Package ‘gratis’

August 3, 2020
Type Package

Title Generating Time Series with Diverse and Controllable
Characteristics

Version 0.2.0
Date 2020-07-24

Description Generates time series based on mixture autoregressive mod-
els. Kang,Y.,Hyndman,R.,Li,F.(2020)<doi:10.1002/sam.11461>.

LazyLoad yes
Repository CRAN

URL https://github.com/ykang/gratis

BugReports https://github.com/ykang/gratis/issues/
Depends R (>=3.4.0)

Imports tsfeatures, doRNG, polynom, mvtnorm, forecast, dplyr, stats,
tibble, utils, purrr, magrittr, GA, foreach, methods, rlang,
shiny, shinydashboard

Suggests fGarch, knitr, rmarkdown
NeedsCompilation no

License GPL-3

Encoding UTF-8

RoxygenNote 7.1.1
VignetteBuilder knitr

Author Yanfei Kang [aut, cre] (<https://orcid.org/0000-0001-8769-6650>),
Feng Li [aut] (<https://orcid.org/0000-0002-4248-9778>),
Rob Hyndman [ctb] (<https://orcid.org/0000-0002-2140-5352>),
Mitchell O'Hara-Wild [ctb] (<https://orcid.org/0000-0001-6729-7695>),
Bocong Zhao [ctb]

Maintainer Yanfei Kang <yanfeikang@buaa.edu.cn>
Date/Publication 2020-08-03 08:50:14 UTC

https://github.com/ykang/gratis
https://github.com/ykang/gratis/issues/

2

arinf

R topics documented:

arinf . .. L e e e 2
fItNESS_tS o o e e e e 3
CA LS . o e e e e e 4
GENETate_IMSES v v e v it e e e e e e e e e 6
GENETALE IS o i i e e e e e e e e e e e e e e e 7
generate_ts_with_target L. 8
nsdiffsl e 9
pi_coefficients L. 9
rlnorm2 L e 10
0001 5:4 370) o o 4 1 11
FMIXNOTIML S .+« . v v v v e v e e e e e e e e e e e e e 12
TUN_GTatiS_APP + « « v v v o e e e e e e e e e e e e e e e e e e e 13
tSEENETation e e e e e 13

Index 14

arinf Compute pi coefficients from ARIMA model
Description

Compute pi coefficients from ARIMA model

Usage

arinf(object)

Arguments

object An object of class "Arima'

Value

"

A vector of AR coefficients

Author(s)

Rob J Hyndman

Examples

Not Run

fitness_ts

fitness_ts Fitness function for time series generation.

Description

Fitness function for time series generation.

Usage
fitness_ts(
pars,
features,
seasonal,
n =120,
freq = 12,
target,
nComp,
selected. features
)
Arguments
pars Parameters
features Time series features.
seasonal Seasonal effects.
n Length of time series
freq Frequence of time series
target Target time series features
nComp No. of components used in mixture models.

selected. features
Selected features.

Value

NA

Examples

Not Run

ga_ts

ga_ts

A revised version of genetic algorithms (R package ‘GA°) to allow for
time series generation.

Description

A revised version of genetic algorithms (R package ‘GA‘) to allow for time series generation.

Usage
ga_ts(
type

L

min,
max,

nBits,
population
selection
crossover
mutation
popSize = 50,

c("binary"”, "real-valued”, "permutation"),
fitness,

gaControl(type)$population,
gaControl (type)$selection,
gaControl (type)$crossover,
gaControl(type)$mutation,

pcrossover = 0.8,

pmutation
elitism

0.1,
base: :max(1, round(popSize * 0.05)),

updatePop = FALSE,

postFitness

NULL,

maxiter = 100,

run

maxFitness
names
suggestions
optim
optimArgs

maxiter,
Inf,

NULL,

FALSE,
list(method = "L-BFGS-B", poptim = 0.05, pressel = 0.5, control =

list(fnscale = -1, maxit = 100)),
keepBest = FALSE,
parallel = FALSE,

monitor = if (interactive()) { if (shiny::is.RStudio()) gaMonitor
else FALSE } else { FALSE 3,
seed = NULL
)
Arguments
type the type of genetic algorithm to be run depending on the nature of decision

variables.

ga_ts

fitness

min

max

nBits
population
selection

crossover
mutation
popSize
pcrossover
pmutation
elitism
updatePop
postFitness
maxiter

run

maxFitness
names
suggestions
optim

optimArgs
keepBest

parallel

monitor

seed

the fitness function, any allowable R function which takes as input an individual
string representing a potential solution, and returns a numerical value describing
its “fitness*

additional arguments to be passed to the fitness function.
Length of the time series to be generated.

a vector of length equal to the decision variables providing the lower bounds of
the search space in case of real-valued or permutation encoded optimizations.

a vector of length equal to the decision variables providing the upper bounds of
the search space in case of real-valued or permutation encoded optimizations.

a value specifying the number of bits to be used in binary encoded optimizations.
an R function for randomly generating an initial population.

an R function performing selection, i.e. a function which generates a new pop-
ulation of individuals from the current population probabilistically according to
individual fitness.

an R function performing crossover, i.e. a function which forms offsprings by
combining part of the genetic information from their parents.

an R function performing mutation, i.e. a function which randomly alters the
values of some genes in a parent chromosome.

the population size.

the probability of crossover between pairs of chromosomes.

the probability of mutation in a parent chromosome.

the number of best fitness individuals to survive at each generation.

If set at TRUE the first attribute attached to the value returned by the user-defined
fitness function is used to update the population.

a user-defined function which, if provided, receives the current ga-class object
as input, performs post fitness-evaluation steps, then returns an updated version
of the object which is used to update the GA search.

the maximum number of iterations to run before the GA search is halted.

the number of consecutive generations without any improvement in the best
fitness value before the GA is stopped.

the upper bound on the fitness function after that the GA search is interrupted.
a vector of character strings providing the names of decision variables.
a matrix of solutions strings to be included in the initial population.

a logical defaulting to FALSE determining whether or not a local search using
general-purpose optimisation algorithms should be used.

a list controlling the local search algorithm.

a logical argument specifying if best solutions at each iteration should be saved
in a slot called bestSol.

An optional argument which allows to specify if the Genetic Algorithm should
be run sequentially or in parallel.

a logical or an R function which takes as input the current state of the ga-class
object and show the evolution of the search.

an integer value containing the random number generator state.

6 generate_msts

Value

An object of class ‘ga-class’.

Examples
Not Run
generate_msts Generate mutiple seasonal time series from random parameter spaces
of the mixture autoregressive (MAR) models.
Description

Generate mutiple seasonal time series from random parameter spaces of the mixture autoregressive
(MAR) models.

Usage

generate_msts(seasonal.periods = c(7, 365), n = 800, nComp = NULL)

Arguments

seasonal.periods
a vector of seasonal periods of the time series to be generated.

n length of the generated time series.
nComp number of mixing components when simulating time series using MAR models.
Value

a time series with multiple seasonal periods.

Examples

x <- generate_msts(seasonal.periods = c(7, 365), n = 800, nComp = 2)
forecast: :autoplot(x)

generate_ts 7

generate_ts Generate time series from random parameter spaces of the mixture
autoregressive (MAR) models.

Description

Generate time series from random parameter spaces of the mixture autoregressive (MAR) models.

Usage

generate_ts(n.ts = 1, freq = 1, nComp = NULL, n = 120)

Arguments
n.ts number of time series to be generated.
freq seasonal period of the time series to be generated.
nComp number of mixing components when simulating time series using MAR models.
n length of the generated time series.
Value

A list of time series together with the SARIMA coefficients used in each mixing component and
the corresponding mixing weights.

Author(s)

Yanfei Kang and Feng Li

References

Wong, CS & WK Li (2000).

Examples

X <- generate_ts(n.ts = 2, freq = 12, nComp = 2, n = 120)
x$N1$pars
forecast: :autoplot (x$N1$x)

8 generate_ts_with_target

generate_ts_with_target
Generating time series with controllable features.

Description

Generating time series with controllable features.

Usage
generate_ts_with_target(
n y
ts.length,
freq,
seasonal,
features,
selected. features,
target,
parallel = TRUE
)
Arguments
n number of time series to be generated.
ts.length length of the time series to be generated
freq frequency of the time series to be generated
seasonal 0 for non-seasonal data, 1 for single-seasonal data, and 2 for multiple seasonal
data.
features a vector of function names.

selected. features
selected features to be controlled.

target target feature values.

parallel An optional argument which allows to specify if the Genetic Algorithm should
be run sequentially or in parallel.

Value

A time-series object of class "ts" or "msts".

Author(s)

Yanfei Kang

nsdiffs1

Examples
library(tsfeatures)
x <- generate_ts_with_target(n = 1, ts.length = 60, freq = 1, seasonal = 0,
features = c('entropy', 'stl_features'), selected.features = c('entropy', 'trend'),

target=c(0.6, 0.9), parallel=FALSE)
forecast::autoplot(x)

nsdiffsi Set the number of seasonal differences for yearly data to be -1.

Description

Set the number of seasonal differences for yearly data to be -1.

Usage
nsdiffs1(x)

Arguments

X Univariate time series or numerical vector

Value

A numerical scalar value

Examples

Not Run

pi_coefficients Compute pi coefficients of an AR process from SARIMA coefficients.

Description

Convert SARIMA coefficients to pi coefficients of an AR process.

Usage

pi_coefficients(
ar = 0,

sar = 0,
D = oL,
sma = 0,
m= 1L,
tol = 1e-07

10 rlnorm2

Arguments

ar AR coefficients in the SARIMA model.

d number of differences in the SARIMA model.

ma MA coefficients in the SARIMA model.

sar seasonal AR coefficients in the SARIMA model.

D number of seasonal differences in the SARIMA model.

sma seasonal MA coefficients in the SARIMA model.

m seasonal period in the SARIMA model.

tol tolerance value used. Only return up to last element greater than tolerance.
Value

A vector of AR coefficients.

Author(s)
Rob J Hyndman

Examples

Not Run

rlnorm2 Log-normal distribution with alternative parametrization.

Description

Alternative parametrization of log normal distribution.

Usage

rlnorm2(n, mean, sd)

Arguments
n number of observations.
mean "vector" the mean value of the log-normal distribution.
sd "vector" the variance of the log-normal distribution.
Details

See help("rlnorm") for the details for the log-normal distribution.

Value

See the corresponding help for the usual log-normal functions.

rmixnorm

Author(s)

Feng Li, Department of Statistics, Stockholm University, Sweden.

References

Li Villani Kohn 2010.

11

rmixnorm Generate random variables from mixture normal distribution.

Description

Random variables from mixture of normals.

Usage

rmixnorm(n, means, sigmas, weights)

Arguments
n "integer", numbers of samples to be generated.
means "g-by-k matrix" mean value within each component, total k components.
sigmas "g-by-q-by-k" variance covariance matrix with in each component.
weights "k-length vector" weights in each component.

Value
"matrix".

Author(s)

Feng Li, Central University of Finance and Economics.

References

Villani et al 2009.

Examples

n <- 1000

means <- matrix(c(-5, @, 5), 1)

sigmas <- array(c(1, 1, 1), c(1, 1, 3))
weights <- ¢(0.3, 0.4, 0.3)

out <- rmixnorm(n, means, sigmas, weights)
hist(out, breaks = 100, freq = FALSE)

12

rmixnorm_ts

rmixnorm_ts Simulate AR type random variables from mixture of normal

Description

This function simulates random samples from a finite mixture of Gaussian distribution where the
mean from each components are AR(p) process.

Usage

rmixnorm_ts(n, means.ar.par.list, sigmas.list, weights, yinit = @)

Arguments

n number of samples.
means.ar.par.list

parameters in AR(p) within each mixing compoment.

sigmas.list variance list.

weights weight in each list.

yinit initial values.
Value

vector of n follows a mixture distribution.

Author(s)

Feng Li, Central University of Finance and Economics.

References

Li 2010 JSPI.

Examples

n = 1000

means.ar.par.list = list(c(0, 0.8), c(@, 0.6, 0.3))

require("”fGarch")
sigmas.spec <- list(garchSpec(model =
garchSpec(model =

list(alpha
list(alpha

c(0.05, 0.06)), cond.dist
c(0.05, 0.05)), cond.dist

sigmas.list <- lapply(lapply(sigmas.spec, garchSim, extended = TRUE, n = n),

function(x) x$sigma)
weights <- c(0.8, 0.2)

"norm"),
"norm"))

y = rmixnorm_ts(n = n, means.ar.par.list = means.ar.par.list, sigmas.list = sigmas.list,

weights = weights)
plot(y)

run_gratis_app

13

run_gratis_app Web Application to generate time series with controllable features.

Description

Web Application to generate time series with controllable features.

Usage

run_gratis_app()
app_gratis()

Examples

Not Run

tsgeneration Time Series Generation

Description

The tsgeneration package generates time series data based on MAR models.

Index

app_gratis (run_gratis_app), 13
arinf, 2

fitness_ts, 3

ga_ts, 4

generate_msts, 6
generate_ts, 7
generate_ts_with_target, 8

nsdiffs1,9
pi_coefficients, 9

rlnorm2, 10
rmixnorm, 11
rmixnorm_ts, 12
run_gratis_app, 13

tsgeneration, 13

14

	arinf
	fitness_ts
	ga_ts
	generate_msts
	generate_ts
	generate_ts_with_target
	nsdiffs1
	pi_coefficients
	rlnorm2
	rmixnorm
	rmixnorm_ts
	run_gratis_app
	tsgeneration
	Index

