Package 'gscounts'

April 2, 2019
Type Package
Title Group Sequential Designs with Negative Binomial Outcomes
Version 0.1-3
Maintainer Tobias Mütze <tobias.muetze@outlook.com></tobias.muetze@outlook.com>
Description Design and analysis of group sequential designs for negative binomial outcomes, as described by T Mütze, E Glimm, H Schmidli, T Friede (2018) <doi:10.1177 0962280218773115="">.</doi:10.1177>
Depends R (>= $3.0.0$)
Imports stats, Rcpp(>= 0.12.9)
Suggests testthat, MASS, knitr, rmarkdown, dplyr, gsDesign, mvtnorm
License GPL (>= 2)
NeedsCompilation yes
<pre>URL https://github.com/tobiasmuetze/gscounts</pre>
<pre>BugReports https://github.com/tobiasmuetze/gscounts/issues</pre>
VignetteBuilder knitr
LazyData true
LinkingTo Rcpp
Encoding UTF-8
RoxygenNote 6.1.1
Author Tobias Mütze [aut, cre] (https://orcid.org/0000-0002-4111-1941)
Repository CRAN
Date/Publication 2019-04-02 17:00:03 UTC
R topics documented:
design_gsnb 2 design_nb 5 get_calendartime_gsnb 7 get_info_gsnb 8

2 design_gsnb

	gscounts																		8
	hospitalizations																		9
	obrien																		9
	pocock							 											10
	print.gsnb																		10
	print.nb																		11
Index																			12

 ${\tt design_gsnb}$

Group sequential design with negative binomial outcomes

Description

Design a group sequential trial with negative binomial outcomes

Usage

```
design_gsnb(rate1, rate2, dispersion, ratio_H0 = 1, random_ratio = 1,
  power, sig_level, timing, esf = obrien, esf_futility = NULL,
  futility = NULL, t_recruit1 = NULL, t_recruit2 = NULL,
  study_period = NULL, accrual_period = NULL, followup_max = NULL,
  accrual_speed = 1, ...)
```

Arguments

rate1	numeric; assumed rate of treatment group 1 in the alternative
rate2	numeric; assumed rate of treatment group 2 in the alternative
dispersion	numeric; dispersion (shape) parameter of negative binomial distribution
ratio_H0	numeric; positive number denoting the rate ratio μ_1/μ_2 under the null hypothesis, i.e. the non-inferiority or superiority margin
random_ratio	numeric; randomization ratio n1/n2
power	numeric; target power of group sequential design
sig_level	numeric; Type I error / significance level
timing	numeric vector; $0 < \text{timing[1]} < < \text{timing[K]} = 1$ with K the number of analyses, i.e. (K-1) interim analyses and final analysis. When the timing of efficacy and futility analyses differ, timing should not be defined. Instead, the arguments timing_eff and timing_fut have to be used to specify the timing of the efficacy and futility analyses, respectively.
esf	function; error spending function
esf_futility	function; futility error spending function
futility	character; either "binding", "nonbinding", or NULL for binding, nonbinding, or no futility boundaries
t_recruit1	numeric vector; recruit (i.e. study entry) times in group 1

design_gsnb 3

t_recruit2 numeric vector; recruit (i.e. study entry) times in group 2

study_period numeric; study duration; to be set when follow-up times are not identical between subjects, NULL otherwise

accrual_period numeric; accrual period

followup_max numeric; maximum exposure time of a subject; to be set when follow-up times are to be equal for each subject, NULL otherwise

accrual_speed numeric; determines accrual speed; values larger than 1 result in accrual slower than linear; values between 0 and 1 result in accrual faster than linear.

... further arguments. Will be passed to the error spending function.

Details

Denote μ_1 and μ_2 the event rates in treatment groups 1 and 2. This function considers smaller event rates to be better. The statistical hypothesis testing problem of interest is

$$H_0: \frac{\mu_1}{\mu_2} \ge \delta vs. H_1: \frac{\mu_1}{\mu_2} < \delta,$$

with $\delta=$ ratio_H0. Non-inferiority of treatment group 1 compared to treatment group 2 is tested for $\delta\in(1,\infty)$. Superiority of treatment group 1 over treatment group 2 is tested for $\delta\in(0,1]$. The calculation of the efficacy and (non-)binding futility boundaries are performed under the hypothesis $H_0: \frac{\mu_1}{\mu_2}=\delta$ and under the alternative $H_1: \frac{\mu_1}{\mu_2}=$ rate1 / rate2.

The argument 'accrual_speed' is used to adjust the accrual speed. Number of subjects in the study at study time t is given by $f(t) = a * t^b$ with $a = n/accrual_period$ and $b = accrual_speed$ For linear recruitment, b = 1. b > 1 results is slower than linear recruitment for $t < accrual_period$ and faster than linear recruitment for $t > accrual_period$. Vice verse for b < 1.

Value

A list with class "gsnb" containing the following components:

rate1 as input rate2 as input dispersion as input power as input timing as input ratio_H0 as input ratio_H1 ratio rate1/rate2 sig_level as input random_ratio as input power_fix power of fixed design expected_info list; expected information under ratio_H0 and ratio_H1 efficacy list; contains the elements esf (type I error spending function), spend (type I error spend at each look), and critical (critical value for efficacy testing)

4 design_gsnb

futility list; only part of the output if argument futility is defined in the input. Contains the elements futility (input argument futility), esf (type II error spending function), spend (type II error spend at each look), and critical (critical value for futility testing) list; contains the element efficacy with the probabilities for stopping for effistop_prob cacy and, if futility bounds are calculated, the element futility with the probabilities for stopping for futility as input t_recruit1 t_recruit2 as input study_period as input followup_max as input max_info maximum information calendar calendar times of data looks; only calculated when exposure times are not iden-

References

tical

Mütze, T., Glimm, E., Schmidli, H., & Friede, T. (2018). Group sequential designs for negative binomial outcomes. Statistical Methods in Medical Research, https://doi.org/10.1177/0962280218773115.

```
# Calculate the sample sizes for a given accrual period and study period (without futility)
out <- design_gsnb(rate1 = 0.0875, rate2 = 0.125, dispersion = 5,
                   power = 0.8, timing = c(0.5, 1), esf = obrien,
                   ratio_H0 = 1, sig_level = 0.025,
                   study_period = 3.5, accrual_period = 1.25, random_ratio = 1)
out
# Calculate the sample sizes for a given accrual period and study period with binding futility
out <- design_gsnb(rate1 = 0.0875, rate2 = 0.125, dispersion = 5,
                   power = 0.8, timing = c(0.5, 1), esf = obrien,
                   ratio_H0 = 1, sig_level = 0.025, study_period = 3.5,
                   accrual_period = 1.25, random_ratio = 1, futility = "binding",
                   esf_futility = obrien)
out
# Calculate study period for given recruitment times
expose <- seq(0, 1.25, length.out = 1042)
out <- design_gsnb(rate1 = 0.0875, rate2 = 0.125, dispersion = 5,
                   power = 0.8, timing = c(0.5, 1), esf = obrien,
                   ratio_H0 = 1, sig_level = 0.025, t_recruit1 = expose,
                   t_recruit2 = expose, random_ratio = 1)
out
# Calculate sample size for a fixed exposure time
out <- design_gsnb(rate1 = 0.0875, rate2 = 0.125, dispersion = 5,
```

design_nb 5

design_nb

Clinical trials with negative binomial outcomes

Description

Design a clinical trial with negative binomial outcomes

Usage

```
design_nb(rate1, rate2, dispersion, power, ratio_H0 = 1, sig_level,
  random_ratio = 1, t_recruit1 = NULL, t_recruit2 = NULL,
  study_period = NULL, accrual_period = NULL, followup_max = NULL,
  accrual_speed = 1)
```

Arguments

rate1	numeric; assumed rate of treatment group 1 in the alternative
rate2	numeric; assumed rate of treatment group 2 in the alternative
dispersion	numeric; dispersion (shape) parameter of negative binomial distribution
power	numeric; target power
ratio_H0	numeric; positive number denoting the rate ratio rate_1/rate_2 under the null hypothesis, i.e. the non-inferiority or superiority margin
sig_level	numeric; Type I error / significance level
random_ratio	numeric; randomization ratio n1/n2
t_recruit1	numeric vector; recruit (i.e. study entry) times in group 1
t_recruit2	numeric vector; recruit (i.e. study entry) times in group 2
study_period	numeric; study duration
accrual_period	numeric; accrual period
followup_max	numeric; maximum exposure time of a patient
accrual_speed	numeric; determines accrual speed; values larger than 1 result in accrual slower than linear; values between 0 and 1 result in accrual faster than linear.

design_nb

Value

A list containing the following components:

```
rate1
                 as input
rate2
                 as input
dispersion
                 as input
power
                 as input
ratio_H0
                 as input
ratio_H1
                 ratio rate1/rate2
sig_level
                 as input
random_ratio
                 as input
                 as input
t_recruit1
t_recruit2
                 as input
study_period
                 as input
followup_max
                 as input
max_info
                 maximum information
```

```
# Calculate sample size for given accrual period and study duration assuming uniformal accrual
out <- design_nb(rate1 = 0.0875, rate2 = 0.125, dispersion = 5, power = 0.8,
                 ratio_H0 = 1, sig_level = 0.025,
                 study_period = 4, accrual_period = 1, random_ratio = 2)
out
\# Calculate sample size for a fixed exposure time of 0.5 years
out <- design_nb(rate1 = 4.2, rate2 = 8.4, dispersion = 3, power = 0.8,
                 ratio_H0 = 1, sig_level = 0.025,
                 followup_max = 0.5, random_ratio = 2)
out
# Calculate study period for given recruitment time
t_recruit1 <- seq(0, 1.25, length.out = 1200)
t_{recruit2} \leftarrow seq(0, 1.25, length.out = 800)
out <- design_nb(rate1 = 0.0875, rate2 = 0.125, dispersion = 5, power = 0.8,
                 ratio_H0 = 1, sig_level = 0.025,
                 t_recruit1 = t_recruit1, t_recruit2 = t_recruit2)
```

get_calendartime_gsnb 7

```
get_calendartime_gsnb Calendar time of data looks
```

Description

Calculate the calendar time of looks given the information time

Usage

```
get_calendartime_gsnb(rate1, rate2, dispersion, t_recruit1, t_recruit2,
  timing, followup1, followup2)
```

Arguments

rate1	numeric; rate in treatment group 1
rate2	numeric; rate in treatment group 2
dispersion	numeric; dispersion (shape) parameter of negative binomial distribution
t_recruit1	numeric vector; recruit (i.e. study entry) times in group 1
t_recruit2	numeric vector; recruit (i.e. study entry) times in group 2
timing	numeric vector with entries in (0,1]; information times of data looks
followup1	numeric vector; final individual follow-up times in treatment group 1
followup2	numeric vector; final individual follow-up times in treatment group 2

Value

numeric; vector with calendar time of data looks

8 gscounts

get_info_gsnb	Information level for log rate ratio	

Description

Calculates the information level for the log rate ratio of the negative binomial model

Usage

```
get_info_gsnb(rate1, rate2, dispersion, followup1, followup2)
```

Arguments

```
rate1 numeric; rate in treatment group 1
rate2 numeric; rate in treatment group 2
dispersion (shape) parameter of negative binomial distribution
followup1 numeric vector; individual follow-up times in treatment group 1
followup2 numeric vector; individual follow-up times in treatment group 2
```

Value

numeric; information level

Examples

gscounts gscounts

Description

Design and monitoring of group sequential designs with negative binomial data.

Author(s)

Tobias Muetze <tobias.muetze@outlook.com>

hospitalizations 9

hospitalizations

Hospitalizations

Description

A dataset containing the hospitalization times of 1980 patients:

Usage

```
data(hospitalizations)
```

Format

A data frame with 2323 rows and 4 variables

Details

- treatment. Treatment identifier.
- pat. Patient identifier. Unique within treatment
- t_recruit. Recruitment time of patient into the clinical trial.
- eventtime. Event time of hospitalization. NA corresponds to no event.

obrien obrien

Description

Error spending function mimicking O'Brien & Fleming critical values

Usage

```
obrien(t, sig_level, ...)
```

Arguments

```
t numeric; Non-negative information ratio sig_level numeric; significance level optional arguments
```

Value

numeric

```
# O'Brien-Fleming-type error spending function obrien(t = c(0.5, 1), sig_level = 0.025)
```

print.gsnb

pocock pocock

Description

Error spending function mimicking Pococks critical values

Usage

```
pocock(t, sig_level, ...)
```

Arguments

t numeric; Non-negative information ratio

sig_level numeric; significance level

... optional arguments

Value

numeric

Examples

```
# Pocock-type error spending function pocock(t = c(0.5, 1), sig_level = 0.025)
```

print.gsnb

print.gsnb

Description

print method for instance of class gsnb

Usage

```
## S3 method for class 'gsnb'
print(x, ...)
```

Arguments

x an object of class gsnb

... optional arguments to print or plot methods

print.nb 11

print.nb print.nb

Description

print method for instance of class nb

Usage

```
## S3 method for class 'nb'
print(x, ...)
```

Arguments

x an object of class nb

... optional arguments to print or plot methods

Index

```
*Topic datasets
hospitalizations, 9

design_gsnb, 2
design_nb, 5

get_calendartime_gsnb, 7
get_info_gsnb, 8
gscounts, 8
gscounts-package (gscounts), 8

hospitalizations, 9

obrien, 9

pocock, 10
print.gsnb, 10
print.nb, 11
```