\#\# S3 method for class 'variogramCloud'
plot(x, identify = FALSE, digitize = FALSE, xlim, ylim, xlab, ylab,
keep \(=\) FALSE, ...)

\section*{Arguments}
\begin{tabular}{ll}
x \\
identify & \begin{tabular}{l}
object of class variogramCloud \\
logical; if TRUE, the plot allows identification of a series of individual point \\
pairs that correspond to individual variogram cloud points (use left mouse button \\
to select; right mouse button ends)
\end{tabular} \\
digitize & \begin{tabular}{l}
logical; if TRUE, select point pairs by digitizing a region with the mouse (left \\
mouse button adds a point, right mouse button ends) \\
limits of x-axis
\end{tabular} \\
xlim & \begin{tabular}{l}
limits of y-axis
\end{tabular} \\
ylim & \begin{tabular}{l}
x axis label
\end{tabular} \\
ylab & \begin{tabular}{l}
y axis label \\
logical; if TRUE and identify is TRUE, the labels identified and their position \\
are kept and glued to object x, which is returned. Subsequent calls to plot this \\
object will now have the labels shown, e.g. to plot to hardcopy
\end{tabular} \\
\(\ldots\) & \begin{tabular}{l}
parameters that are passed through to plot.gstatVariogram (in case of identify \(=\) \\
FALSE) or to plot (in case of identify = TRUE)
\end{tabular} \\
&
\end{tabular}

\section*{Value}

If identify or digitize is TRUE, a data frame of class pointPairs with in its rows the point pairs identified (pairs of row numbers in the original data set); if identify is F, a plot of the variogram cloud, which uses plot.gstatVariogram
If in addition to identify, keep is also TRUE, an object of class variogramCloud is returned, having attached to it attributes "sel" and "text", which will be used in subsequent calls to plot.variogramCloud with identify set to FALSE, to plot the text previously identified.
If in addition to digitize, keep is also TRUE, an object of class variogramCloud is returned, having attached to it attribute "poly", which will be used in subsequent calls to plot.variogramCloud with digitize set to FALSE, to plot the digitized line.
In both of the keep = TRUE cases, the attribute ppairs of class pointPairs is present, containing the point pairs identified.

\section*{Author(s)}

Edzer Pebesma

\section*{References}
http://www.gstat.org/

\section*{See Also}
variogram, plot.gstatVariogram, plot.pointPairs, identify, locator

\section*{Examples}
```

library(sp)
data(meuse)
coordinates(meuse) = ~x+y
plot(variogram(log(zinc)~1, meuse, cloud=TRUE))

## commands that require interaction:

# x <- variogram(log(zinc)~1, loc=~x+y, data=meuse, cloud=TRUE)

# plot(plot(x, identify = TRUE), meuse)

# plot(plot(x, digitize = TRUE), meuse)

```
```

predict Multivariable Geostatistical Prediction and Simulation

```

\section*{Description}

The function provides the following prediction methods: simple, ordinary, and universal kriging, simple, ordinary, and universal cokriging, point- or block-kriging, and conditional simulation equivalents for each of the kriging methods.

\section*{Usage}
```


## S3 method for class 'gstat'

predict(object, newdata, block = numeric(0), nsim = 0,
indicators = FALSE, BLUE = FALSE, debug.level = 1, mask,
na.action = na.pass, sps.args = list(n = 500, type = "regular",
offset = c(.5, .5)), ...)

```

\section*{Arguments}
object object of class gstat, see gstat and krige
newdata data frame with prediction/simulation locations; should contain columns with the independent variables (if present) and the coordinates with names as defined in locations; or: polygons, see below
\begin{tabular}{|c|c|}
\hline block & block size; a vector with 1,2 or 3 values containing the size of a rectangular in x -, y - and z -dimension respectively (0 if not set), or a data frame with 1,2 or 3 columns, containing the points that discretize the block in the \(x-, y\) - and z-dimension to define irregular blocks relative to \((0,0)\) or \((0,0,0)\)-see also the details section below. By default, predictions or simulations refer to the support of the data values. \\
\hline nsim & integer; if set to a non-zero value, conditional simulation is used instead of kriging interpolation. For this, sequential Gaussian or indicator simulation is used (depending on the value of indicators), following a single random path through the data. \\
\hline indicators & logical; only relevant if nsim is non-zero; if TRUE, use indicator simulation, else use Gaussian simulation \\
\hline BLUE & logical; if TRUE return the BLUE trend estimates only, if FALSE return the BLUP predictions (kriging) \\
\hline debug.level & integer; set gstat internal debug level, see below for useful values. If set to -1 (or any negative value), a progress counter is printed \\
\hline mask & not supported anymore - use na.action; logical or numerical vector; pattern with valid values in newdata (marked as TRUE, non-zero, or non-NA); if mask is specified, the returned data frame will have the same number and order of rows in newdata, and masked rows will be filled with NA's. \\
\hline na.action & function determining what should be done with missing values in 'newdata'. The default is to predict 'NA'. Missing values in coordinates and predictors are both dealt with. \\
\hline sps.args & when newdata is of class SpatialPolygons or SpatialPolygonsDataFrame this argument list gets passed to spsample to control the discretizing of polygons ignored (but necessary for the S3 generic/method consistency) \\
\hline
\end{tabular}

\section*{Details}

When a non-stationary (i.e., non-constant) mean is used, both for simulation and prediction purposes the variogram model defined should be that of the residual process, not that of the raw observations.
For irregular block kriging, coordinates should discretize the area relative to \((0),(0,0)\) or \((0,0,0)\); the coordinates in newdata should give the centroids around which the block should be located. So, suppose the block is discretized by points \((3,3)(3,5)(5,5)\) and \((5,3)\), we should pass point \((4,4)\) in newdata and pass points \((-1,-1)(-1,1)(1,1)(1,-1)\) to the block argument. Although passing the uncentered block and \((0,0)\) as newdata may work for global neighbourhoods, neighbourhood selection is always done relative to the centroid values in newdata.
If newdata is of class SpatialPolygons or SpatialPolygonsDataFrame, then the block average for each of the polygons or polygon sets is calculated, using spsample to discretize the polygon(s). Argument sps.args controls the parameters used for spsample. The "location" with respect to which neighbourhood selection is done is for each polygon the SpatialPolygons polygon label point; if you use local neighbourhoods you should check out where these points are-it may be well outside the polygon itself.
The algorithm used by gstat for simulation random fields is the sequential simulation algorithm. This algorithm scales well to large or very large fields (e.g., more than \(\$ 10^{\wedge} 6 \$\) nodes). Its power
lies in using only data and simulated values in a local neighbourhood to approximate the conditional distribution at that location, see nmax in krige and gstat. The larger nmax, the better the approximation, the smaller nmax, the faster the simulation process. For selecting the nearest nmax data or previously simulated points, gstat uses a bucket PR quadtree neighbourhood search algorithm; see the reference below.

For sequential Gaussian or indicator simulations, a random path through the simulation locations is taken, which is usually done for sequential simulations. The reason for this is that the local approximation of the conditional distribution, using only the nmax neareast observed (or simulated) values may cause spurious correlations when a regular path would be followed. Following a single path through the locations, gstat reuses the expensive results (neighbourhood selection and solution to the kriging equations) for each of the subsequent simulations when multiple realisations are requested. You may expect a considerable speed gain in simulating 1000 fields in a single call to predict, compared to 1000 calls, each for simulating a single field.

The random number generator used for generating simulations is the native random number generator of the environment (\(\mathrm{R}, \mathrm{S}\)); fixing randomness by setting the random number seed with set.seed() works.

When mean coefficient are not supplied, they are generated as well from their conditional distribution (assuming multivariate normal, using the generalized least squares BLUE estimate and its estimation covariance); for a reference to the algorithm used see Abrahamsen and Benth, Math. Geol. 33(6), page 742 and leave out all constraints.
Memory requirements for sequential simulation: let \(n\) be the product of the number of variables, the number of simulation locations, and the number of simulations required in a single call. the gstat C function gstat_predict requires a table of size \(\mathrm{n} * 12\) bytes to pass the simulations back to R , before it can free \(\mathrm{n} * 4\) bytes. Hopefully, R does not have to duplicate the remaining \(\mathrm{n} * 8\) bytes when the coordinates are added as columns, and when the resulting matrix is coerced to a data.frame.

Useful values for debug.level: 0: suppres any output except warning and error messages; 1: normal output (default): short data report, program action and mode, program progress in \%, total execution time; 2: print the value of all global variables, all files read and written, and include source file name and line number in error messages; 4: print OLS and WLS fit diagnostics; 8: print all data after reading them; 16: print the neighbourhood selection for each prediction location; 32: print (generalised) covariance matrices, design matrices, solutions, kriging weights, etc.; 64: print variogram fit diagnostics (number of iterations and variogram model in each iteration step) and order relation violations (indicator kriging values before and after order relation correction); 512: print block (or area) discretization data for each prediction location. To combine settings, sum their respective values. Negative values for debug. level are equal to positive, but cause the progress counter to work.

For data with longitude/latitude coordinates (checked by is.projected), gstat uses great circle distances in km to compute spatial distances. The user should make sure that the semivariogram model used is positive definite on a sphere.

\section*{Value}
a data frame containing the coordinates of newdata, and columns of prediction and prediction variance (in case of kriging) or the columns of the conditional Gaussian or indicator simulations

\section*{Author(s)}

Edzer Pebesma

\section*{References}
N.A.C. Cressie, 1993, Statistics for Spatial Data, Wiley.
http://www.gstat.org/
Pebesma, E.J., 2004. Multivariable geostatistics in S: the gstat package. Computers \(\backslash \&\) Geosciences, 30: 683-691.
For bucket PR quadtrees, excellent demos are found at http://www.cs.umd.edu/~brabec/quadtree/ index.html

\section*{See Also}
gstat, krige

\section*{Examples}
```


# generate 5 conditional simulations

library(sp)
data(meuse)
coordinates(meuse) = ~x+y
v <- variogram(log(zinc)~1, meuse)
m <- fit.variogram(v, vgm(1, "Sph", 300, 1))
plot(v, model = m)
set.seed(131)
data(meuse.grid)
gridded(meuse.grid) = ~x+y
sim <- krige(formula = log(zinc)~1, meuse, meuse.grid, model = m,
nmax = 10, beta = 5.9, nsim = 5) \# for speed -- 10 is too small!!

# show all 5 simulation

spplot(sim)

# calculate generalised least squares residuals w.r.t. constant trend:

g <- gstat(NULL, "log.zinc", log(zinc)~1, meuse, model = m)
blue0 <- predict(g, newdata = meuse, BLUE = TRUE)
blue0$blue.res <- log(meuse$zinc) - blue0\$log.zinc.pred
bubble(blue0, zcol = "blue.res", main = "GLS residuals w.r.t. constant")

# calculate generalised least squares residuals w.r.t. linear trend:

m <- fit.variogram(variogram(log(zinc)~sqrt(dist.m), meuse),
vgm(1, "Sph", 300, 1))
g <- gstat(NULL, "log.zinc", log(zinc)~sqrt(dist.m), meuse, model = m)
blue1 <- predict(g, meuse, BLUE = TRUE)
blue1$blue.res <- log(meuse$zinc) - blue1\$log.zinc.pred
bubble(blue1, zcol = "blue.res",
main = "GLS residuals w.r.t. linear trend")

# unconditional simulation on a 100 x 100 grid

xy <- expand.grid(1:100, 1:100)

```
```

names(xy) <- c("x","y")
gridded(xy) = ~x+y
g.dummy <- gstat(formula = z~1, dummy = TRUE, beta = 0,
model = vgm(1,"Exp",15), nmax = 10) \# for speed -- 10 is too small!!
yy <- predict(g.dummy, xy, nsim = 4)

# show one realisation:

spplot(yy[1])

# show all four:

spplot(yy)

```
progress Get or set progress indicator

\section*{Description}

Get or set progress indicator

\section*{Usage}
get_gstat_progress()
set_gstat_progress(value)

\section*{Arguments}
value logical

\section*{Value}
return the logical value indicating whether progress bars should be given

\section*{Author(s)}

Edzer Pebesma

\section*{Examples}
```

set_gstat_progress(FALSE)
get_gstat_progress()

```

\section*{Description}

Creates a trellis plot for a range of variogram models, possibly with nugget; and optionally a set of Matern models with varying smoothness.

\section*{Usage}
show. \(\operatorname{vgms}(\min =1 \mathrm{e}-12 * \max , \max =3, \mathrm{n}=50\), sill \(=1\), range \(=1\), models \(=\) as.character \((\operatorname{vgm}() \$ \operatorname{short}[c(1: 17)])\), nugget \(=0\), kappa. range \(=0.5\), plot \(=\) TRUE,... , as.groups \(=\) FALSE)

\section*{Arguments}
min numeric; start distance value for semivariance calculation beyond the first point at exactly zero
\(\max \quad\) numeric; maximum distance for semivariance calculation and plotting
\(\mathrm{n} \quad\) integer; number of points to calculate distance values
sill numeric; (partial) sill(s) of the variogram model
range numeric; range(s) of the variogram model
models character; variogram model(s) to be plotted
nugget numeric; nugget component(s) for variogram models
kappa.range numeric; if this is a vector with more than one element, only a range of Matern models is plotted with these kappa values
plot logical; if TRUE, a plot is returned with the models specified; if FALSE, the data prepared for this plot is returned
... passed on to the call to xyplot
as.groups logical; if TRUE, different models are plotted with different lines in a single panel, else, in one panel per model

\section*{Value}
returns a (Trellis) plot of the variogram models requested; see examples. I do currently have strong doubts about the "correctness" of the "Hol" model. The "Spl" model does seem to need a very large range value (larger than the study area?) to be of some value.
If plot is FALSE, a data frame with the data prepared to plot is being returned.

\section*{Note}
the min argument is supplied because the variogram function may be discontinuous at distance zero, surely when a positive nugget is present.

\section*{Author(s)}

Edzer Pebesma

\section*{References}
http://www.gstat.org

\section*{See Also}
vgm, variogramLine,

\section*{Examples}
```

show.vgms()
show.vgms(models = c("Exp", "Mat", "Gau"), nugget = 0.1)

# show a set of Matern models with different smoothness:

show.vgms(kappa.range = c(.1, .2, .5, 1, 2, 5, 10), max = 10)

# show a set of Exponential class models with different shape parameter:

show.vgms(kappa.range = c(.05, .1, .2, .5, 1, 1.5, 1.8, 1.9, 2), models = "Exc", max = 10)

# show a set of models with different shape parameter of M. Stein's representation of the Matern:

show.vgms(kappa.range = c(.01, .02, .05, .1, .2, .5, 1, 2, 5, 1000), models = "Ste", max = 2)

```
sic2004 Spatial Interpolation Comparison 2004 data set: Natural Ambient Radioactivity

\section*{Description}

The text below was copied from the original sic2004 event, which is no longer online available.
The variable used in the SIC 2004 exercise is natural ambient radioactivity measured in Germany. The data, provided kindly by the German Federal Office for Radiation Protection (BfS), are gamma dose rates reported by means of the national automatic monitoring network (IMIS).
In the frame of SIC2004, a rectangular area was used to select 1008 monitoring stations (from a total of around 2000 stations). For these 1008 stations, 11 days of measurements have been randomly selected during the last 12 months and the average daily dose rates calculated for each day. Hence, we ended up having 11 data sets.
Prior information (sic.train): 10 data sets of 200 points that are identical for what concerns the locations of the monitoring stations have been prepared. These locations have been randomly selected (see Figure 1). These data sets differ only by their \(Z\) values since each set corresponds to 1 day of measurement made during the last 14 months. No information will be provided on the date of measurement. These 10 data sets (10 days of measurements) can be used as prior information to tune the parameters of the mapping algorithms. No other information will be provided about these sets. Participants are free of course to gather more information about the variable in the literature and so on.

The 200 monitoring stations above were randomly taken from a larger set of 1008 stations. The remaining 808 monitoring stations have a topology given in sic.pred. Participants to SIC2004 will have to estimate the values of the variable taken at these 808 locations.
The SIC2004 data (sic.val, variable dayx): The exercise consists in using 200 measurements made on a 11th day (THE data of the exercise) to estimate the values observed at the remaining 808 locations (hence the question marks as symbols in the maps shown in Figure 3). These measurements will be provided only during two weeks (15th of September until 1st of October 2004) on a web page restricted to the participants. The true values observed at these 808 locations will be released only at the end of the exercise to allow participants to write their manuscripts (sic.test, variables dayx and joker).
In addition, a joker data set was released (sic.val, variable joker), which contains an anomaly. The anomaly was generated by a simulation model, and does not represent measured levels.

\section*{Usage}
data(sic2004) \#

\section*{Format}

The data frames contain the following columns:
record this integer value is the number (unique value) of the monitoring station chosen by us.
\(\mathbf{x}\) X-coordinate of the monitoring station indicated in meters
\(y\) Y-coordinate of the monitoring station indicated in meters
day01 mean gamma dose rate measured during 24 hours, at day01. Units are nanoSieverts/hour
day02 same, for day 02
day03 ...
day04 ...
day05 ..
day06 ...
day07 ...
day08 ...
day09 ...
day10 ..
dayx the data observed at the 11-th day
joker the joker data set, containing an anomaly not present in the training data

\section*{Note}
the data set sic.grid provides a set of points on a regular grid (almost 10000 points) covering the area; this is convenient for interpolation; see the function makegrid in package sp.

The coordinates have been projected around a point located in the South West of Germany. Hence, a few coordinates have negative values as can be guessed from the Figures below.

\section*{Author(s)}

Data: the German Federal Office for Radiation Protection (BfS), http://www.bfs.de/, data provided by Gregoire Dubois, R compilation by Edzer Pebesma.

\section*{References}
https://wiki.52north.org/bin/view/AI_GEOSTATS/WebHome

\section*{Examples}
```

data(sic2004)

# FIGURE 1. Locations of the 200 monitoring stations for the 11 data sets.

# The values taken by the variable are known.

plot(y~x,sic.train,pch=1,col="red", asp=1)

# FIGURE 2. Locations of the }808\mathrm{ remaining monitoring stations at which

# the values of the variable must be estimated.

plot(y~x,sic.pred,pch="?", asp=1, cex=.8) \# Figure 2

# FIGURE 3. Locations of the 1008 monitoring stations (exhaustive data sets).

# Red circles are used to estimate values located at the questions marks

plot(y~x,sic.train,pch=1,col="red", asp=1)
points(y~x, sic.pred, pch="?", cex=.8)

```
```

sic97 Spatial Interpolation Comparison 1997 data set: Swiss Rainfall

```

\section*{Description}

The text below is copied from the data item at ai-geostats, https://wiki.52north.org/bin/ view/AI_GEOSTATS/WebHome

\section*{Usage}
data(sic97) \#

\section*{Format}

The data frames contain the following columns:
ID this integer value is the number (unique value) of the monitoring station
rainfall rainfall amount, in 10th of mm

\section*{Note}

See the pdf that accompanies the original file for a description of the data. The .dxf file with the Swiss border is not included here.

\section*{Author(s)}

Gregoire Dubois and others.

\section*{References}
https://wiki.52north.org/bin/view/AI_GEOSTATS/WebHome

\section*{Examples}
```

data(sic97)
image(demstd)
points(sic_full, pch=1)
points(sic_obs, pch=3)

```
spplot.vcov Plot map matrix of prediction error variances and covariances

\section*{Description}

Plot map matrix of prediction error variances and covariances

\section*{Usage}
spplot.vcov(x, ...)

\section*{Arguments}
X
Object of class SpatialPixelsDataFrame or SpatialGridDataFrame, resulting from a krige call with multiple variables (cokriging
\(\ldots \quad\) remaining arguments passed to spplot

Value
The plotted object, of class trellis; see spplot in package \(\mathbf{s p}\).

\section*{Author(s)}

Edzer Pebesma

\section*{Description}

The Südliche Tullnerfeld is a part of the Danube river basin in central Lower Austria and due to its homogeneous aquifer well suited for a model-oriented geostatistical analysis. It contains 36 official water quality measurement stations, which are irregularly spread over the region.

\section*{Usage}
data(tull)

\section*{Format}

The data frames contain the following columns:
x X location in meter
y Y location in meter
S411 Station name
S429 Station name
S849 Station name
S854 Station name
S1502 Station name
S1584 Station name
S1591 Station name
S2046 Station name
S2047 Station name
S2048 Station name
S2049 Station name
S2051 Station name
S2052 Station name
S2053 Station name
S2054 Station name
S2055 Station name
S2057 Station name
S2058 Station name
S2059 Station name
S2060 Station name
S2061 Station name
\begin{tabular}{ll}
S2062 & Station name \\
S2063 & Station name \\
S2064 & Station name \\
S2065 & Station name \\
S2066 & Station name \\
S2067 & Station name \\
S2070 & Station name \\
S2071 & Station name \\
S2072 & Station name \\
S2128 & Station name \\
S5319 & Station name \\
S5320 & Station name \\
S5321 & Station name \\
S5322 & Station name \\
S5323 & Station name
\end{tabular}

\section*{Note}

This data set was obtained on May 6, 2008 from http://www.ifas.jku.at/e5361/index_ger. html. The author of the book that uses it is found at: http://www.ifas.jku.at/e2571/e2604/ index_ger.html

\section*{References}

Werner G. Müller, Collecting Spatial Data, 3rd edition. Springer Verlag, Heidelberg, 2007

\section*{Examples}
```

data(tull)

# TULLNREG = read.csv("TULLNREG.csv")

# I modified tulln36des.csv, such that the first line only contained: x,y

# resulting in row.names that reflect the station ID, as in

# tull36 = read.csv("tulln36des.csv")

# Chlorid92 was read \& converted by:

\#Chlorid92=read.csv("Chlorid92.csv")
\#Chlorid92$Datum = as.POSIXct(strptime(Chlorid92$Datum, "%d.%m.%y"))
summary(tull36)
summary(TULLNREG)
summary(Chlorid92)

# stack \& join data to x,y,Date,Chloride form:

cl.st = stack(Chlorid92[-1])

```
```

names(cl.st) = c("Chloride", "Station")
cl.st$Date = rep(Chlorid92$Datum, length(names(Chlorid92))-1)
cl.st$x = tull36[match(cl.st[,"Station"], row.names(tull36)), "x"]
cl.st$y = tull36[match(cl.st[,"Station"], row.names(tull36)), "y"]

# library(lattice)

# xyplot(Chloride~Date|Station, cl.st)

# xyplot(y~x|Date, cl.st, asp="iso", layout=c(16,11))

summary(cl.st)
plot(TULLNREG, pch=3, asp=1)
points(y~x, cl.st, add=TRUE, pch=16)

```
variogram Calculate Sample or Residual Variogram or Variogram Cloud

\section*{Description}

Calculates the sample variogram from data, or in case of a linear model is given, for the residuals, with options for directional, robust, and pooled variogram, and for irregular distance intervals.

In case spatio-temporal data is provided, the function variogramST is called with a different set of parameters.

\section*{Usage}
```


## S3 method for class 'gstat'

variogram(object, ...)

## S3 method for class 'formula'

variogram(object, locations = coordinates(data), data, ...)

## Default S3 method:

variogram(object, locations, X, cutoff, width = cutoff/15,
alpha = 0, beta = 0, tol.hor = 90/length(alpha), tol.ver =
90/length(beta), cressie = FALSE, dX = numeric(0), boundaries =
numeric(0), cloud = FALSE, trend.beta = NULL, debug.level = 1,
cross = TRUE, grid, map = FALSE, g = NULL, ..., projected = TRUE,
lambda = 1.0, verbose = FALSE, covariogram = FALSE, PR = FALSE,
pseudo = -1)

## S3 method for class 'gstatVariogram'

print(x, ...)

## S3 method for class 'variogramCloud'

print(x, ...)

```

\section*{Arguments}
object object of class gstat; in this form, direct and cross (residual) variograms are calculated for all variables and variable pairs defined in object; in case of variogram.formula, formula defining the response vector and (possible) regressors, in case of absence of regressors, use e.g. \(\mathrm{z} \sim 1\); in case of variogram. default list with for each variable the vector with responses (should not be called directly)

\begin{tabular}{ll}
formula \\
x \\
grid & \begin{tabular}{l}
formula, specifying the dependent variable and possible covariates \\
object of class variogram or variogramCloud to be printed \\
grid parameters, if data are gridded (not to be called directly; this is filled auto- \\
matically)
\end{tabular} \\
map & \begin{tabular}{l}
logical; if TRUE, and cutoff and width are given, a variogram map is returned. \\
This requires package sp. Alternatively, a map can be passed, of class Spatial- \\
\\
DataFrameGrid (see sp docs) \\
NULL or object of class gstat; may be used to pass settable parameters and/or \\
variograms; see example
\end{tabular} \\
projected & \begin{tabular}{l}
logical; if FALSE, data are assumed to be unprojected, meaning decimal longi- \\
tude/latitude. For projected data, Euclidian distances are computed, for unpro-
\end{tabular} \\
jected great circle distances (km). In variogram. formula or variogram.gstat, \\
for data deriving from class Spatial, projection is detected automatically using \\
is.projected \\
test feature; not working (yet)
\end{tabular}

\section*{Value}

If map is TRUE (or a map is passed), a grid map is returned containing the (cross) variogram map(s). See package sp.
In other cases, an object of class "gstatVariogram" with the following fields:
\begin{tabular}{ll}
np & the number of point pairs for this estimate; in case of a variogramCloud see \\
below \\
dist & the average distance of all point pairs considered for this estimate \\
gamma & the actual sample variogram estimate \\
dir.hor & the horizontal direction \\
dir.ver & the vertical direction \\
id & the combined id pair
\end{tabular}

If cloud is TRUE: an object of class variogramCloud, with the field np encoding the numbers of the point pair that contributed to a variogram cloud estimate, as follows. The first point is found by \(1+\) the integer division of \(n p\) by the .BigInt attribute of the returned object, the second point by \(1+\) the remainder of that division. as.data.frame.variogramCloud returns no np field, but does the decoding into:
\begin{tabular}{ll}
left & for variogramCloud: data id (row number) of one of the data pair \\
right & for variogramCloud: data id (row number) of the other data in the pair
\end{tabular}

In case of a spatio-temporal variogram is sought see variogramST for details.

\section*{Note}
variogram. default should not be called by users directly, as it makes many assumptions about the organization of the data, that are not fully documented (but of course, can be understood from reading the source code of the other variogram methods)
Successfully setting gridded() <-TRUE may trigger a branch that will fail unless dx and dy are identical, and not merely similar to within machine epsilon.

\section*{Note}
variogram. line is DEPRECATED; it is and was never meant as a variogram method, but works automatically as such by the R dispatch system. Use variogramLine instead.

\section*{Author(s)}

Edzer Pebesma

\section*{References}

Cressie, N.A.C., 1993, Statistics for Spatial Data, Wiley.
Cressie, N., C. Wikle, 2011, Statistics for Spatio-temporal Data, Wiley.
http://www.gstat.org/
Pebesma, E.J., 2004. Multivariable geostatistics in S: the gstat package. Computers \\& Geosciences, 30: 683-691.

\section*{See Also}
print.gstatVariogram, plot.gstatVariogram, plot.variogramCloud; for variogram models: vgm, to fit a variogram model to a sample variogram: fit.variogram variogramST for details on the spatiotemporal sample variogram.

\section*{Examples}
```

library(sp)
data(meuse)

# no trend:

coordinates(meuse) = ~x+y
variogram(log(zinc)~1, meuse)

# residual variogram w.r.t. a linear trend:

variogram(log(zinc)~x+y, meuse)

# directional variogram:

variogram(log(zinc)~x+y, meuse, alpha=c(0,45,90,135))
variogram(log(zinc)~1, meuse, width=90, cutoff=1300)

# GLS residual variogram:

v = variogram(log(zinc)~x+y, meuse)
v.fit = fit.variogram(v, vgm(1, "Sph", 700, 1))
v.fit
set = list(gls=1)
v

```
```

g = gstat(NULL, "log-zinc", log(zinc)~x+y, meuse, model=v.fit, set = set)
variogram(g)
if (require(rgdal)) {
proj4string(meuse) = CRS("+init=epsg:28992")
meuse.ll = spTransform(meuse, CRS("+proj=longlat +datum=WGS84"))

# variogram of unprojected data, using great-circle distances, returning km as units

    variogram(log(zinc) ~ 1, meuse.ll)
    }

```
variogramLine Semivariance Values For a Given Variogram Model

\section*{Description}

Generates a semivariance values given a variogram model

\section*{Usage}
variogramLine(object, maxdist, \(\mathrm{n}=200\), min = 1.0e-6 * maxdist, dir \(=c(1,0,0)\), covariance \(=\) FALSE,... , dist_vector, debug.level = 0)

\section*{Arguments}
object variogram model for which we want semivariance function values
maxdist maximum distance for which we want semivariance values
n
number of points
min minimum distance; a value slightly larger than zero is usually used to avoid the discontinuity at distance zero if a nugget component is present
dir direction vector: unit length vector pointing the direction in x (East-West), y (North-South) and z (Up-Down)
covariance logical; if TRUE return covariance values, otherwise return semivariance values
... ignored
dist_vector numeric vector or matrix with distance values
debug.level gstat internal debug level

\section*{Value}
a data frame of dimension (\(\mathrm{n} \times 2\)), with columns distance and gamma (semivariances or covariances), or in case dist_vector is a matrix, a conforming matrix with semivariance/covariance values is returned.

\section*{Note}
variogramLine is used to generate data for plotting a variogram model.

\section*{Author(s)}

Edzer Pebesma

\section*{See Also}
plot.gstatVariogram

\section*{Examples}
```

variogramLine(vgm(5, "Exp", 10, 5), 10, 10)

# anisotropic variogram, plotted in E-W direction:

variogramLine(vgm(1, "Sph", 10, anis=c(0,0.5)), 10, 10)

# anisotropic variogram, plotted in N-S direction:

variogramLine(vgm(1, "Sph", 10, anis=c(0,0.5)), 10, 10, dir=c(0,1,0))
variogramLine(vgm(1, "Sph", 10, anis=c(0,0.5)), dir=c(0,1,0), dist_vector = 0.5)
variogramLine(vgm(1, "Sph", 10, anis=c(0,0.5)), dir=c(0,1,0), dist_vector = c(0, 0.5, 0.75))

```

\section*{Description}

Calculates the sample variogram from spatio-temporal data.

\section*{Usage}
variogramST(formula, locations, data, ..., tlags = 0:15, cutoff, width \(=\) cutoff/15, boundaries \(=\) seq(0, cutoff, width), progress = interactive(), pseudo = TRUE, assumeRegular = FALSE, na.omit = FALSE, cores = 1)

\section*{Arguments}
formula formula, specifying the dependent variable.
locations A STFDF or STSDF containing the variable; kept for compatibility reasons with variogram, either locations or data must be provided.
data A STFDF, STSDF or STIDF containing the variable.
any other arguments that will be passed to the underlying variogram function. In case of using data of type STIDF, the argument tunit is recommended (and only used in the case of STIDF) to set the temporal unit of the tlags. Additionally, twindow can be passed to control the temporal window used for temporal distance calculations. This builds on the property of xts being ordered and only the next twindow instances are considered. This avoids the need of huge temporal distance matrices. The default uses twice the number as the average difference goes into the temporal cutoff.
\begin{tabular}{ll}
tlags & \begin{tabular}{l}
integer; time lags to consider or in case data is of class STIDF the actual tem- \\
poral boundaries with time unit given by tunit otherwise the same unit as diff \\
on the index of the time slot will generate is assumed.
\end{tabular} \\
cutoff & \begin{tabular}{l}
spatial separation distance up to which point pairs are included in semivariance \\
estimates; as a default, the length of the diagonal of the box spanning the data is \\
divided by three. \\
the width of subsequent distance intervals into which data point pairs are grouped \\
for semivariance estimates, by default the cutoff is divided into 15 equal lags. \\
width \\
numerical vector with distance interval upper boundaries; values should be strictly \\
increasing
\end{tabular} \\
boundaries \\
progress & \begin{tabular}{l}
logical; if TRUE, show text progress bar \\
integer; use pseudo cross variogram for computing time-lagged spatial vari- \\
ograms? -1: find out from coordinates - if they are equal then yes, else no;
\end{tabular} \\
a: no; 1: yes.
\end{tabular}

\section*{Value}

The spatio-temporal sample variogram contains besides the fields np, dist and gamma the spatiotemporal fields, timelag, spacelag and avgDist, the first of which indicates the time lag used, the second and third different spatial lags. spacelag is the midpoint in the spatial lag intervals as passed by the parameter boundaries, whereas avgDist is the average distance between the point pairs found in a distance interval over all temporal lags (i.e. the averages of the values dist per temporal lag.) To compute variograms for space lag \(\$ \mathrm{~h} \$\) and time lag \(\$ \mathrm{t} \$\), the pseudo cross variogram \(\$\left(\mathrm{Z}_{1} \mathrm{i}(\mathrm{s})-\mathrm{Z} _\mathrm{i}+\mathrm{t}(\mathrm{s}+\mathrm{h})\right)^{\wedge} 2 \$\) is averaged over all time lagged observation sets \(\$ \mathrm{Z}_{-} \mathrm{i} \$\) and \(\$ \mathrm{Z} _i+t \$\) available (weighted by the number of pairs involved).

\section*{Author(s)}

Edzer Pebesma, Benedikt Graeler

\section*{References}

Cressie, N.A.C., 1993, Statistics for Spatial Data, Wiley.
Cressie, N., C. Wikle, 2011, Statistics for Spatio-temporal Data, Wiley.
```

http://www.gstat.org/

```

Pebesma, E.J., 2004. Multivariable geostatistics in S: the gstat package. Computers \\& Geosciences, 30: 683-691.

\section*{See Also}
plot.StVariogram, for variogram models: vgmST, to fit a spatio-temporal variogram model to a spatio-temporal sample variogram: fit.StVariogram

\section*{Examples}
```


# The following spatio-temporal variogram has been calcualted through

# vv = variogram(PM10~1, r5to10, width=20, cutoff = 200, tlags=0:5)

# in the vignette "st".

data(vv)
str(vv)
plot(vv)

```
variogramSurface Semivariance values for a given spatio-temporal variogram model

\section*{Description}

Generates a surface of semivariance values given a spatio-temporal variogram model (one of separable, productSum, sumMetric, simpleSumMetric or metric)

\section*{Usage}
variogramSurface(model, dist_grid, covariance = FALSE)

\section*{Arguments}
model A spatio-temporal variogram model generated through vgmST or fit. StVariogram.
dist_grid A data.frame with two columns: spacelag and timelag.
covariance Whether the covariance should be computed instead of the variogram (default: FALSE).

\section*{Value}

A data.frame with columns spacelag, timelag and gamma.

\section*{Author(s)}

Benedikt Graeler

\section*{See Also}

See variogramLine for the spatial version and fit. StVariogram for the estimation of spatiotemporal variograms.

\section*{Examples}
```

    separableModel <- vgmST("separable",
        space=vgm(0.86, "Exp", 476, 0.14),
        time \(=\) vgm ( 1, "Exp", 3, 0),
        sill=113)
    data(vv)
if(require(lattice)) \{
plot(vv, separableModel, wireframe=TRUE, all=TRUE)
\}
\# plotting of sample and model variogram
plot(vv, separableModel)

```

\section*{Description}

Generates a variogram model, or adds to an existing model. print. variogramModel prints the essence of a variogram model.

\section*{Usage}
vgm(psill = NA, model, range \(=\) NA, nugget, add.to, anis, kappa \(=0.5, \ldots\), covtable,
Err = 0)
\#\# S3 method for class 'variogramModel'
print(x, ...)
\#\# S3 method for class 'variogramModel'
plot(x, cutoff, ..., type = 'l')
as.vgm.variomodel(m)

\section*{Arguments}
psill
model
anis
range range parameter of the variogram model component; in case of anisotropy: major range
kappa smoothness parameter for the Matern class of variogram models
nugget nugget component of the variogram (this basically adds a nugget compontent to the model); if missing, nugget component is omitted
add. to the variogram model to which we want to add a component (structure)
(partial) sill of the variogram model component, or model: see Details model type, e.g. "Exp", "Sph", "Gau", "Mat". Calling vgm() without a model argument returns a data.frame with available models. anisotropy parameters: see notes below
\(\left.\begin{array}{ll}x & \text { a variogram model to print or plot } \\
\ldots & \begin{array}{l}\text { arguments that will be passed to print, e.g. digits (see examples), or to } \\
\text { variogramLine for the plot method }\end{array} \\
\text { covtable } & \begin{array}{l}\text { if model is Tab, instead of model parameters a one-dimensional covariance table } \\
\text { can be passed here. See covtable.R in tests directory, and example below. }\end{array} \\
\text { Err } & \begin{array}{l}\text { numeric; if larger than zero, the measurement error variance component that will } \\
\text { not be included to the kriging equations, i.e. kriging will now smooth the process } \\
\text { Y instead of predict the measured } Z, \text { where } Z=Y+e, ~ a n d ~ E r r ~ i s ~ t h e ~ v a r i a n c e ~ o f ~ e ~\end{array} \\
\text { object of class variomodel, see geoR }\end{array}\right\}\)\begin{tabular}{l}
maximum distance up to which variogram values are computed \\
cutoff \\
type
\end{tabular}

\section*{Details}

If only the first argument (psill) is given a character value indicating a model, as in vgm("Sph"), then this taken as a shorthand form of vgm(NA, "Sph",NA,NA), i.e. a spherical variogram with nugget and unknown parameter values; see examples below. Read fit.variogram to find out how NA variogram parameters are given initial values for a fitting a model, based on the sample variogram. Package automap gives further options for automated variogram modelling.

\section*{Value}

If a single model is passed, an object of class variogramModel extending data.frame.
In case a vector ofmodels is passed, an object of class variogramModelList which is a list of variogramModel objects.

When called without a model argument, a data.frame with available models is returned, having two columns: short (abbreviated names, to be used as model argument: "Exp", "Sph" etc) and long (with some description).
as.vgm.variomodel tries to convert an object of class variomodel (geoR) to vgm.

\section*{Note}

Geometric anisotropy can be modelled for each individual simple model by giving two or five anisotropy parameters, two for two-dimensional and five for three-dimensional data. In any case, the range defined is the range in the direction of the strongest correlation, or the major range. Anisotropy parameters define which direction this is (the main axis), and how much shorter the range is in (the) direction(s) perpendicular to this main axis.
In two dimensions, two parameters define an anisotropy ellipse, say anis \(=c(30,0.5)\). The first parameter, 30 , refers to the main axis direction: it is the angle for the principal direction of continuity (measured in degrees, clockwise from positive Y, i.e. North). The second parameter, 0.5 , is the anisotropy ratio, the ratio of the minor range to the major range (a value between 0 and 1). So, in our example, if the range in the major direction (North-East) is 100 , the range in the minor direction (South-East) is \(0.5 \times 100=50\).

In three dimensions, five values should be given in the form anis \(=c(p, q, r, s, t)\). Now, \(\$ p \$\) is the angle for the principal direction of continuity (measured in degrees, clockwise from Y, in direction of X), \(\$ \mathrm{q} \$\) is the dip angle for the principal direction of continuity (measured in positive
degrees up from horizontal), \(\$ \mathrm{r} \$\) is the third rotation angle to rotate the two minor directions around the principal direction defined by \(\$ \mathrm{p} \$\) and \(\$ \mathrm{q} \$\). A positive angle acts counter-clockwise while looking in the principal direction. Anisotropy ratios \(\$ \mathrm{~s} \$\) and \(\$ \mathrm{t} \$\) are the ratios between the major range and each of the two minor ranges. The anisotropy code was taken from GSLIB. Note that in http://www.gslib.com/sec_gb.html it is reported that this code has a bug. Quoting from this site: "The third angle in all GSLIB programs operates in the opposite direction than specified in the GSLIB book. Explanation - The books says (pp27) the angle is measured clockwise when looking toward the origin (from the postive principal direction), but it should be counter-clockwise. This is a documentation error. Although rarely used, the correct specification of the third angle is critical if used."
(Note that anis \(=c(p, s)\) is equivalent to anis \(=c(p, 0,0, s, 1)\).
The implementation in gstat for 2D and 3D anisotropy was taken from the gslib (probably 1992) code. I have seen a paper where it is argued that the 3D anisotropy code implemented in gslib (and so in gstat) is in error, but I have not corrected anything afterwards.

\section*{Author(s)}

Edzer Pebesma

\section*{References}
http://www.gstat.org/
Pebesma, E.J., 2004. Multivariable geostatistics in S: the gstat package. Computers \\& Geosciences, 30: 683-691.

Deutsch, C.V. and Journel, A.G., 1998. GSLIB: Geostatistical software library and user's guide, second edition, Oxford University Press.
For the validity of variogram models on the sphere, see Huang, Chunfeng, Haimeng Zhang, and Scott M. Robeson. On the validity of commonly used covariance and variogram functions on the sphere. Mathematical Geosciences 43.6 (2011): 721-733.

\section*{See Also}
show.vgms to view the available models, fit.variogram, variogramLine, variogram for the sample variogram.

\section*{Examples}
```

vgm()
vgm("Sph")
vgm(NA, "Sph", NA, NA)
vgm(, "Sph") \# "Sph" is second argument: NO nugget in this case
vgm(10, "Exp", 300)
x <- vgm(10, "Exp", 300)
vgm(10, "Nug", 0)
vgm(10, "Exp", 300, 4.5)
vgm(10, "Mat", 300, 4.5, kappa = 0.7)
vgm( 5, "Exp", 300, add.to = vgm(5, "Exp", 60, nugget = 2.5))
vgm(10, "Exp", 300, anis = c(30, 0.5))
vgm(10, "Exp", 300, anis = c(30, 10, 0, 0.5, 0.3))

```
```


# Matern variogram model:

vgm(1, "Mat", 1, kappa=.3)
x <- vgm(0.39527463, "Sph", 953.8942, nugget = 0.06105141)
x
print(x, digits = 3);

# to see all components, do

print.data.frame(x)
vv=vgm(model = "Tab", covtable =
variogramLine(vgm(1, "Sph", 1), 1, n=1e4, min = 0, covariance = TRUE))
vgm(c("Mat", "Sph"))
vgm(, c("Mat", "Sph")) \# no nugget

```
vgm.panel.xyplot panel functions for most of the variogram plots through lattice

\section*{Description}

Variogram plots contain symbols and lines; more control over them can be gained by writing your own panel functions, or extending the ones described here; see examples.

\section*{Usage}
vgm. panel. xyplot(\(x\), \(y\), subscripts, type \(=\) " \({ }^{\prime}\) ", pch = plot.symbol\$pch, col, col.line = plot.line\$col, col.symbol = plot.symbol\$col, lty = plot.line\$lty, cex = plot.symbol\$cex, ids, lwd = plot.line\$lwd, model = model, direction = direction, labels, shift = shift, mode = mode, ...) panel.pointPairs(x, y, type = "p", pch = plot.symbol\$pch, col, col.line = plot.line\$col, col.symbol = plot.symbol\$col, lty = plot.line\$lty, cex = plot.symbol\$cex, lwd = plot.line\$lwd, pairs = pairs, line.pch = line.pch, ...)

\section*{Arguments}
\begin{tabular}{ll}
\(x\) & \(x\) coordinates of points in this panel \\
\(y\) & \(y\) coordinates of points in this panel \\
subscripts & subscripts of points in this panel \\
type & plot type: "l" for connected lines \\
pch & plotting symbol \\
col & symbol and line color (if set) \\
col.line & line color \\
col.symbol & symbol color \\
lty & line type for variogram model \\
cex & symbol size \\
ids & gstat model ids \\
lwd & line width
\end{tabular}
\begin{tabular}{ll}
model & variogram model \\
direction & direction vector c(dir.horizontal, dir.ver) \\
labels & labels to plot next to points \\
shift & amount to shift the label right of the symbol \\
mode & to be set by calling function only \\
line.pch & \begin{tabular}{l}
symbol type to be used for point of selected point pairs, e.g. to highlight point \\
pairs with distance close to zero
\end{tabular} \\
pairs & two-column matrix with pair indexes to be highlighted \\
\(\ldots\) & parameters that get passed to lpoints
\end{tabular}

\section*{Value}
ignored; the enclosing function returns a plot of class trellis

\section*{Author(s)}

Edzer Pebesma

\section*{References}
http://www.gstat.org/

\section*{See Also}
plot.gstatVariogram, vgm

\section*{Examples}
```

library(sp)
data(meuse)
coordinates(meuse) <- c("x", "y")
library(lattice)
mypanel = function(x,y,...) {
vgm.panel.xyplot(x,y,···.)
panel.abline(h=var(log(meuse\$zinc)), color = 'red')
}
plot(variogram(log(zinc)~1,meuse), panel = mypanel)

```
```

    vgmArea point-point, point-area or area-area semivariance
    ```

\section*{Description}

Compute point-point, point-area or area-area variogram values from point model

\section*{Usage}
vgmArea(x, y = x, vgm, ndiscr = 16, verbose = FALSE, covariance = TRUE)

\section*{Arguments}
x
y
vgm variogram model, see vgm
ndiscr number of points to discretize an area, using spsample
verbose give progress bar
covariance logical; compute covariances, rather than semivariances?

\section*{Value}
semivariance or covariance matrix of dimension length(\(x\)) \(x\) lenght \((y)\)

\section*{Author(s)}

Edzer Pebesma

\section*{Examples}
```

library(sp)
demo(meuse, ask = FALSE, echo = FALSE)
vgmArea(meuse[1:5,], vgm = vgm(1, "Exp", 1000)) \# point-point
vgmArea(meuse[1:5,], meuse.area, vgm = vgm(1, "Exp", 1000)) \# point-area

```
vgmAreaST Function that returns the covariances for areas

\section*{Description}

Function that returns the covariances for areas based on spatio-temporal point variograms for use in the spatio-temporal area-to-point kriging

\section*{Usage}
vgmAreaST(x, y = x, model, ndiscrSpace = 16, verbose = FALSE, covariance = TRUE)

\section*{Arguments}
x
y
model spatio-temporal variogram model for point support
ndiscrSpace
verbose Boolean: default to FALSE, set to TRUE for debugging
covariance Boolean: whether the covariance shall be evaluated, currently disfunction and set to TRUE

\section*{Value}

The covariance between 'x' and 'y'.

\section*{Author(s)}

Benedikt Graeler

\section*{See Also}
vgmArea

\section*{Examples}
```


# see demo('a2pinST')

```
```

vgmST

```

Constructing a spatio-temporal variogram

\section*{Description}

Constructs a spatio-temporal variogram of a given type checking for a minimal set of parameters.

\section*{Usage}
vgmST(stModel, ..., space, time, joint, sill, k, nugget, stAni, temporalUnit)

\section*{Arguments}
stModel A string identifying the spatio-temporal variogram model (see details below). Only the string before an optional "_" is used to identify the model. This mechanism can be used to identify different fits of the same model (separable_A and separable_B will be interpreted as separable models, but carry different names).
... unused, but ensure an exact match of the following parameters.
space A spatial variogram.
time A temporal variogram.
joint A joint spatio-temporal variogram.
sill A joint spatio-temporal sill.
\(\mathrm{k} \quad\) The weighting of the product in the product-sum model.
nugget A joint spatio-temporal nugget.
stAni A spatio-temporal anisotropy; the number of space units equivalent to one time unit.
temporalUnit length one character vector, indicating the temporal unit (like secs)

\section*{Details}

The different implemented spatio-temporal variogram models have the following required parameters (see as well the example section)
separable: A variogram for space and time each and a joint spatio-temporal sill (variograms may have a separate nugget effect, but their joint sill will be 1) generating the call
vgmST("separable", space, time, sill)
productSum: A variogram for space and time each, and the weighting of product \(k\) generating the call
```

vgmST("productSum", space, time, k)

```
sumMetric: A variogram (potentially including a nugget effect) for space, time and joint each and a spatio-temporal anisotropy ratio stAni generating the call
```

vgmST("sumMetric", space, time, joint, stAni)

```
simpleSumMetric: A variogram (without nugget effect) for space, time and joint each, a joint spatio-temporal nugget effect and a spatio-temporal anisotropy ratio stAni generating the call
```

vgmST("simpleSumMetric", space, time, joint, nugget, stAni)

```
metric: A spatio-temporal joint variogram (potentially including a nugget effect) and stAni generating the call
```

vgmST("metric", joint, stAni)

```

\section*{Value}

Returns an S3 object of class StVariogramModel.

\section*{Author(s)}

Benedikt Graeler

\section*{See Also}
fit.StVariogram for fitting, variogramSurface to plot the variogram and extractParNames to better understand the parameter structure of spatio-temporal variogram models.

\section*{Examples}
```


# separable model: spatial and temporal sill will be ignored

# and kept constant at 1-nugget respectively. A joint sill is used.

separableModel <- vgmST("separable",
space=vgm(0.9,"Exp", 147, 0.1),
time =vgm(0.9,"Exp", 3.5, 0.1),
sill=40)

# product sum model: spatial and temporal nugget will be ignored and kept

# constant at 0. Only a joint nugget is used.

prodSumModel <- vgmST("productSum",
space=vgm(39, "Sph", 343, 0),
time= vgm(36, "Exp", 3, 0),
k=15)

# sum metric model: spatial, temporal and joint nugget will be estimated

sumMetricModel <- vgmST("sumMetric",
space=vgm( 6.9, "Lin", 200, 3.0),
time =vgm(10.3, "Lin", 15, 3.6),
joint=vgm(37.2, "Exp", 84,11.7),
stAni=77.7)

# simplified sumMetric model, only a overall nugget is fitted. The spatial,

# temporal and jont nuggets are set to 0.

simpleSumMetricModel <- vgmST("simpleSumMetric",
space=vgm(20,"Lin", 150, 0),
time =vgm(20,"Lin", 10, 0),

```
```

joint=vgm(20,"Exp", 150, 0),
nugget=1, stAni=15)

```
 \# metric model
 metricModel <- vgmST("metric",
 joint=vgm(60, "Exp", 150, 10),
 stAni=60)

\section*{Description}

Precomputed variogram for PM10 in data set air

\section*{Usage}
data(vv)

\section*{Format}
data set structure is explained in variogramST.

\section*{Examples}
```


## Not run:

# obtained by:

library(spacetime)
library(gstat)
data(air)
suppressWarnings(proj4string(stations) <- CRS(proj4string(stations)))
rural = STFDF(stations, dates, data.frame(PM10 = as.vector(air)))
rr = rural[,"2005::2010"]
unsel = which(apply(as(rr, "xts"), 2, function(x) all(is.na(x))))
r5to10 = rr[-unsel,]
vv = variogram(PM10~1, r5to10, width=20, cutoff = 200, tlags=0:5)

## End(Not run)

```
walker Walker Lake sample and exhaustive data sets

\section*{Description}

This is the Walker Lake data sets (sample and exhaustive data set), used in Isaaks and Srivastava's Applied Geostatistics.

\section*{Usage}
data(walker)

\section*{Format}

This data frame contains the following columns:

Id Identification Number
X Xlocation in meter
Y Ylocation in meter
V V variable, concentration in ppm
\(\mathbf{U} \mathrm{U}\) variable, concentration in ppm
T T variable, indicator variable

Note
This data sets was obtained from the data sets on ai-geostats, https://wiki.52north.org/bin/ view/AI_GEOSTATS/WebHome

\section*{References}

Applied Geostatistics by Edward H. Isaaks, R. Mohan Srivastava; Oxford University Press.

\section*{Examples}
```

library(sp)
data(walker)
summary(walker)
summary(walker.exh)

```

\section*{Description}

Daily average wind speeds for 1961-1978 at 12 synoptic meteorological stations in the Republic of Ireland (Haslett and raftery 1989). Wind speeds are in knots (1 knot \(=0.5418 \mathrm{~m} / \mathrm{s}\)), at each of the stations in the order given in Fig. 4 of Haslett and Raftery (1989, see below)

\section*{Usage}
data(wind)

\section*{Format}
data.frame wind contains the following columns:
year year, minus 1900
month month (number) of the year
day day
RPT average wind speed in knots at station RPT
VAL average wind speed in knots at station VAL
ROS average wind speed in knots at station ROS
KIL average wind speed in knots at station KIL
SHA average wind speed in knots at station SHA
BIR average wind speed in knots at station BIR
DUB average wind speed in knots at station DUB
CLA average wind speed in knots at station CLA
MUL average wind speed in knots at station MUL
CLO average wind speed in knots at station CLO
BEL average wind speed in knots at station BEL
MAL average wind speed in knots at station MAL
data.frame wind. loc contains the following columns:
Station Station name
Code Station code
Latitude Latitude, in DMS, see examples below
Longitude Longitude, in DMS, see examples below
MeanWind mean wind for each station, metres per second
wind

\section*{Note}

This data set comes with the following message: "Be aware that the dataset is 532494 bytes long (thats over half a Megabyte). Please be sure you want the data before you request it."
The data were obtained on Oct 12, 2008, from: http://www.stat.washington.edu/raftery/software.html The data are also available from statlib.

Locations of 11 of the stations (ROS, Rosslare has been thrown out because it fits poorly the spatial correlations of the other stations) were obtained from: http://www.stat.washington.edu/research/reports/2005/tr475.pdf Roslare lat/lon was obtained from google maps, location Roslare. The mean wind value for Roslare comes from Fig. 1 in the original paper.
Haslett and Raftery proposed to use a sqrt-transform to stabilize the variance.

\section*{Author(s)}

Adrian Raftery; imported to R by Edzer Pebesma

\section*{References}

These data were analyzed in detail in the following article:
Haslett, J. and Raftery, A. E. (1989). Space-time Modelling with Long-memory Dependence: Assessing Ireland's Wind Power Resource (with Discussion). Applied Statistics 38, 1-50.
and in many later papers on space-time analysis, for example:
Tilmann Gneiting, Marc G. Genton, Peter Guttorp: Geostatistical Space-Time Models, Stationarity, Separability and Full symmetry. Ch. 4 in: B. Finkenstaedt, L. Held, V. Isham, Statistical Methods for Spatio-Temporal Systems.

\section*{Examples}
```

data(wind)
summary(wind)
wind.loc
library(sp) \# char2dms
wind.loc$y = as.numeric(char2dms(as.character(wind.loc[["Latitude"]])))
wind.loc$x = as.numeric(char2dms(as.character(wind.loc[["Longitude"]])))
coordinates(wind.loc) = ~x+y

# fig 1:

if (require(mapdata)) {
map("worldHires", xlim = c(-11,-5.4), ylim = c(51,55.5))
plot(wind.loc, add=TRUE, pch=16)
text(coordinates(wind.loc), pos=1, label=wind.loc$Station)
}
wind$time = ISOdate(wind$year+1900, wind$month, wind\$day)

# time series of e.g. Dublin data:

plot(DUB~time, wind, type= 'l', ylab = "windspeed (knots)", main = "Dublin")

# fig 2:

\#wind = wind[!(wind$month == 2 & wind$day == 29),]
wind$jday = as.numeric(format(wind$time, '%j'))

```
```

windsqrt = sqrt(0.5148 * as.matrix(wind[4:15]))
Jday = 1:366
windsqrt = windsqrt - mean(windsqrt)
daymeans = sapply(split(windsqrt, wind\$jday), mean)
plot(daymeans ~ Jday)
lines(lowess(daymeans ~ Jday, f = 0.1))

# subtract the trend:

meanwind = lowess(daymeans ~ Jday, f = 0.1)$y[wind$jday]
velocity = apply(windsqrt, 2, function(x) { x - meanwind })

# match order of columns in wind to Code in wind.loc:

pts = coordinates(wind.loc[match(names(wind[4:15]), wind.loc\$Code),])

# fig 3, but not really yet...

dists = spDists(pts, longlat=TRUE)
corv = cor(velocity)
sel = !(as.vector(dists) == 0)
plot(as.vector(corv[sel]) ~ as.vector(dists[sel]),
xlim = c(0,500), ylim = c(.4, 1), xlab = "distance (km.)",
ylab = "correlation")

# plots all points twice, ignores zero distance

# now really get fig 3:

ros = rownames(corv) == "ROS"
dists.nr = dists[!ros,!ros]
corv.nr = corv[!ros,!ros]
sel = !(as.vector(dists.nr) == 0)
plot(as.vector(corv.nr[sel]) ~ as.vector(dists.nr[sel]), pch = 3,
xlim = c(0,500), ylim = c(.4, 1), xlab = "distance (km.)",
ylab = "correlation")

# add outlier:

points(corv[ros,!ros] ~ dists[ros,!ros], pch=16, cex=.5)
xdiscr = 1:500

# add correlation model:

lines(xdiscr, .968 * exp(- .00134 * xdiscr))

```

\section*{Index}
*Topic datasets
coalash, 3
DE_RB_2005, 4
fulmar, 15
jura, 24
meuse.all, 40
meuse.alt, 42
ncp.grid, 43
oxford, 45
pcb, 47
sic2004, 59
sic97, 61
tull, 63
walker, 83
wind, 84
*Topic dplot
image, 22
map. to.lev, 40
plot.gstatVariogram, 48
plot.pointPairs, 50
plot.variogramCloud, 52
show.vgms, 58
spplot.vcov, 62
*Topic models
fit.lmc, 7
fit.StVariogram, 8
fit.variogram, 11
fit.variogram.gls, 13
fit.variogram. reml, 14
get.contr, 16
gstat, 17
hscat, 21
krige, 26
krige.cv, 30
krigeST, 34
krigeTg, 38
ossfim, 44
predict, 53
progress, 57
variogram, 65
variogramLine, 69
variogramST, 70
variogramSurface, 72
vgm, 73
vgm.panel.xyplot, 76
vgmArea, 78
vgmST, 80
\(*\) Topic spatio-temporal
variogramSurface, 72
[.gstat (gstat), 17
as.data.frame.variogramCloud, 67
as.data.frame.variogramCloud (variogram), 65
as.vgm.variomodel (vgm), 73
Chlorid92 (tull), 63
coalash, 3
DE_RB_2005, 4
demstd (sic97), 61
diff, 71
estiStAni, 5
extractPar, 6
extractParNames, 9, 10, 81
extractParNames (extractPar), 6
fit.lmc, 7
fit.StVariogram, 7, 8, 34, 72, 81
fit.variogram, 8-10, 11, 13-15, 27, 31, 38, \(48,50,68,74,75\)
fit.variogram.gls, 13
fit.variogram.reml, 11, 14
fulmar, 15, 43
get.contr, 16
get_gstat_progress (progress), 57
getGammas (variogramLine), 69
gstat, 7, 17, 26-29, 31, 32, 35, 36, 38, 39, 53, 55, 56
gstat.cv (krige.cv), 30
hscat, 21
identify, 53
idw (krige), 26
idw, formula, formula-method (krige), 26
idw, formula, sf-method (krige), 26
idw, formula, Spatial-method (krige), 26
idw, formula, ST-method (krige), 26
idw-methods (krige), 26
idw.locations (krige), 26
idw.spatial (krige), 26
idw0 (krige), 26
image, 22
image.data.frame, 23, 40
image. default, 23
jura, 24
juragrid.dat (jura), 24
krige, 20, 26, 32, 39, 40, 45, 53, 55, 56
krige, formula, formula-method (krige), 26
krige, formula, NULL-method (krige), 26
krige,formula, sf-method (krige), 26
krige, formula, Spatial-method (krige), 26
krige, formula, ST-method (krigeST), 34
krige-methods (krige), 26
krige.cv, 30
krige.cv, formula, formula-method
(krige.cv), 30
krige.cv, formula,sf-method (krige.cv), 30
krige.cv,formula,Spatial-method
(krige.cv), 30
krige.cv.locations (krige.cv), 30
krige.cv.spatial (krige.cv), 30
krige.locations (krige), 26
krige.spatial (krige), 26
krige0, 35, 36
krige0 (krige), 26
krigeSimCE, 33, 37
krigeST, 10, 34
krigeSTSimTB, 34, 36
krigeSTTg (krigeST), 34
krigeTg, 36, 38
locator, 53
lpoints, 77
map.to.lev, 40
meuse.all, 40, 42
meuse.alt, 41, 42
ncp.grid, 16, 43, 47
optim, 9
ossfim, 44
oxford, 45
panel.pointPairs(vgm.panel.xyplot), 76
pcb, 47
plot.gstatVariogram, 48, 52, 53, 68, 70, 77
plot. pointPairs, 50, 53
plot.StVariogram, 72
plot.StVariogram(plot.gstatVariogram), 48
plot.variogramCloud, 51, 52, 68
plot.variogramMap
(plot.gstatVariogram), 48
plot. variogramModel (vgm), 73
predict, 16, 17, 20, 26, 28, 29, 31, 32, 36, 38-40, 53, 55
prediction.dat (jura), 24
print.gstat (gstat), 17
print.gstatVariogram, 68
print.gstatVariogram (variogram), 65
print.variogramCloud (variogram), 65
print.variogramModel (vgm), 73
progress, 57
set_gstat_progress (progress), 57
show.vgms, 58, 75
sic.grid(sic2004), 59
sic.pred (sic2004), 59
sic.test (sic2004), 59
sic.train (sic2004), 59
sic.val (sic2004), 59
sic2004, 59
sic97, 61
sic_full (sic97), 61
sic_obs (sic97), 61
SpatialPoints, 78
SpatialPolygons, 54, 78
SpatialPolygonsDataFrame, 54
spplot.vcov, 62
spsample, 54, 78
```

ST, 35
STFDF,70
STIDF, 70, 71
STSDF,70
transect.dat (jura), 24
tull,63
tull36(tull), 63
TULLNREG (tull), }6
validation.dat (jura), 24
variogram, 7, 8, 11, 12, 22, 48, 50, 53, 65, 70,
75
variogram.default, 66
variogramLine, 50, 59, 69, 72, 75
variogramST, 9, 65, 67, 68, 70, 82
variogramSurface, 34, 72, 81
vgm, 5, 7, 8, 11, 12, 18, 27, 31, 38, 48, 50, 59,
68,73,77,78
vgm.panel.xyplot,76
vgmArea, 78, }7
vgmAreaST, 34, }7
vgmST, 6, 7, 9, 34, 37, 72, 80
vv, }8
walker, 83
wind, 84
xyplot, 49
xyz2img, 23
xyz2img (image), 22

```
```

