
Package ‘graph4lg’
July 22, 2020

Type Package

Title Build Graphs for Landscape Genetics Analysis

Version 1.0.0

Author Paul Savary

Maintainer Paul Savary <savarypaul660@gmail.com>

Description Build graphs for landscape genetics analysis. This set of
functions can be used to import and convert spatial and genetic data
initially in different formats, import landscape graphs created with
'GRAPHAB' software (Foltete et al., 2012) <doi:10.1016/j.envsoft.2012.07.002>,
make diagnosis plots of isolation by distance relationships in order to
choose how to build genetic graphs, create graphs with a large range of
pruning methods, weight their links with several genetic distances, plot
and analyse graphs,compare them with other graphs. It uses functions from
other packages such as 'adegenet'
(Jombart, 2008) <doi:10.1093/bioinformatics/btn129> and 'igraph' (Csardi
et Nepusz, 2006) <https://bit.ly/35a3V3H>. It also implements methods
commonly used in landscape genetics to create graphs, described by Dyer et
Nason (2004) <doi:10.1111/j.1365-294X.2004.02177.x> and Greenbaum et
Fefferman (2017) <doi:10.1111/mec.14059>, and to analyse distance data
(van Strien et al., 2015) <doi:10.1038/hdy.2014.62>.

Depends R(>= 3.1.0)

License GPL-2

Encoding UTF-8

LazyData true

Imports stringr, adegenet, stats, spatstat, Matrix, vegan, utils,
methods, pegas, MASS, igraph, ggplot2, tidyr, sp, sf,
diveRsity, rappdirs, gdistance, raster, foreign, ecodist

RdMacros Rdpack

RoxygenNote 7.1.1

Suggests knitr, rmarkdown, Rdpack

VignetteBuilder knitr

NeedsCompilation no

1

2 R topics documented:

Repository CRAN

Date/Publication 2020-07-22 07:10:02 UTC

R topics documented:
add_nodes_attr . 3
compute_graph_modul . 4
compute_node_metric . 6
convert_cd . 7
data_ex_genind . 9
data_ex_gstud . 9
data_ex_loci . 10
data_simul_genind . 11
data_tuto . 11
df_to_pw_mat . 12
dist_max_corr . 13
genepop_to_genind . 15
genind_to_genepop . 17
gen_graph_indep . 18
gen_graph_thr . 21
gen_graph_topo . 22
get_graphab . 24
get_graphab_linkset . 25
get_graphab_metric . 26
graphab_graph . 27
graphab_link . 28
graphab_metric . 30
graphab_modul . 33
graphab_pointset . 35
graphab_project . 36
graphab_to_igraph . 37
graph_modul_compar . 39
graph_node_compar . 42
graph_plan . 44
graph_plot_compar . 45
graph_topo_compar . 46
graph_to_df . 48
graph_to_shp . 49
gstud_to_genind . 50
g_percol . 51
kernel_param . 52
loci_to_genind . 53
mat_cost_dist . 53
mat_gen_dist . 55
mat_geo_dist . 57
plot_graph_lg . 59
plot_w_hist . 61

add_nodes_attr 3

pop_gen_index . 62
pts_pop_ex . 63
pts_pop_simul . 63
pw_mat_to_df . 64
reorder_mat . 65
scatter_dist . 66
scatter_dist_g . 67
structure_to_genind . 69

Index 71

add_nodes_attr Add attributes to the nodes of a graph

Description

The function adds attributes to the nodes of a graph from either an object of class data.frame or
from a shapefile layer. The node IDs in the input objects must be the same as in the graph object.

Usage

add_nodes_attr(
graph,
input = "df",
data,
dir_path = NULL,
layer = NULL,
index = "Id",
include = "all"

)

Arguments

graph A graph object of class igraph.

input A character string indicating the nature of the input data from which come the
attributes to add to the nodes.

• If ’input = "shp"’, then attributes come from the attribute table of a shapefile
layer of type point.

• If ’input = "df"’, then attributes come from an object of class data.frame

In both cases, input attribute table or dataframe must have a column with the
exact same values as the node IDs.

data (only if ’input = "df"’) The name of the object of class data.frame with the
attributes to add to the nodes.

dir_path (only if ’input = "shp"’) The path (character string) to the directory containing
the shapefile layer of type point whose attribute table contains the attributes to
add to the nodes.

4 compute_graph_modul

layer (only if ’input = "shp"’) The name (character string) of the shapefile layer of
type point (without extension, ex.: "nodes" refers to "nodes.shp" layer) whose
attribute table contains the attributes to add to the nodes.

index The name (character string) of the column with the nodes names in the input
data (column of the attribute table or of the dataframe).

include A character string (vector) indicating which columns of the input data will be
added as nodes’ attributes. By default, ’include = "all"’, i.e. every column of the
input data is added. Alternatively, ’include’ can be a vector with the names of
the columns to add (ex.: "c(’x’, ’y’, ’pop_name’)").

Details

The graph can be created with the function graphab_to_igraph by importing output from Graphab
projects. Values of the metrics computed at the node level with Graphab can then be added to such
a graph with this function.

Value

A graph object of class igraph

Author(s)

P. Savary

Examples

data("data_tuto")
graph <- data_tuto[[3]]
df_nodes <- data.frame(Id = igraph::V(graph)$name,

Area = runif(50, min = 10, max = 60))
graph <- add_nodes_attr(graph,

data = df_nodes,
input = "df",
index = "Id",
include = "Area")

compute_graph_modul Compute modules from a graph by maximising modularity

Description

The function computes modules from a graph by maximising modularity.

compute_graph_modul 5

Usage

compute_graph_modul(
graph,
algo = "fast_greedy",
node_inter = NULL,
nb_modul = NULL

)

Arguments

graph An object of class igraph. Its nodes must have names.

algo A character string indicating the algorithm used to create the modules with
igraph.

• If algo = 'fast_greedy' (default), function cluster_fast_greedy from
igraph is used (Clauset et al., 2004).

• If algo = 'walktrap', function cluster_walktrap from igraph is used
(Pons et Latapy, 2006) with 4 steps (default options).

• If algo = 'louvain', function cluster_louvain from igraph is used (Blon-
del et al., 2008). In that case, the number of modules created in each graph
is imposed.

• If algo = 'optimal', function cluster_optimal from igraph is used (Bran-
des et al., 2008) (can be very long). In that case, the number of modules
created in each graph is imposed.

node_inter (optional, default = NULL) A character string indicating whether the links of
the graph are weighted by distances or by similarity indices. It is only used to
compute the modularity index. It can be:

• ’distance’: Link weights correspond to distances. Nodes that are close to
each other will more likely be in the same module.

• ’similarity’: Link weights correspond to similarity indices. Nodes that are
similar to each other will more likely be in the same module. Inverse link
weights are then used to compute the modularity index.

nb_modul (optional , default = NULL) A numeric or integer value indicating the number
of modules in the graph. When this number is not specified, the optimal value is
retained.

Value

A data.frame with the node names and the corresponding module ID.

Author(s)

P. Savary

Examples

data("data_tuto")
mat_gen <- data_tuto[[1]]

6 compute_node_metric

graph <- gen_graph_thr(mat_w = mat_gen, mat_thr = mat_gen,
thr = 0.8)

res_mod <- compute_graph_modul(graph = graph,
algo = "fast_greedy",
node_inter = "distance")

compute_node_metric Compute graph-theoretic metrics from a graph at the node level

Description

The function computes graph-theoretic metric values at the node level.

Usage

compute_node_metric(
graph,
metrics = c("deg", "close", "btw", "str", "siw", "miw"),
weight = TRUE

)

Arguments

graph An object of class igraph. Its nodes must have names.

metrics Character vector specifying the graph-theoretic metrics computed at the node-
level in the graphs Graph-theoretic metrics can be:

• Degree (metrics = c("deg",...))
• Closeness centrality index (metrics = c("close",...))
• Betweenness centrality index (metrics = c("btw",...))
• Strength (sum of the weights of the links connected to a node) (metrics =
c("str",...))

• Sum of the inverse weights of the links connected to a node (metrics =
c("siw",...), default)

• Mean of the inverse weights of the links connected to a node (metrics =
c("miw",...))

By default, the vector metrics includes all these metrics.

weight Logical which indicates whether the links are weighted during the calculation
of the centrality indices betweenness and closeness. (default: weight = TRUE).
Link weights are interpreted as distances when computing the shortest paths.
They should then be inversely proportional to the strength of the relationship
between nodes (e.g. to fluxes).

Value

A data.frame with the node names and the metrics computed.

convert_cd 7

Author(s)

P. Savary

Examples

data(data_ex_genind)
mat_gen <- mat_gen_dist(x = data_ex_genind, dist = "DPS")
graph <- gen_graph_thr(mat_w = mat_gen, mat_thr = mat_gen,

thr = 0.8)
res_met <- compute_node_metric(graph)

convert_cd Fit a model to convert cost-distances into Euclidean distances

Description

The function fits a model to convert cost-distances into Euclidean distances as implemented in
Graphab software.

Usage

convert_cd(
mat_euc,
mat_ld,
to_convert,
method = "log-log",
fig = TRUE,
line_col = "black",
pts_col = "#999999"

)

Arguments

mat_euc A symmetric matrix or dist object with pairwise geographical Euclidean dis-
tances between populations or sample sites. It will be the explanatory variable,
and only values from the off diagonal lower triangle will be used.

mat_ld A symmetric matrix or dist object with pairwise landscape distances between
populations or sample sites. These distances can be cost-distances or resistance
distances, among others. It will be the explained variable, and only values from
the off diagonal lower triangle will be used.

to_convert A numeric value or numeric vector with Euclidean distances to convert into
cost-distances.

method A character string indicating the method used to fit the model.

• If ’method = "log-log"’ (default), then the model takes the following form :
log(ld) ~ A + B * log(euc)

8 convert_cd

• If ’method = "lm"’, then the model takes the following form : ld ~ A + B *
euc

fig Logical (default = TRUE) indicating whether a figure is plotted

line_col (if ’fig = TRUE’) Character string indicating the color used to plot the line (de-
fault: "blue"). It must be a hexadecimal color code or a color used by default in
R.

pts_col (if ’fig = TRUE’) Character string indicating the color used to plot the points
(default: "#999999"). It must be a hexadecimal color code or a color used by
default in R.

Details

IDs in ’mat_euc’ and ’mat_ld’ must be the same and refer to the same sampling site or populations,
and both matrices must be ordered in the same way. Matrix of Euclidean distance ’mat_euc’ can
be computed using the function mat_geo_dist. Matrix of landscape distance ’mat_ld’ can be
computed using the function mat_cost_dist. Before the log calculation, 0 distance values are
converted into 1, so that they are 0 after this calculation.

Value

A list of output (converted values, estimated parameters, R2) and optionally a ggplot2 object to plot

Author(s)

P. Savary

References

FoltÃªte J, Clauzel C, Vuidel G (2012). “A software tool dedicated to the modelling of landscape
networks.” Environmental Modelling \& Software, 38, 316–327.

Examples

data("data_tuto")
mat_ld <- data_tuto[[2]][1:10, 1:10] * 1000
mat_euc <- data_tuto[[1]][1:10, 1:10] * 50000
to_convert <- c(30000, 40000)
res <- convert_cd(mat_euc = mat_euc,

mat_ld = mat_ld,
to_convert = to_convert, fig = FALSE)

data_ex_genind 9

data_ex_genind data_ex_genind genetic dataset

Description

Genetic dataset from genetic simulation on CDPOP 200 individuals, 10 populations 20 microsatel-
lite loci (3 digits coding) 100 generations simulated

Usage

data_ex_genind

Format

An object of type ’genind’

Details

The simulation was made with CDPOP during 100 generations. Dispersal was possible between
the 10 populations. Its probability depended on the cost distance between populations, calculated
on a simulated resistance surface (raster). Mutations were not possible. There were initially 600
alleles in total (many disappeared because of drift). Population stayed constant with a sex-ratio of
1. Generations did not overlap. This simulation includes a part of stochasticity and these data result
from only 1 simulation run.

References

Landguth EL, Cushman S (2010). “CDPOP: a spatially explicit cost distance population genetics
program.” Molecular Ecology Resources, 10(1), 156–161.

Examples

data("data_ex_genind")
length(unique(data_ex_genind@pop))

data_ex_gstud data_ex_gstud genetic dataset

Description

Genetic dataset from genetic simulation on CDPOP 200 individuals, 10 populations 20 microsatel-
lite loci (3 digits coding) 100 generations simulated

Usage

data_ex_gstud

10 data_ex_loci

Format

A ’data.frame’ with columns:

ID Individual ID

POP Population name

LOCI-1 to LOCI-20 20 loci columns with microsatellite data with 3 digits coding, alleles sepa-
rated by ":", and blank missing data (class ’locus’ from gstudio)

Examples

data("data_ex_gstud")
str(data_ex_gstud)
length(unique(data_ex_gstud$POP))

data_ex_loci data_ex_loci genetic dataset

Description

Genetic dataset from genetic simulation on CDPOP 200 individuals, 10 populations 20 microsatel-
lite loci (3 digits coding) 100 generations simulated

Usage

data_ex_loci

Format

An object of class ’loci’ and ’data.frame’ with the columns :

population Population name

Other columns 20 loci columns with microsatellite data with 3 digits coding, alleles separated by
"/", and missing data noted "NA/NA"

Row names correspond to individuals’ ID

Examples

data("data_ex_loci")
length(unique(data_ex_loci$population))

data_simul_genind 11

data_simul_genind data_simul_genind genetic dataset

Description

Genetic dataset from genetic simulation on CDPOP 1500 individuals, 50 populations 20 microsatel-
lite loci (3 digits coding) 50 generations simulated

Usage

data_simul_genind

Format

An object of type ’genind’

Details

The simulation was made with CDPOP during 50 generations. Dispersal was possible between
the 50 populations. Its probability depended on the cost distance between populations, calculated
on a simulated resistance surface (raster). Mutations were not possible. There were initially 600
alleles in total (many disappeared because of drift). Population stayed constant with a sex-ratio of
1. Generations did not overlap. This simulation includes a part of stochasticity and these data result
from only 1 simulation run.

References

Landguth EL, Cushman S (2010). “CDPOP: a spatially explicit cost distance population genetics
program.” Molecular Ecology Resources, 10(1), 156–161.

Examples

data("data_simul_genind")
length(unique(data_simul_genind@pop))

data_tuto data_tuto : data used to generate the vignette

Description

Data used to generate the vignette

Data used to generate the vignette

12 df_to_pw_mat

Usage

data_tuto

data_tuto

Format

Several outputs or inputs to show how the package works in a list

mat_dps Genetic distance matrix example

mat_pg Second genetic distance matrix example

graph_ci Genetic independence graph example

dmc Output of the function ’dist_max_corr’

land_graph Landscape graph example

mat_ld Landscape distance matrix example

Several outputs or inputs to show how the package works in a list

dmc Output of the function ’dist_max_corr’

graph_ci Genetic independence graph example

mat_dps Genetic distance matrix example

mat_pg Second genetic distance matrix example

Examples

data("data_tuto")
mat_dps <- data_tuto[[1]]
str(mat_dps)
data("data_tuto")
mat_dps <- data_tuto[[1]]
str(mat_dps)

df_to_pw_mat Convert an edge-list data.frame into a pairwise matrix

Description

The function converts an edge-list data.frame into a symmetric pairwise matrix

Usage

df_to_pw_mat(data, from, to, value)

dist_max_corr 13

Arguments

data An object of class data.frame

from A character string indicating the name of the column with the ID of the origins

to A character string indicating the name of the column with the ID of the arrivals

value A character string indicating the name of the column with the values correspond-
ing to each pair

Details

The matrix is a symmetric matrix. Be careful, you shall not provide a data.frame with different
values corresponding to the pair 1-2 and 2-1 as an example. Ideally, for a complete matrix, data
should have n(n-1)/2 rows if values are computed between n objects.

Value

A pairwise matrix

Author(s)

P. Savary

Examples

data(pts_pop_simul)
suppressWarnings(mat_geo <- mat_geo_dist(pts_pop_simul,

ID = "ID",
x = "x",

y = "y"))
g <- gen_graph_topo(mat_w = mat_geo,

mat_topo = mat_geo,
topo = "comp")

df <- data.frame(igraph::as_edgelist(g))
df$w <- igraph::E(g)$weight
df_to_pw_mat(df, from = "X1", to = "X2", value = "w")

dist_max_corr Compute the distance at which the correlation between genetic dis-
tance and landscape distance is maximal

Description

The function enables to compute the distance at which the correlation between genetic distance and
landscape distance is maximal, using a method similar to that employed by van Strien et al. (2015).
Iteratively, distance threshold values are tested. For each value, all the population pairs separated by
a landscape distance larger than the threshold are removed before the Mantel correlation coefficient
between genetic distance and landscape distance is computed. The distance threshold at which the
correlation is the strongest is then identified. A figure showing the evolution of the correlation
coefficients when landscape distance threshold increases is plotted.

14 dist_max_corr

Usage

dist_max_corr(
mat_gd,
mat_ld,
interv,
from = NULL,
to = NULL,
fig = TRUE,
thr_gd = NULL,
line_col = "black",
pts_col = "#999999"

)

Arguments

mat_gd A symmetric matrix or dist object with pairwise genetic distances between
populations or sample sites.

mat_ld A symmetric matrix or dist object with pairwise landscape distances between
populations or sample sites. These distances can be Euclidean distances, cost-
distances or resistance distances, among others.

interv A numeric or integer value indicating the interval between the different distance
thresholds for which the correlation coefficients are computed.

from (optional) The minimum distance threshold value at which the correlation coef-
ficient is computed.

to (optional) The maximum distance threshold value at which the correlation coef-
ficient is computed.

fig Logical (default = TRUE) indicating whether a figure is plotted.

thr_gd (optional) A numeric or integer value used to remove genetic distance values
from the data before the calculation. All genetic distances values above ’thr_gd’
are removed from the data. This parameter can be used especially when there
are outliers.

line_col (optional, if fig = TRUE) A character string indicating the color used to plot the
line (default: "blue"). It must be a hexadecimal color code or a color used by
default in R.

pts_col (optional, if fig = TRUE) A character string indicating the color used to plot the
points (default: "#999999"). It must be a hexadecimal color code or a color used
by default in R.

Details

IDs in ’mat_gd’ and ’mat_ld’ must be the same and refer to the same sampling sites or populations,
and both matrices must be ordered in the same way. The correlation coefficient between genetic
distance and landscape distance computed is a Mantel correlation coefficient. If there are less
than 50 pairwise values, the correlation is not computed, as in van Strien et al. (2015). Such a
method can be subject to criticism from a strict statistical point of view given correlation coefficients
computed from samples of different size are compared. The matrix of genetic distance ’mat_gd’

genepop_to_genind 15

can be computed using mat_gen_dist. The matrix of landscape distance ’mat_ld’ can be computed
using mat_geo_dist when the landscape distance needed is a Euclidean geographical distance.
Mantel correlation coefficients are computed using the function mantel.

Value

A list of objects:

• The distance at which the correlation is the highest.

• The vector of correlation coefficients at the different distance thresholds

• The vector of the different distance thresholds

• A ggplot2 object to plot

Author(s)

P. Savary

References

Van Strien MJ, Holderegger R, Van Heck HJ (2015). “Isolation-by-distance in landscapes: consid-
erations for landscape genetics.” Heredity, 114(1), 27.

Examples

data("data_tuto")
mat_gen <- data_tuto[[1]]
mat_dist <- data_tuto[[2]]*1000
res_dmc <- dist_max_corr(mat_gd = mat_gen,

mat_ld = mat_dist,
from = 32000, to = 42000,
interv = 5000,
fig = FALSE)

genepop_to_genind Convert a GENEPOP file into a genind object

Description

The function converts a text file in the format used by GENEPOP software into a genind object

Usage

genepop_to_genind(path, n.loci, pop_names = NULL, allele.digit.coding = 3)

16 genepop_to_genind

Arguments

path A character string with the path leading to the GENEPOP file in format .txt, or
alternatively the name of this file in the working directory.

n.loci The number of loci in the GENEPOP file (integer or numeric).

pop_names (optional) Populations’ names in the same order as in the GENEPOP file. Vec-
tor object (class character) of the same length as the number of populations.
Without this parameter, populations are numbered from 1 to the number of pop-
ulations.

allele.digit.coding

Number indicating whether alleles are coded with 3 (default) or 2 digits.

Details

This function uses functions from pegas package. GENEPOP file should can include microsatellites
loci or SNPs with allele names of length 2 or 3 (noted as 01, 02, 03 or 04 for SNPs). The loci line(s)
must not start with a spacing.

Value

An object of type genind.

Author(s)

P. Savary

References

Raymond M (1995). “GENEPOP: Population genetics software for exact tests and ecumenism.
Vers. 1.2.” Journal of Heredity, 86, 248–249.

See Also

For more details about GENEPOP file formatting : http://genepop.curtin.edu.au/help_input.
html#Input For the opposite conversion, see genind_to_genepop. The output file can be used to
compute pairwise FST matrix with mat_pw_fst

Examples

path_in <- system.file('extdata', 'gpop_simul_10_g100_04_20.txt',
package = 'graph4lg')

file_n <- file.path(tempdir(), "gpop_simul_10_g100_04_20.txt")
file.copy(path_in, file_n, overwrite = TRUE)
genepop_to_genind(path = file_n, n.loci = 20,

pop_names = as.character(order(as.character(1:10))))
file.remove(file_n)

http://genepop.curtin.edu.au/help_input.html#Input
http://genepop.curtin.edu.au/help_input.html#Input

genind_to_genepop 17

genind_to_genepop Convert a genind object into a GENEPOP file

Description

The function converts an object of class genind into a GENEPOP file. It then allows to use the
functionalities of the GENEPOP software and its derived package GENEPOP on R, as well as
some functions from other packages (differentiation test, F-stats calculations, HWE test,...). It is
designed to be used with diploid microsatellite data with alleles coded with 2 or 3 digits or SNPs
genind objects.

Usage

genind_to_genepop(x, output = "data.frame")

Arguments

x An object of class genind from package adegenet.
output A character string indicating the option used to select what the function will

return:
• If output = "data.frame"(default), then the function will return an object

’x’ of class data.frame ready to be saved as a text file with the following
command: write.table(x,file = "file_name.txt",quote=FALSE,row.names=FALSE,col.names=FALSE)

• If output = "path_to_file/file_name.txt", then the function will write
a text file named ’file_name.txt’ in the directory corresponding to ’path_to_file’.
Without ’path_to_file’, the text file is written in the current working direc-
tory. The text file has the format required by GENEPOP software.

Value

An object of type data.frame if ouput = "data.frame". If output is the path and/or the file name
of a text file, then nothing is returned in R environment but a text file is created with the specified
file name, either in the current working directory or in the specified folder.

Warning

Confusion: Do not confound this function with genind2genpop from adegenet. The latter
converts an object of class genind into an object of class genpop, whereas genind_to_genepop
converts an object of class genind into a text file compatible with GENEPOP software (Rousset,
2008).

Allele coding: This function can handle genetic data with different allele coding: 2 or 3 digit
coding for microsatellite data or 2 digit coding for SNPs (A,C,T,G become respectively 01, 02,
03, 04).

Individuals order: When individuals in input data are not ordered by populations, individuals
from the same population can be separated by individuals from other populations. It can be prob-
lematic when calculating then pairwise distance matrices. Therefore, in such a case, individuals
are ordered by populations and populations ordered in alphabetic order.

18 gen_graph_indep

Author(s)

P. Savary

References

Raymond M (1995). “GENEPOP: Population genetics software for exact tests and ecumenism.
Vers. 1.2.” Journal of Heredity, 86, 248–249.

See Also

For more details about GENEPOP file formatting : http://genepop.curtin.edu.au/help_input.
html#Input. For the opposite conversion, see genepop_to_genind. The output file can be used to
compute pairwise FST matrix with mat_pw_fst

Examples

data(data_ex_genind)
x <- data_ex_genind
df_genepop <- suppressWarnings(genind_to_genepop(x,

output = "data.frame"))

gen_graph_indep Create an independence graph of genetic differentiation from genetic
data of class genind

Description

The function allows to create genetic graphs from genetic data by applying the conditional inde-
pendence principle. Populations whose allelic frequencies covary significantly once the covariance
with the other populations has been taken into account are linked on the graphs.

Usage

gen_graph_indep(
x,
dist = "basic",
cov = "sq",
pcor = "magwene",
alpha = 0.05,
test = "EED",
adj = "none",
output = "igraph"

)

http://genepop.curtin.edu.au/help_input.html#Input
http://genepop.curtin.edu.au/help_input.html#Input

gen_graph_indep 19

Arguments

x An object of class genind that contains the multilocus genotype (format ’locus’)
of the individuals as well as their population and their geographical coordinates.

dist A character string indicating the method used to compute the multilocus genetic
distance between populations

• If ’dist = ’basic” (default), then the multilocus genetic distance is computed
using a Euclidean genetic distance formula (Excoffier et al., 1992)

• If ’dist = ’weight”, then the multilocus genetic distance is computed as in
Fortuna et al. (2009). It is a Euclidean genetic distance giving more weight
to rare alleles

• If ’dist = ’PG”, then the multilocus genetic distance is computed as in pop-
graph::popgraph function, following several steps of PCA and SVD (Dyer
et Nason, 2004).

• If ’dist = ’PCA”, then the genetic distance is computed following a PCA
of the matrix of allelic frequencies by population. It is a Euclidean genetic
distance between populations in the multidimensional space defined by all
the independent principal components.

cov A character string indicating the formula used to compute the covariance matrix
from the distance matrix

• If ’cov = ’sq” (default), then the covariance matrix is calculated from the
matrix of squared distances as in Everitt et Hothorn (2011)

• If ’cov = ’dist”, then the covariance matrix is calculated from the matrix of
distances as in Dyer et Nason (2004) and popgraph function

pcor A character string indicating the way the partial correlation matrix is computed
from the covariance matrix.

• If ’pcor = ’magwene”, the steps followed are the same as in Magwene
(2001) and in popgraph::popgraph function. It is the recommended option
as it meets mathematical requirements.

• If ’pcor = ’other”, the steps followed are the same as used by Fortuna et al.
(2009). They are not consistent with the approach of Magwene (2001).

alpha A numeric value corresponding to the statistical tolerance threshold used to test
the difference from 0 of the partial correlation coefficients. By default, ’al-
pha=0.05’.

test A character string indicating the method used to test the significance of the par-
tial correlation coefficients.

• If ’test = ’EED” (default), then the Edge Exclusion Deviance criterion is
used (Whittaker, 2009). Although other methods exist, this is the most
common and thus the only one implemented here.

adj A character string indicating the way of adjusting p-values to assess the signifi-
cance of the p-values

• If ’adj = ’none” (default), there is no p-value adjustment correction
• If ’adj = ’holm”, p-values are adjusted using the sequential Bonferroni cor-

rection (Holm, 1979)

20 gen_graph_indep

• If ’adj = ’bonferroni”, p-values are adjusted using the classic Bonferroni
correction

• If ’adj = ’BH”, p-values are adjusted using Benjamini et Hochberg (1995)
correction controlling false discovery rate

output A character string indicating the matrices included in the output list.

• If ’output = ’all” (default), then D (distance matrix), C (covariance matrix),
Rho (partial correlation matrix), M (graph incidence matrix) and S (strength
matrix) are included

• If ’output = ’dist_graph”, then the distance matrix D is returned only with
the values corresponding to the graph edges

• If ’output = ’str_graph”, then the strength values matrix S is returned only
with the values corresponding to the graph edges

• If ’output = ’inc”, then the binary adjacency matrix M is returned
• If ’output = ’igraph”, then a graph of class igraph is returned

Details

The function allows to vary many parameters such as the genetic distance used, the formula used to
compute the covariance, the statistical tolerance threshold, the p-values adjustment, among others.

Value

A list of objects of class matrix, an object of class matrix or a graph object of class igraph

Author(s)

P. Savary

References

Dyer RJ, Nason JD (2004). “Population graphs: the graph theoretic shape of genetic structure.”
Molecular ecology, 13(7), 1713–1727. Benjamini Y, Hochberg Y (1995). “Controlling the false
discovery rate: a practical and powerful approach to multiple testing.” Journal of the royal statis-
tical society. Series B (Methodological), 289–300. Bowcock AM, Ruiz-Linares A, Tomfohrde J,
Minch E, Kidd JR, Cavalli-Sforza LL (1994). “High resolution of human evolutionary trees with
polymorphic microsatellites.” nature, 368(6470), 455–457. Everitt B, Hothorn T (2011). An in-
troduction to applied multivariate analysis with R. Springer Science \& Business Media. Excoffier
L, Smouse PE, Quattro JM (1992). “Analysis of molecular variance inferred from metric distances
among DNA haplotypes: application to human mitochondrial DNA restriction data.” Genetics,
131(2), 479–491. Fortuna MA, Albaladejo RG, FernÃ¡ndez L, Aparicio A, Bascompte J (2009).
“Networks of spatial genetic variation across species.” Proceedings of the National Academy of
Sciences, 106(45), 19044–19049. Holm S (1979). “A simple sequentially rejective multiple test
procedure.” Scandinavian journal of statistics, 65–70. Magwene PM (2001). “New tools for study-
ing integration and modularity.” Evolution, 55(9), 1734–1745. Wermuth N, Scheidt E (1977).
“Algorithm AS 105: fitting a covariance selection model to a matrix.” Journal of the Royal Statis-
tical Society. Series C (Applied Statistics), 26(1), 88–92. Whittaker J (2009). Graphical models in
applied multivariate statistics. Wiley Publishing.

gen_graph_thr 21

Examples

data(data_ex_genind)
dist_graph_test <- gen_graph_indep(x = data_ex_genind, dist = "basic",

cov = "sq", pcor = "magwene",
alpha = 0.05, test = "EED",
adj = "none", output = "igraph")

gen_graph_thr Create a graph of genetic differentiation using a link weight threshold

Description

The function allows to construct a genetic graph whose links’ weights are larger or lower than a
specific threshold

Usage

gen_graph_thr(mat_w, mat_thr = NULL, thr, mode = "larger")

Arguments

mat_w A symmetric (pairwise) matrix or a dist object whose elements will be the
links’ weights

mat_thr (optional) A symmetric (pairwise) distance matrix or a dist object whose val-
ues will be used for the pruning based on the threshold value.

thr The threshold value (logically between min(mat_thr) and max(mat_thr))(integer
or numeric)

mode • If ’mode = ’larger” (default), all the links whose weight is larger than ’thr’
are removed.

• If ’mode = ’lower”, all the links whose weight is lower than ’thr’ are re-
moved.

Details

If ’mat_thr’ is not defined, ’mat_w’ is used for the pruning. Matrices ’mat_w’ and ’mat_thr’ must
have the same dimensions and the same rows’ and columns’ names. Values in ’mat_thr’ matrix
must be positive. Negative values from ’mat_w’ are transformed into zeros. The function works
only for undirected graphs. If dist objects are specified, it is assumed that colnames and row.names
of mat_w and mat_thr refer to the same populations/locations.

Value

A graph object of class igraph

Author(s)

P. Savary

22 gen_graph_topo

Examples

mat_w <- mat_gen_dist(x = data_ex_genind, dist = 'DPS')
suppressWarnings(mat_thr <- mat_geo_dist(pts_pop_ex,

ID = "ID",
x = "x",

y = "y"))
mat_thr <- mat_thr[row.names(mat_w), colnames(mat_w)]
graph <- gen_graph_thr(mat_w, mat_thr, thr = 6000, mode = "larger")

gen_graph_topo Create a graph of genetic differentiation with a specific topology

Description

The function constructs a genetic graph with a specific topology from genetic and/or geographical
distance matrices

Usage

gen_graph_topo(mat_w, mat_topo = NULL, topo = "gabriel", k = NULL)

Arguments

mat_w A symmetric (pairwise) matrix or a dist object whose elements will be the
links’ weights

mat_topo (optional) A symmetric (pairwise) distance matrix or a dist object whose val-
ues will be used for the pruning method.

topo Which topology does the created graph have?

• If ’topo = ’gabriel” (default), the resulting graph will be a Gabriel graph
(Gabriel et al., 1969). It means that there is a link between nodes x and y if
and only if d2xy ≤ min(

√
d2xz + d2yz), with z any other node of the graph.

• If ’topo = ’mst”, the resulting graph will have the topology of a minimum
spanning tree. It means that the graph will not include any cycle (tree) and
it will be the subgraph with a tree topology with the minimum total links’
weight (based on ’mat_topo’ values).

• If ’topo = ’percol”, if the link of the resulting graph with the minimum
weight is removed, then the graph breaks into two components.

• If ’topo = ’comp”, a complete graph whose links are weighted with values
from ’mat_w’ is created.

• If ’topo = ’knn”, a k-nearest neighbor graph whose links are weighted with
values from ’mat_w’ is created. If the distance between node i and node
j is among the k-th smallest distances between node i and the other nodes
according to distances in matrix ’mat_topo’, then there is a link between i
and j in the resulting graph. Therefore, a node can be connected to more
than two nodes because the nearest node to node j is not necessarily among

gen_graph_topo 23

the k nearest neighbors to node i. Let d1 be the smallest distance from node
i to other nodes, if there are k nodes or more at this distance from node i,
they are all connected to i. If there are less than k nodes connected to i at
a distance d1, then we consider nodes at a distance d2 from i. In the latter
case, all the nodes at a distance d2 from i are connected to i.

k (if ’topo = ’knn”) An integer which indicates the number of nearest neighbors
considered to create the K-nearest neighbor graph. k must be lower than the
total number of nodes minus 1.

Details

If ’mat_topo’ is not defined, ’mat_w’ is used for the pruning. Matrices ’mat_w’ and ’mat_topo’
must have the same dimensions and the same rows’ and columns’ names. Values in ’mat_topo’
matrix must be positive. Negative values from ’mat_w’ are transformed into zeros. The function
works only for undirected graphs. Note that the topology ’knn’ works best when ’mat_topo’ con-
tains distance values from a continuous value range, thereby avoiding equal distances between a
node and the others. are more than k nodes located at distances in the k-th smallest distances If dist
objects are specified, it is assumed that colnames and row.names of mat_w and mat_topo refer to
the same populations/locations.

Value

A graph object of class igraph

Author(s)

P. Savary

References

Gabriel KR, Sokal RR (1969). “A new statistical approach to geographic variation analysis.” Sys-
tematic zoology, 18(3), 259–278.

Examples

mat_w <- mat_gen_dist(x = data_ex_genind, dist = 'DPS')
suppressWarnings(mat_topo <- mat_geo_dist(pts_pop_ex,

ID = "ID",
x = "x",

y = "y"))
mat_topo <- mat_topo[row.names(mat_w), colnames(mat_w)]
graph <- gen_graph_topo(mat_w, mat_topo, topo = "mst")

24 get_graphab

get_graphab Download Graphab if not present on the user’s machine

Description

The function checks for the presence of Graphab (.jar) on the user’s machine and downloads it if
absent. It also checks that users have installed java on their machine.

Usage

get_graphab(res = TRUE, return = FALSE)

Arguments

res Logical indicating whether a message says if Graphab has been downloaded or
not.

return Logical indicating whether the function returns a 1 or a 0 to indicate if Graphab
has been downloaded or not.

Details

If the download does not work, you can create a directory named ’graph4lg_jar’ in the directory
rappdirs::user_data_dir() and copy Graphab software downloaded from https://thema.
univ-fcomte.fr/productions/download.php?name=graphab&version=2.4&username=Graph4lg&
institution=R

Value

If res = TRUE, the function displays a message indicating to users what has been done. If return =
TRUE, it returns a 0 if Graphab is already on the machine and a 1 if it has been downloaded.

Author(s)

P. Savary

Examples

Not run:
get_graphab()

End(Not run)

https://thema.univ-fcomte.fr/productions/download.php?name=graphab&version=2.4&username=Graph4lg&institution=R
https://thema.univ-fcomte.fr/productions/download.php?name=graphab&version=2.4&username=Graph4lg&institution=R
https://thema.univ-fcomte.fr/productions/download.php?name=graphab&version=2.4&username=Graph4lg&institution=R

get_graphab_linkset 25

get_graphab_linkset Get linkset computed in the Graphab project

Description

The function gets a linkset computed in the Graphab project

Usage

get_graphab_linkset(proj_name, linkset, proj_path = NULL)

Arguments

proj_name A character string indicating the Graphab project name. The project name is
also the name of the project directory in which the file proj_name.xml is.

linkset A character string indicating the name of the link set whose properties are im-
ported. The link set has been created with Graphab or using graphab_link
function.

proj_path (optional) A character string indicating the path to the directory that contains
the project directory. It should be used when the project directory is not in the
current working directory. Default is NULL. When ’proj_path = NULL’, the
project directory is equal to getwd().

Details

See more information in Graphab 2.4 manual: https://sourcesup.renater.fr/www/graphab/
download/manual-2.4-en.pdf. This function works if link{get_graphab} function works cor-
rectly.

Value

A data.frame with the link properties (from, to, cost-distance, Euclidean distance)

Author(s)

P. Savary

Examples

Not run:
get_graphab_linkset(proj_name = "grphb_ex",

linkset = "lkst1")

End(Not run)

https://sourcesup.renater.fr/www/graphab/download/manual-2.4-en.pdf
https://sourcesup.renater.fr/www/graphab/download/manual-2.4-en.pdf

26 get_graphab_metric

get_graphab_metric Get metrics computed at the node in the Graphab project

Description

The function gets the metrics computed at the node-level in the Graphab project

Usage

get_graphab_metric(proj_name, proj_path = NULL)

Arguments

proj_name A character string indicating the Graphab project name. The project name is
also the name of the project directory in which the file proj_name.xml is.

proj_path (optional) A character string indicating the path to the directory that contains
the project directory. It should be used when the project directory is not in the
current working directory. Default is NULL. When ’proj_path = NULL’, the
project directory is equal to getwd().

Details

The imported metrics describe the patches and have been computed from the different graphs cre-
ated in the Graphab project. See more information in Graphab 2.4 manual: https://sourcesup.
renater.fr/www/graphab/download/manual-2.4-en.pdf

Value

A data.frame with metrics computed at the patch level.

Author(s)

P. Savary

Examples

Not run:
get_graphab_metric(proj_name = "grphb_ex")

End(Not run)

https://sourcesup.renater.fr/www/graphab/download/manual-2.4-en.pdf
https://sourcesup.renater.fr/www/graphab/download/manual-2.4-en.pdf

graphab_graph 27

graphab_graph Create a graph in the Graphab project

Description

The function creates a graph from a link set in a Graphab project

Usage

graphab_graph(
proj_name,
linkset = NULL,
name = NULL,
thr = NULL,
cost_conv = FALSE,
proj_path = NULL,
alloc_ram = NULL

)

Arguments

proj_name A character string indicating the Graphab project name. The project name is
also the name of the project directory in which the file proj_name.xml is. It can
be created with graphab_project

linkset (optional, default=NULL) A character string indicating the name of the link set
used to create the graph. If linkset=NULL, every link set present in the project
will be used to create a graph. Link sets can be created with graphab_link.

name (optional, default=NULL) A character string indicating the name of the graph
created. If name=NULL, a name will be created. If both linkset=NULL and
name=NULL, then a graph will be created for every link set present in the project
and a name will be created every time. In the latter case, a unique name cannot
be specified. Link sets can be created with graphab_link.

thr (optional, default=NULL) An integer or numeric value indicating the maximum
distance associated with the links of the created graph. It allows users to create
a pruned graph based on a distance threshold. Note that when the link set used
has a planar topology, the graph is necessarily a pruned graph (not complete)
and adding this threshold parameter can remove other links. When the link set
has been created with cost-distances, the parameter is expressed in cost-distance
units whereas when the link set is based upon Euclidean distances, the parameter
is expressed in meters.

cost_conv FALSE (default) or TRUE. Logical indicating whether numeric thr values are
converted from cost-distance into Euclidean distance using a log-log linear re-
gression. See also convert_cd function.

proj_path (optional) A character string indicating the path to the directory that contains
the project directory. It should be used when the project directory is not in the

28 graphab_link

current working directory. Default is NULL. When ’proj_path = NULL’, the
project directory is equal to getwd().

alloc_ram (optional, default = NULL) Integer or numeric value indicating RAM gigabytes
allocated to the java process. Increasing this value can speed up the computa-
tions. Too large values may not be compatible with your machine settings.

Details

By default, intra-patch distances are considered for metric calculation. See more information
in Graphab 2.4 manual: https://sourcesup.renater.fr/www/graphab/download/manual-2.
4-en.pdf

Author(s)

P. Savary

Examples

Not run:
graphab_graph(proj_name = "grphb_ex",

linkset = "lcp",
name = "graph")

End(Not run)

graphab_link Create a link set in the Graphab project

Description

The function creates a link set between habitat patches in the Graphab project.

Usage

graphab_link(
proj_name,
distance = "cost",
name,
cost = NULL,
topo = "planar",
proj_path = NULL,
alloc_ram = NULL

)

https://sourcesup.renater.fr/www/graphab/download/manual-2.4-en.pdf
https://sourcesup.renater.fr/www/graphab/download/manual-2.4-en.pdf

graphab_link 29

Arguments

proj_name A character string indicating the Graphab project name. The project name is
also the name of the project directory in which the file proj_name.xml is. It can
be created with graphab_project

distance A character string indicating whether links between patches are computed based
on:

• Shortest cost distances: distance='cost' (default)

• Straight Euclidean distances: distance='euclid'

In the resulting link set, each link will be associated with its corresponding cost-
distance and the length of the least-cost path in meters (if distance='cost') or
with its length in Euclidean distance (if distance='euclid')

name A character string indicating the name of the created linkset.

cost A data.frame indicating the cost values associated to each raster cell value.
These values refer to the raster used to create the project with graphab_project.
The data.frame must have two columns:

• ’code’: raster cell values

• ’cost’: corresponding cost values

topo A character string indicating the topology of the created link set. It can be:

• Planar (topo='planar' (default)): a planar set of links is created. It speeds
up the computation but will prevent from creating complete graphs with
graphab_graph.

• Complete (topo='complete'): a complete set of links is created. A link is
computed between every pair of patches.

proj_path (optional) A character string indicating the path to the directory that contains
the project directory. It should be used when the project directory is not in the
current working directory. Default is NULL. When ’proj_path = NULL’, the
project directory is equal to getwd().

alloc_ram (optional, default = NULL) Integer or numeric value indicating RAM gigabytes
allocated to the java process. Increasing this value can speed up the computa-
tions. Too large values may not be compatible with your machine settings.

Details

By default, links crossing patches are not ignored nor broken into two links. For example, a link
from patches A to C crossing patch B is created. It takes into account the distance inside patch
B. It can be a problem when computing BC index. See more information in Graphab 2.4 manual:
https://sourcesup.renater.fr/www/graphab/download/manual-2.4-en.pdf

Author(s)

P. Savary

https://sourcesup.renater.fr/www/graphab/download/manual-2.4-en.pdf

30 graphab_metric

Examples

Not run:
df_cost <- data.frame(code = 1:5,

cost = c(1, 10, 100, 1000, 1))
graphab_link(proj_name = "grphb_ex",

distance = "cost",
name = "lcp",
cost = df_cost,
topo = "complete")

End(Not run)

graphab_metric Compute connectivity metrics from a graph in the Graphab project

Description

The function computes connectivity metrics on a graph from a link set in a Graphab project

Usage

graphab_metric(
proj_name,
graph,
metric,
dist = NULL,
prob = 0.05,
beta = 1,
cost_conv = FALSE,
return_val = TRUE,
proj_path = NULL,
alloc_ram = NULL

)

Arguments

proj_name A character string indicating the Graphab project name. The project name is
also the name of the project directory in which the file proj_name.xml is.

graph A character string indicating the name of the graph on which the metric is com-
puted. This graph has been created with Graphab or using graphab_graph
function and is associated with a link set. Only the links present in the graph
and their corresponding weights will be used in the computation, together with
patch areas.

metric A character string indicating the metric which will be computed on the graph.
This metric can be:

• A global metric:

graphab_metric 31

– Probability of Connectivity (metric = 'PC'): Sum of products of area
of all pairs of patches weighted by their interaction probability, divided
by the square of the area of the study zone. This ratio is the equivalent
to the probability that two points randomly placed in the study area are
connected.

– Integral Index of Connectivity (metric = 'IIC'): For the entire graph:
product of patch areas divided by the number of links between them,
the sum is divided by the square of the area of the study zone. IIC is
built like the PC index but using the inverse of a topological distance
rather than a negative exponential function of the distance based on the
link weight.

• A local metric:
– Flux (metric = 'F'): For the focal patch i : sum of area of patches

other than i and weighted according to their minimum distance to the
focal patch through the graph. This sum is an indicator of the potential
dispersion from the patch i or, conversely to the patch i

– Betweenness Centrality index (metric = 'BC'): Sum of the shortest
paths through the focal patch i, each path is weighted by the product
of the areas of the patches connected and of their interaction probabil-
ity. All possible paths between every pair of patches is considered in
this computation.

– Interaction Flux (metric = 'IF'): Sum of products of the focal patch
area with all the other patches, weighted by their interaction probabil-
ity.

– Degree (metric = 'Dg'): Number of edges connected to the node i i.e.
number of patches connected directly to the patch i.

– Closeness Centrality index (metric = 'CCe'): Mean distance from the
patch i to all other patches of its component k.

– Current Flux (metric = 'CF'): Sum of currents passing through the
patch i. cji represents the current through the patch i when currents are
sent from all patches (except j) to the patch j. The patch j is connected
to the ground.

• A delta metric:
– delta Probability of Connectivity (metric = 'dPC'): Rate of variation

between the value of PC index and the value of PC’ corresponding to
the removal of the patch i. The value of dPC is decomposed into three
parts:

* dPCarea is the variation induced by the area lost after removal;

* dPCflux is the variation induced by the loss of interaction between
the patch i and other patches;

* dPCconnector is the variation induced by the modification of paths
connecting other patches and initially routed through i.

For most metrics, the interaction probability is computed for each pair of patches
from the path that minimizes the distance d (or the cost) between them. It then
maximizes e−αdij for patches i and j. To use patch capacity values different
from the patch area, please use directly Graphab software.

32 graphab_metric

dist A numeric or integer value specifying the distance at which dispersal probability
is equal to prob. This argument is mandatory for weighted metrics (PC, F, IF,
BC, dPC, CCe, CF) but not used for others. It is used to set α for computing dis-
persal probabilities associated with all inter-patch distances such that dispersal
probability between patches i and j is pij = e−αdij .

prob A numeric or integer value specifying the dispersal probability at distance dist.
By default, code=0.05. It is used to set α (see param dist above).

beta A numeric or integer value between 0 and 1 specifying the exponent associated
with patch areas in the computation of metrics weighted by patch area. By
default, beta=1. When beta=0, patch areas do not have any influence in the
computation.

cost_conv FALSE (default) or TRUE. Logical indicating whether numeric dist values are
converted from cost-distance into Euclidean distance using a log-log linear re-
gression. See also convert_cd function.

return_val Logical (default = TRUE) indicating whether metric values are returned in R
(TRUE) or only stored in the patch attribute layer (FALSE)

proj_path (optional) A character string indicating the path to the directory that contains
the project directory. It should be used when the project directory is not in the
current working directory. Default is NULL. When ’proj_path = NULL’, the
project directory is equal to getwd().

alloc_ram (optional, default = NULL) Integer or numeric value indicating RAM gigabytes
allocated to the java process. Increasing this value can speed up the computa-
tions. Too large values may not be compatible with your machine settings.

Details

The metrics are described in Graphab 2.4 manual: https://sourcesup.renater.fr/www/graphab/
download/manual-2.4-en.pdf Graphab software makes possible the computation of other met-
rics.

Value

If return_val=TRUE, the function returns a data.frame with the computed metric values and the
corresponding patch ID when the metric is local or delta metric, or the numeric value of the global
metric.

Author(s)

P. Savary

Examples

Not run:
graphab_metric(proj_name = "grphb_ex",

graph = "graph",
metric = "PC",
dist = 1000,
prob = 0.05,

https://sourcesup.renater.fr/www/graphab/download/manual-2.4-en.pdf
https://sourcesup.renater.fr/www/graphab/download/manual-2.4-en.pdf

graphab_modul 33

beta = 1)

End(Not run)

graphab_modul Create modules from a graph in the Graphab project

Description

The function creates modules from a graph by maximising modularity

Usage

graphab_modul(
proj_name,
graph,
dist,
prob = 0.05,
beta = 1,
nb = NULL,
return = TRUE,
proj_path = NULL,
alloc_ram = NULL

)

Arguments

proj_name A character string indicating the Graphab project name. The project name is
also the name of the project directory in which the file proj_name.xml is.

graph A character string indicating the name of the graph on which the modular-
ity index is computed. This graph has been created with Graphab or using
graphab_graph function and is associated with a link set. Only the links present
in the graph and their corresponding weights will be used in the computation,
together with patch areas.

dist A numeric or integer value specifying the distance at which dispersal probability
is equal to prob. This argument is mandatory for weighted metrics (PC, F, IF,
BC, dPC, CCe, CF) but not used for others. It is used to set α for computing dis-
persal probabilities associated with all inter-patch distances such that dispersal
probability between patches i and j is pij = e−αdij .

prob A numeric or integer value specifying the dispersal probability at distance dist.
By default, code=0.05. It is used to set α (see param dist above).

beta A numeric or integer value between 0 and 1 specifying the exponent associated
with patch areas in the computation of metrics weighted by patch area. By
default, beta=1. When beta=0, patch areas do not have any influence in the
computation.

34 graphab_modul

nb (optional, default=NULL) An integer or numeric value indicating the number of
modules to be created. By default, it is the number that maximises the modular-
ity index.

return Logical (default=TRUE) indicating whether results are returned to user.

proj_path (optional) A character string indicating the path to the directory that contains
the project directory. It should be used when the project directory is not in the
current working directory. Default is NULL. When ’proj_path = NULL’, the
project directory is equal to getwd().

alloc_ram (optional, default = NULL) Integer or numeric value indicating RAM gigabytes
allocated to the java process. Increasing this value can speed up the computa-
tions. Too large values may not be compatible with your machine settings.

Details

This function maximises a modularity index by searching for the node partition involves a large
number of links within modules and a small number of inter-module links. Each link is given a
weight in the computation, such as the weight wij of the link between patches i and j is:

wij = (aiaj)
βe−αdij

. This function does not allow users to convert automatically Euclidean distances into cost-distances.
See more information in Graphab 2.4 manual: https://sourcesup.renater.fr/www/graphab/
download/manual-2.4-en.pdf

Value

If return=TRUE, the function returns a message indicating whether the partition has been done.
New options are being developed.

Author(s)

P. Savary

Examples

Not run:
graphab_modul(proj_name = "grphb_ex",

graph = "graph",
dist = 1000,
prob = 0.05,
beta = 1)

End(Not run)

https://sourcesup.renater.fr/www/graphab/download/manual-2.4-en.pdf
https://sourcesup.renater.fr/www/graphab/download/manual-2.4-en.pdf

graphab_pointset 35

graphab_pointset Add a point set to the Graphab project

Description

The function adds a spatial point set to the Graphab project, allowing users to identify closest habitat
patch from each point and get corresponding connectivity metrics.

Usage

graphab_pointset(
proj_name,
linkset,
pointset,
return_val = TRUE,
proj_path = NULL,
alloc_ram = NULL

)

Arguments

proj_name A character string indicating the Graphab project name. The project name is
also the name of the project directory in which the file proj_name.xml is.

linkset A character string indicating the name of the link set used. The link set is here
used to get the defined cost values and compute the distance from the point to
the patches. Link sets can be created with graphab_link.

pointset Can be either;

• A character string indicating the path (absolute or relative) to a shapefile
point layer

• A character string indicating the path to a .csv file with three columns: ID,
x and y, respectively indicating the point ID, longitude and latitude

• A data.frame with three columns: ID, x and y, respectively indicating the
point ID, longitude and latitude.

• A SpatialPointsDataFrame

return_val Logical (default=TRUE) indicating whether the metrics associated with closest
habitat patches from the points are returned to users.

proj_path (optional) A character string indicating the path to the directory that contains
the project directory. It should be used when the project directory is not in the
current working directory. Default is NULL. When ’proj_path = NULL’, the
project directory is equal to getwd().

alloc_ram (optional, default = NULL) Integer or numeric value indicating RAM gigabytes
allocated to the java process. Increasing this value can speed up the computa-
tions. Too large values may not be compatible with your machine settings.

36 graphab_project

Details

Point coordinates must be in the same coordinate reference system as the habitat patches (and initial
raster layer). See more information in Graphab 2.4 manual: https://sourcesup.renater.fr/
www/graphab/download/manual-2.4-en.pdf

Value

If return_val=TRUE, the function returns a data.frame with the properties of the nearest patch to
every point in the point set, as well as the distance from each point to the nearest patch.

Author(s)

P. Savary

Examples

Not run:
graphab_pointset(proj_name = "grphb_ex",

graph = "graph",
pointset = "pts.shp")

End(Not run)

graphab_project Create a Graphab project

Description

The function creates a Graphab project from a raster file on which habitat patches can be delimited.

Usage

graphab_project(
proj_name,
raster,
habitat,
minarea = 0,
nodata = NULL,
alloc_ram = NULL,
proj_path = NULL

)

Arguments

proj_name A character string indicating the Graphab project name. The project name is
also the name of the project directory in which the file proj_name.xml will be
created.

https://sourcesup.renater.fr/www/graphab/download/manual-2.4-en.pdf
https://sourcesup.renater.fr/www/graphab/download/manual-2.4-en.pdf

graphab_to_igraph 37

raster A character string indicating the name of the .tif raster file or of its path. If the
path is not specified, the raster must present in the current working directory.
Raster cell values must be in INT2S encoding.

habitat An integer or numeric value or vector indicating the code.s (cell value.s) of the
habitat cells in the raster file.

minarea (optional, default=0) An integer or numeric value specifiying the minimum area
in hectares for a habitat patch size to become a graph node.

nodata (optional, default=NULL) An integer or numeric value specifying the code in
the raster file associated with nodata value (often corresponding to peripheric
cells)

alloc_ram (optional, default = NULL) Integer or numeric value indicating RAM gigabytes
allocated to the java process. Increasing this value can speed up the computa-
tions. Too large values may not be compatible with your machine settings.

proj_path (optional) A character string indicating the path to the directory that contains
the project directory. It should be used when the project directory is not in the
current working directory. Default is NULL. When ’proj_path = NULL’, the
project directory is equal to getwd().

Details

A habitat patch consists of the central pixel with its eight neighbors if they are of the same value (8-
connexity) and the path geometry is not simplified. See more information in Graphab 2.4 manual:
https://sourcesup.renater.fr/www/graphab/download/manual-2.4-en.pdf

Author(s)

P. Savary

Examples

Not run:
proj_name <- "grphb_ex"
raster <- "rast_ex.tif"
habitat <- 5
graphab_project(proj_name = proj_name,

raster = raster,
habitat = habitat)

End(Not run)

graphab_to_igraph Create landscape graphs from Graphab link set

https://sourcesup.renater.fr/www/graphab/download/manual-2.4-en.pdf

38 graphab_to_igraph

Description

The function creates a landscape graph from a link set created with Graphab software or different
functions of this package and converts it into a graph object of class igraph. The graph has weighted
links and is undirected. Nodes attributes present in the Graphab project are included, including
connectivity metrics when computed

Usage

graphab_to_igraph(
proj_name,
linkset,
nodes = "patches",
weight = "cost",
proj_path = NULL,
fig = FALSE,
crds = FALSE

)

Arguments

proj_name A character string indicating the project name. It is also the name of the directory
in which proj_name.xml file is found. By default, ’proj_name’ is searched into
the current working directory

linkset A character string indicating the name of the linkset used to create the graph
links. The linkset must have been created previously (see the function graphab_link).
It can be complete or planar. The graph is given the topology of the selected link
set.

nodes A character string indicating whether the nodes of the created graph are given all
the attributes or metrics computed in Graphab or only those specific to a given
graph previously created with graphab_graph It can be:

• nodes = "patches"(default): all the attributes and metrics of the habitat
patches are included as node attributes in igraph object.

• nodes = "graph_name"(default): only the metrics of the habitat patches
computed from the graph ’graph_name’ created with graphab_graph are
included as node attributes in igraph object, along with some basic patch
attributes.

weight A character string ("euclid" or "cost") indicating whether to weight the links
with Euclidean distance or cost-distance (default) values.

proj_path (optional) A character string indicating the path to the directory that contains
the project directory (’proj_name’). By default, ’proj_name’ is searched into
the current working directory

fig Logical (default = FALSE) indicating whether to plot a figure of the resulting
spatial graph. The figure is plotted using function plot_graph_lg. The plotting
can be long if the graph has many nodes and links.

crds Logical (default = FALSE) indicating whether to create an object of class data.frame
with the node centroid spatial coordinates. Such a data.frame has 3 columns:
’ID’, ’x’, ’y’.

graph_modul_compar 39

Value

A graph object of class igraph (if crds = FALSE) or a list of objects: a graph object of class igraph
and a data.frame with the nodes spatial coordinates (if crds = TRUE).

Author(s)

P. Savary

References

FoltÃªte J, Clauzel C, Vuidel G (2012). “A software tool dedicated to the modelling of landscape
networks.” Environmental Modelling \& Software, 38, 316–327.

Examples

Not run:
proj_path <- system.file('extdata',package='graph4lg')
proj_name <- "grphb_ex"
linkset <- "lkst1"
nodes <- "graph"
graph <- graphab_to_igraph(proj_name = proj_name,

linkset = "lkst1",
nodes = "graph",
links = links,
weights = "cost",
proj_path = proj_path,
crds = FALSE,
fig = FALSE)

End(Not run)

graph_modul_compar Compare the partition into modules of two graphs

Description

The function computes the Adjusted Rand Index (ARI) to compare two graphs’ partitions into
modules or clusters more generally. Both graphs must have the same number of nodes, but not
necessarily the same number of links. They must also have the same node names and in the same
order.

Usage

graph_modul_compar(
x,
y,
mode = "graph",
nb_modul = NULL,

40 graph_modul_compar

algo = "fast_greedy",
node_inter = "distance",
data = NULL

)

Arguments

x The first graph object

• If mode = 'graph' (default), x is a graph object of class igraph. Then, its
nodes must have the same names as in graph y.

• If mode = 'data.frame', x refers to a column of the data.frame ’data’.
Then x must be a character string indicating the name of the column of
’data’ with the modules’ labels of the nodes in the first graph. In that case,
the column can be of class numeric, character or factor but will be
converted into a numeric vector in any case.

• If mode = 'vector', x is a vector of class character, factor or numeric.
In that case, it must have the same length as vector y and will be converted
into a numeric vector.

y The second graph object Same classes possible as for x. Must be of the same
format as x

mode A character string indicating whether x and y are igraph objects, vectors or
columns from a data.frame. mode can be ’graph’, ’data.frame’ or ’vector’.

nb_modul (if x and y are igraph objects) A numeric or integer value or a numeric vector
with 2 elements indicating the number of modules to create in both graphs.

• If nb_modul is a numeric value, then the same number of modules are cre-
ated in both graphs.

• If nb_modul is a numeric vector of length 2, then the numbers of modules
created in graphs x and y are the first and second elements of nb_modul,
respectively.

algo (if x and y are igraph objects) A character string indicating the algorithm used
to create the modules with igraph.

• If algo = 'fast_greedy' (default), function cluster_fast_greedy from
igraph is used (Clauset et al., 2004).

• If algo = 'walktrap' (default), function cluster_walktrap from igraph
is used (Pons et Latapy, 2006) with 4 steps (default options).

• If algo = 'louvain', function cluster_louvain from igraph is used (Blon-
del et al., 2008). In that case, the number of modules created in each graph
is imposed.

• If algo = 'optimal', function cluster_optimal from igraph is used (Bran-
des et al., 2008) (can be very long). In that case, the number of modules
created in each graph is imposed.

node_inter (optional, if x and y are igraph objects, default is ’none’) A character string indi-
cating whether the links of the graph are weighted by distances or by similarity
indices. It is only used to compute the modularity index. It can be:

• ’distance’: Link weights correspond to distances. Nodes that are close to
each other will more likely be in the same module.

graph_modul_compar 41

• ’similarity’: Link weights correspond to similarity indices. Nodes that are
similar to each other will more likely be in the same module. Inverse link
weights are then used to compute the modularity index.

• ’none’: Links are not weighted for the computation, which is only based on
graph topology.

Two different weightings can be used to create the modules of the two graphs.
• If node_inter is a character string, then the same link weighting is used

for both graphs.
• If node_inter is a character vector of length 2, then the link weighting

used by the algorithm to create the modules of graphs x and y is determined
by the first and second elements of node_inter, respectively.

data (if x and y are columns from a data.frame) An object of class data.frame with at
least two columns and as many rows as there are nodes in the graphs compared.
The columns indicate the modules of each node in 2 different classifications.

Details

This index takes values between -1 and 1. It measures how often pairs of nodes pertaining to the
same module in one graph also pertain to the same module in the other graph. Therefore, large
values indicate that both partitions are similar. The Rand Index can be defined as the frequency of
agreement between two classifications into discrete classes. It is the number of times a pair of ele-
ments are classified into the same class or in two different classes in both compared classifications,
divided by the total number of possible pairs of elements. The Rand Index is between 0 and 1 but
its maximum value depends on the number of elements. Thus, another ’adjusted’ index was cre-
ated, the Adjusted Rand Index. According to the Hubert et Arabie’s formula, the ARI is computed
as follows: ARI = Index−Expectedindex

Maximumindex−Expectedindex where the values of Index, Expected index and
Maximum index are computed from a contingency table. This function uses adjustedRandIndex
from package mclust which applies the Hubert and Arabie’s formula for the ARI. This function
works for undirected graphs only.

Value

The value of the ARI

Author(s)

P. Savary

References

Dyer RJ, Nason JD (2004). “Population graphs: the graph theoretic shape of genetic structure.”
Molecular ecology, 13(7), 1713–1727. Hubert L, Arabie P (1985). “Comparing partitions.” Journal
of classification, 2(1), 193–218. Clauset A, Newman ME, Moore C (2004). “Finding community
structure in very large networks.” Physical review E, 70(6). Blondel VD, Guillaume J, Lambiotte
R, Lefebvre E (2008). “Fast unfolding of communities in large networks.” Journal of Statistical
Mechanics - Theory and Experiment, 10. Brandes U, Delling D, Gaertler M, Gorke R, Hoefer M,
Nikoloski Z, Wagner D (2008). “On modularity clustering.” IEEE transactions on knowledge and
data engineering, 20(2), 172–188. Pons P, Latapy M (2006). “Computing communities in large
networks using random walks.” J. Graph Algorithms Appl., 10(2), 191–218.

42 graph_node_compar

Examples

data(data_ex_genind)
data(pts_pop_ex)
mat_dist <- suppressWarnings(graph4lg::mat_geo_dist(data=pts_pop_ex,

ID = "ID",
x = "x",
y = "y"))

mat_dist <- mat_dist[order(as.character(row.names(mat_dist))),
order(as.character(colnames(mat_dist)))]

graph_obs <- gen_graph_thr(mat_w = mat_dist, mat_thr = mat_dist,
thr = 24000, mode = "larger")

mat_gen <- mat_gen_dist(x = data_ex_genind, dist = "DPS")
graph_pred <- gen_graph_topo(mat_w = mat_gen, mat_topo = mat_dist,

topo = "gabriel")
ARI <- graph_modul_compar(x = graph_obs, y = graph_pred)

graph_node_compar Compare the local properties of the nodes from two graphs

Description

The function computes a correlation coefficient between the graph-theoretic metric values computed
at the node-level in two graphs sharing the same nodes. It allows to assess whether the connectivity
properties of the nodes in one graph are similar to that of the same nodes in the other graph. Alter-
natively, the correlation is computed between a graph-theoretic metric values and the values of an
attribute associated to the nodes of a graph.

Usage

graph_node_compar(
x,
y,
metrics = c("siw", "siw"),
method = "spearman",
weight = TRUE,
test = TRUE

)

Arguments

x An object of class igraph. Its nodes must have the same names as in graph y.

y An object of class igraph. Its nodes must have the same names as in graph x.

metrics Two-element character vector specifying the graph-theoretic metrics computed
at the node-level in the graphs or the node attribute values to be correlated to
these metrics. Graph-theoretic metrics can be:

• Degree (metrics = c("deg",...))
• Closeness centrality index (metrics = c("close",...))

graph_node_compar 43

• Betweenness centrality index (metrics = c("btw",...))
• Strength (sum of the weights of the links connected to a node) (metrics =
c("str",...))

• Sum of the inverse weights of the links connected to a node (metrics =
c("siw",...), default)

• Mean of the inverse weights of the links connected to a node (metrics =
c("miw",...))

Node attributes must have the same names as in the igraph object, and must
refer to an attribute with numerical values. The vector metrics is composed
of two character values. When a node attribute has the same name as a metric
computable from the graph, node attributes are given priority.

method A character string indicating which correlation coefficient is to be computed
("pearson", "kendall" or "spearman" (default)).

weight Logical which indicates whether the links are weighted during the calculation
of the centrality indices betweenness and closeness. (default: weight = TRUE).
Link weights are interpreted as distances when computing the shortest paths.
They should then be inversely proportional to the strength of the relationship
between nodes (e.g. to fluxes).

test Logical. Should significance testing be performed? (default = TRUE)

Details

The correlation coefficients between the metrics can be computed in different ways, as initial as-
sumptions (e.g. linear relationship) are rarely verified. Pearson’s r, Spearman’s rho and Kendall’s
tau can be computed (from function cor). When x is similar to y, then the correlation is computed
between two metrics characterizing the nodes of the same graph.

Value

A list summarizing the correlation analysis.

Author(s)

P. Savary

Examples

data(data_ex_genind)
data(pts_pop_ex)
mat_dist <- suppressWarnings(graph4lg::mat_geo_dist(data = pts_pop_ex,

ID = "ID",
x = "x",
y = "y"))

mat_dist <- mat_dist[order(as.character(row.names(mat_dist))),
order(as.character(colnames(mat_dist)))]

graph_obs <- gen_graph_thr(mat_w = mat_dist, mat_thr = mat_dist,
thr = 9500, mode = "larger")

mat_gen <- mat_gen_dist(x = data_ex_genind, dist = "DPS")
graph_pred <- gen_graph_topo(mat_w = mat_gen, mat_topo = mat_dist,

44 graph_plan

topo = "gabriel")
res_cor <- graph_node_compar(x = graph_obs, y = graph_pred,

metrics = c("siw", "siw"), method = "spearman",
test = TRUE, weight = TRUE)

graph_plan Create a graph with a minimum planar graph topology

Description

The function constructs a graph with a minimum planar graph topology

Usage

graph_plan(crds, ID = NULL, x = NULL, y = NULL, weight = TRUE)

Arguments

crds A data.frame with the spatial coordinates of the point set (the graph nodes). It
must have three columns:

• ID: A character string indicating the name of the points(graph nodes).
• x: A numeric or integer indicating the longitude of the graph nodes.
• y: A numeric or integer indicating the latitude of the graph nodes.

ID A character string indicating the name of the column of crds with the point IDs

x A character string indicating the name of the column of crds with the point
longitude

y A character string indicating the name of the column of crds with the point
latitude

weight A character string indicating whether the links of the graph are weighted by
Euclidean distances (TRUE)(default) or not (FALSE). When the graph links do
not have weights in Euclidean distances, each link is given a weight of 1.

Details

A delaunay triangulation is performed in order to get the planar graph.

Value

A planar graph of class igraph

Author(s)

P. Savary

graph_plot_compar 45

Examples

data(pts_pop_ex)
g_plan <- graph_plan(crds = pts_pop_ex,

ID = "ID",
x = "x",
y = "y")

graph_plot_compar Visualize the topological differences between two spatial graphs on a
map

Description

The function enables to compare two spatial graphs by plotting them highlighting the topological
similarities and differences between them. Both graphs should share the same nodes and cannot be
directed graphs.

Usage

graph_plot_compar(x, y, crds)

Arguments

x A graph object of class igraph. Its nodes must have the same names as in graph
y.

y A graph object of class igraph. Its nodes must have the same names as in graph
x.

crds A data.frame with the spatial coordinates of the graph nodes (both x and y). It
must have three columns:

• ID: Name of the graph nodes (character string). The names must be the
same as the node names of the graphs of class igraph (igraph::V(graph)$name)

• x: Longitude of the graph nodes (numeric or integer).
• y: Latitude of the graph nodes (numeric or integer).

Details

The graphs x and y of class igraph must have node names (not necessarily in the same order as IDs
in crds, given a merging is done).

Value

A ggplot2 object to plot

Author(s)

P. Savary

46 graph_topo_compar

Examples

data(pts_pop_ex)
data(data_ex_genind)
mat_w <- mat_gen_dist(data_ex_genind, dist = "DPS")
mat_dist <- mat_geo_dist(data = pts_pop_ex,

ID = "ID",
x = "x",
y = "y")

mat_dist <- mat_dist[order(as.character(row.names(mat_dist))),
order(as.character(colnames(mat_dist)))]

g1 <- gen_graph_topo(mat_w = mat_w, topo = "mst")
g2 <- gen_graph_topo(mat_w = mat_w, mat_topo = mat_dist, topo = "gabriel")
g <- graph_plot_compar(x = g1, y = g2,

crds = pts_pop_ex)

graph_topo_compar Compute an index comparing graph topologies

Description

The function computes several indices in order to compare two graph topologies. One of the graph
has the "true" topology the other is supposed to reproduce. The indices are then a way to assess the
reliability of the latter graph. Both graphs must have the same number of nodes, but not necessarily
the same number of links. They must also have the same node names and in the same order.

Usage

graph_topo_compar(obs_graph, pred_graph, mode = "mcc", directed = FALSE)

Arguments

obs_graph A graph object of class igraph with n nodes. It is the observed graph that
pred_graph is supposed to approach.

pred_graph A graph object of class igraph with n nodes. It is the predicted graph that is
supposed to be akin to obs_graph.

mode A character string specifying which index to compute in order to compare the
topologies of the graphs.

• If ’mode = ’mcc” (default), the Matthews Correlation Coefficient (MCC) is
computed.

• If ’mode = ’kappa”, the Kappa index is computed.
• If ’mode = ’fdr”, the False Discovery Rate (FDR) is computed.
• If ’mode = ’acc”, the Accuracy is computed.
• If ’mode = ’sens”, the Sensitivity is computed.
• If ’mode = ’spec”, the Specificity is computed.
• If ’mode = ’prec”, the Precision is computed.

directed Logical (TRUE or FALSE) specifying whether both graphs are directed or not.

graph_topo_compar 47

Details

The indices are calculated from a confusion matrix counting the number of links that are in the
"observed" graph ("true") and also in the "predicted" graph (true positives : TP), that are in the "ob-
served" graph but not in the "predicted" graph (false negatives : FN), that are not in the "observed"
graph but in the "predicted" graph (false positives : FP) and that are not in the "observed" graph
and not in the "predicted" graph neither (true negatives: TN). K is the total number of links in the
graphs. K is equal to n× (n− 1) if the graphs are directed and to n×(n−1)

2 if they are not directed,
with n the number of nodes. OP = TP + FN, ON = TN + FP, PP = TP + FP and PN = FN + TN.

The Matthews Correlation Coefficient (MCC) is computed as follows: MCC = TP×TN−FP×FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

The Kappa index is computed as follows: Kappa = K×(TP+TN)−(ON×PN)−(OP×PP)
K2−(ON×PN)−(OP×PP)

The False Discovery Rate (FDR) is calculated as follows: FDR = FP
TP+FP

The Accuracy is calculated as follows: Acc = TP+TN
K

The Sensitivity is calculated as follows: Sens = TP
TP+FN

The Specificity is calculated as follows: Spec = TN
TN+FP

The Precision is calculated as follows: Prec = TP
TP+FP

Self loops are not taken into account.

Value

The value of the index computed

Author(s)

P. Savary

References

Dyer RJ, Nason JD (2004). “Population graphs: the graph theoretic shape of genetic structure.”
Molecular ecology, 13(7), 1713–1727. Baldi P, Brunak S, Chauvin Y, Andersen CA, Nielsen H
(2000). “Assessing the accuracy of prediction algorithms for classification: an overview.” Bioin-
formatics, 16(5), 412–424. Matthews BW (1975). “Comparison of the predicted and observed
secondary structure of T4 phage lysozyme.” Biochimica et Biophysica Acta (BBA)-Protein Struc-
ture, 405(2), 442–451.

Examples

data(data_ex_genind)
data(pts_pop_ex)
mat_dist <- suppressWarnings(graph4lg::mat_geo_dist(data=pts_pop_ex,

ID = "ID",
x = "x",
y = "y"))

mat_dist <- mat_dist[order(as.character(row.names(mat_dist))),
order(as.character(colnames(mat_dist)))]

graph_obs <- gen_graph_thr(mat_w = mat_dist, mat_thr = mat_dist,

48 graph_to_df

thr = 15000, mode = "larger")
mat_gen <- mat_gen_dist(x = data_ex_genind, dist = "DPS")
graph_pred <- gen_graph_topo(mat_w = mat_gen, mat_topo = mat_dist,

topo = "gabriel")
graph_topo_compar(obs_graph = graph_obs,

pred_graph = graph_pred,
mode = "mcc",
directed = FALSE)

graph_to_df Convert a graph into a edge list data.frame

Description

The function converts a graph into a edge list data.frame

Usage

graph_to_df(graph, weight = TRUE)

Arguments

graph A graph object of class igraph

weight Logical. If TRUE (default), then the column ’link’ of the output data.frame
contains the weights of the links. If FALSE, it contains only 0 and 1.

Details

The ’graph’ nodes must have names. Links must have weights if ’weight = TRUE’.

Value

An object of class data.frame with a link ID, the origin nodes (’from’) and arrival nodes (’to’) and
the link value (’link’)(weighted or binary)

Author(s)

P. Savary

Examples

data(pts_pop_ex)
suppressWarnings(mat_geo <- mat_geo_dist(pts_pop_ex,

ID = "ID",
x = "x",

y = "y"))
g1 <- gen_graph_thr(mat_w = mat_geo,

mat_thr = mat_geo,
thr = 20000)

graph_to_shp 49

g1_df <- graph_to_df(g1,
weight = TRUE)

graph_to_shp Export a spatial graph to shapefile layers

Description

The function enables to export a spatial graph to shapefile layers.

Usage

graph_to_shp(
graph,
crds,
mode = "both",
crds_crs,
layer,
dir_path,
metrics = FALSE

)

Arguments

graph A graph object of class igraph
crds (if ’mode = ’spatial”) A data.frame with the spatial coordinates of the graph

nodes. It must have three columns:
• ID: Name of the graph nodes (will be converted into character string). The

names must the same as the node names of the graph object of class igraph
(igraph::V(graph)$name)

• x: Longitude (numeric or integer) of the graph nodes in the coordinates
reference system indicated with the argument crds_crs.

• y: Latitude (numeric or integer) of the graph nodes in the coordinates ref-
erence system indicated with the argument crds_crs.

mode Indicates which shapefile layers will be created
• If ’mode = ’both” (default), then two shapefile layers are created, one for

the nodes and another for the links.
• If ’mode = ’node”, a shapefile layer is created for the nodes only.
• If ’mode = ’link”, a shapefile layer is created for the links only.

crds_crs An integer indicating the EPSG code of the coordinates reference system to use.
The projection and datum are given in the PROJ.4 format.

layer A character string indicating the suffix of the name of the layers to be created.
dir_path A character string corresponding to the path to the directory in which the shape-

file layers will be exported. If dir_path = "wd", then the layers are created in
the current working directory.

metrics (not considered if ’mode = ’link”) Logical. Should graph node attributes inte-
grated in the attribute table of the node shapefile layer? (default: FALSE)

50 gstud_to_genind

Value

Create shapefile layers in the directory specified with the parameter ’dir_path’.

Author(s)

P. Savary

Examples

data(data_tuto)
mat_w <- data_tuto[[1]]
gp <- gen_graph_topo(mat_w = mat_w, topo = "gabriel")
crds_crs <- 2154
crds <- pts_pop_simul
layer <- "graph_dps_gab"
graph_to_shp(graph = gp, crds = pts_pop_simul, mode = "both",

crds_crs = crds_crs,
layer = "test_fonct",
dir_path = tempdir(),
metrics = FALSE)

gstud_to_genind Convert a file from gstudio or popgraph into a genind object

Description

The function converts a file formatted to use gstudio or popgraph package into a genind object
(adegenet package)

Usage

gstud_to_genind(x, pop_col, ind_col = NULL)

Arguments

x An object of class data.frame with loci columns in format locus (defined in
package gstudio) with as many rows as individuals and as many columns in
format locus as there are loci and additional columns

pop_col A character string indicating the name of the column with populations’ names
in x

ind_col (optional) A character string indicating the name of the column with individuals’
ID in x

Details

This function uses functions from pegas package. It can handle genetic data where alleles codings
do not have same length, (99:101, for example). If the names of the loci include ’.’ characters, they
will be replaced by ’_’.

g_percol 51

Value

An object of class genind.

Author(s)

P. Savary

Examples

data("data_ex_gstud")
x <- data_ex_gstud
pop_col <- "POP"
ind_col <- "ID"
data_genind <- gstud_to_genind(x, pop_col, ind_col)

g_percol Prune a graph using the ’percolation threshold’ method

Description

The function allows to prune a graph by removing the links with the largest weights until the graph
breaks into two components. The returned graph is the last graph with only one component.

Usage

g_percol(x, val_step = 20)

Arguments

x A symmetric matrix or a dist object with pairwise distances between nodes
val_step The number of classes to create to search for the threshold value without testing

all the possibilities. By default, ’val_step = 20’.

Value

A graph object of type igraph

Author(s)

P. Savary

Examples

data(data_ex_genind)
suppressWarnings(mat_w <- graph4lg::mat_geo_dist(data = pts_pop_ex,

ID = "ID",
x = "x",
y = "y"))

g_percol(x = mat_w)

52 kernel_param

kernel_param Compute dispersal kernel parameters

Description

The function computes the constant parameters of a dispersal kernel with a negative exponential
distribution

Usage

kernel_param(p, d_disp, mode = "A")

Arguments

p A numeric value indicating the dispersal probability at a distance equal to ’d_disp’
under a negative exponential distribution.

d_disp A numeric value indicating the distance to which dispersal probability is equal
to ’p’ under a negative exponential distribution.

mode A character string indicating the value to return:

• If ’mode = ’A” (default), the returned value ’alpha’ is such that exp(-alpha
* d_disp) = p

• If ’mode = ’B”, the returned value ’alpha’ is such that 10(-alpha * d_disp)
= p

Details

If the resulting parameter when mode = "A" is a and the resulting parameter when mode = "B" is b,
then we have: p = exp(-a.d_disp) = 10^(-b.d_disp) and a = b.ln(10)

Value

A numeric value

Author(s)

P. Savary

Examples

p <- 0.5
d_disp <- 3000
alpha <- kernel_param(p, d_disp, mode = "A")

loci_to_genind 53

loci_to_genind Convert a loci object into a genind object

Description

This function is exactly the same as loci2genind from pegas package

Usage

loci_to_genind(x, ploidy = 2, na.alleles = c("NA"))

Arguments

x An object of class loci to convert

ploidy An integer indicating the ploidy level (by default, ’ploidy = 2’)

na.alleles A character vector indicating the coding of the alleles to be treated as missing
data (by default, ’na.alleles = c("NA")’)

Value

An object of class genind

Author(s)

P. Savary

Examples

data("data_ex_loci")
genind <- loci_to_genind(data_ex_loci, ploidy = 2, na.alleles = "NA")

mat_cost_dist Compute cost distances between points on a raster

Description

The function computes cost-distances associated to least cost paths between point pairs on a raster
with specified cost values.

54 mat_cost_dist

Usage

mat_cost_dist(
raster,
pts,
cost,
method = "gdistance",
return = "mat",
direction = 8,
parallel.java = 1

)

Arguments

raster A parameter indicating the raster file on which cost distances are computed. It
can be:

• A character string indicating the path to a raster file in format .tif or .asc.
• A RasterLayer object already loaded in R environment

All the raster cell values must be present in the column ’code’ from cost argu-
ment.

pts A parameter indicating the points between which cost distances are computed.
It can be either:

• A character string indicating the path to a .csv file. It must have three
columns:

– ID: The ID of the points.
– x: A numeric or integer indicating the longitude of the points.
– y: A numeric or integer indicating the latitude of the points.

• A data.frame with the spatial coordinates of the points. It must have three
columns:

– ID: The ID of the points.
– x: A numeric or integer indicating the longitude of the points.
– y: A numeric or integer indicating the latitude of the points.

• A SpatialPointsDataFrame with at least an attribute column named "ID"
with the point IDs.

The point coordinates must be in the same spatial coordinate reference system
as the raster file.

cost A data.frame indicating the cost values associated to each raster value. It must
have two columns:

• ’code’: raster cell values
• ’cost’: corresponding cost values

method A character string indicating the method used to compute the cost distances. It
must be:

• ’gdistance’: uses the functions from the package gdistance assuming that
movement is possible in 8 directions from each cell, that a geo-correction is
applied to correct for diagonal movement lengths and that raster cell values
correspond to resistance (and not conductance).

mat_gen_dist 55

• ’java’: uses a .jar file which is downloaded on the user’s machine if neces-
sary and if java is installed. This option substantially reduces computation
times and makes possible the parallelisation.

return A character string indicating whether the returned object is a data.frame (return="df")
or a pairwise matrix (return="mat").

direction An integer (4, 8, 16) indicating the directions in which movement can take place
from a cell. Only used when method="gdistance". By default, direction=8.

parallel.java An integer indicating how many computer cores are used to run the .jar file. By
default, parallel.java=1.

Value

The function returns:

• If return="mat", a pairwise matrix with cost-distance values between points.

• If return="df", an object of type data.frame with three columns:

– from: A character string indicating the ID of the point of origin.
– to: A character string indicating the ID of the point of destination.
– cost_dist: A numeric indicating the accumulated cost-distance along the least-cost path

between point ID1 and point ID2.

Author(s)

P. Savary

Examples

x <- raster::raster(ncol=10, nrow=10, xmn=0, xmx=100, ymn=0, ymx=100)
raster::values(x) <- sample(c(1,2,3,4), size = 100, replace = TRUE)
pts <- data.frame(ID = 1:4,

x = c(10, 90, 10, 90),
y = c(90, 10, 10, 90))

cost <- data.frame(code = 1:4,
cost = c(1, 10, 100, 1000))

mat_cost_dist(raster = x,
pts = pts, cost = cost,
method = "gdistance")

mat_gen_dist Compute a pairwise matrix of genetic distances between populations

Description

The function computes a pairwise matrix of genetic distances between populations and allows to
implement several formula.

56 mat_gen_dist

Usage

mat_gen_dist(x, dist = "basic", null_val = FALSE)

Arguments

x An object of class genind that contains the multilocus genotypes (format ’lo-
cus’) of the individuals as well as their populations.

dist A character string indicating the method used to compute the multilocus genetic
distance between populations

• If ’dist = ’basic” (default), then the multilocus genetic distance is computed
using a formula of Euclidean genetic distance (Excoffier et al., 1992)

• If ’dist = ’weight”, then the multilocus genetic distance is computed as in
Fortuna et al. (2009). It is a Euclidean genetic distance giving more weight
to rare alleles

• If ’dist = ’PG”, then the multilocus genetic distance is computed as in pop-
graph::popgraph function, following several steps of PCA and SVD (Dyer
et Nason, 2004).

• If ’dist = ’DPS”, then the genetic distance used is equal to 1 - the proportion
of shared alleles (Bowcock, 1994)

• If ’dist = ’FST”, then the genetic distance used is the pairwise FST (Weir et
Cockerham, 1984)

• If ’dist = ’FST_lin”, then the genetic distance used is the linearised pairwise
FST (Weir et Cockerham, 1984)(FST_lin = FST/(1-FST))

• If ’dist = ’PCA”, then the genetic distance is computed following a PCA
of the matrix of allelic frequencies by population. It is a Euclidean genetic
distance between populations in the multidimensional space defined by all
the independent principal components.

• If ’dist = ’GST”, then the genetic distance used is the G’ST (Hedrick, 2005)
• If ’dist = ’D”, then the genetic distance used is Jost’s D (Jost, 2008)

null_val (optional) Logical. Should negative and null FST, FST_lin, GST or D values
be replaced by half the minimum positive value? This option allows to compute
Gabriel graphs from these "distances". Default is null_val = FALSE. This option
only works if ’dist = ’FST” or ’FST_lin’ or ’GST’ or ’D’

Details

Negative values are converted into 0. Euclidean genetic distance dij between population i and j is
computed as follows:

d2ij =

n∑
k=1

(xki − xkj)2

where xki is the allelic frequency of allele k in population i and n is the total number of alleles.
Note that when ’dist = ’weight”, the formula becomes

d2ij =

n∑
k=1

(1/(K ∗ pk))(xki − xkj)2

mat_geo_dist 57

where K is the number of alleles at the locus of the allele k and pk is the frequency of the allele k in
all populations. Note that when ’dist = ’PCA”, n is the number of conserved independent principal
components and xki is the value taken by the principal component k in population i.

Value

An object of class matrix

Author(s)

P. Savary

References

Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, Kidd JR, Cavalli-Sforza LL (1994). “High
resolution of human evolutionary trees with polymorphic microsatellites.” nature, 368(6470), 455–
457. Excoffier L, Smouse PE, Quattro JM (1992). “Analysis of molecular variance inferred from
metric distances among DNA haplotypes: application to human mitochondrial DNA restriction
data.” Genetics, 131(2), 479–491. Dyer RJ, Nason JD (2004). “Population graphs: the graph the-
oretic shape of genetic structure.” Molecular ecology, 13(7), 1713–1727. Fortuna MA, Albaladejo
RG, FernÃ¡ndez L, Aparicio A, Bascompte J (2009). “Networks of spatial genetic variation across
species.” Proceedings of the National Academy of Sciences, 106(45), 19044–19049. Weir BS,
Cockerham CC (1984). “Estimating F-statistics for the analysis of population structure.” evolution,
38(6), 1358–1370. Hedrick PW (2005). “A standardized genetic differentiation measure.” Evo-
lution, 59(8), 1633–1638. Jost L (2008). “GST and its relatives do not measure differentiation.”
Molecular ecology, 17(18), 4015–4026.

Examples

data(data_ex_genind)
x <- data_ex_genind
D <- mat_gen_dist(x = x, dist = "basic")

mat_geo_dist Compute Euclidean geographic distances between points

Description

The function computes Euclidean geographic distance between points given their spatial coordi-
nates either in a metric projected Coordinate Reference System or in a polar coordinates system.

Usage

mat_geo_dist(
data,
ID = NULL,
x = NULL,
y = NULL,

58 mat_geo_dist

crds_type = "proj",
gc_formula = "vicenty"

)

Arguments

data An object of class :

• data.frame with 3 columns: 2 columns with the point spatial coordinates
and another column with point IDs

• SpatialPointsDataFrame

ID (if data is of class data.frame) A character string indicating the name of the
column of data with the point IDs

x (if data is of class data.frame) A character string indicating the name of the
column of data with the point longitude

y (if data is of class data.frame) A character string indicating the name of the
column of data with the point latitude

crds_type A character string indicating the type of coordinate reference system:

• ’proj’ (default): a projected coordinate reference system
• ’polar’: a polar coordinate reference system, such as WGS84

gc_formula A character string indicating the formula used to compute the Great Circle dis-
tance:

• ’vicenty’(default): Vincenty inverse formula for ellipsoids
• ’slc’: Spherical Law of Cosines
• ’hvs’: Harversine formula

Details

When a projected coordinate reference system is used, it calculates classical Euclidean geographic
distance between two points using Pythagora’s theorem. When a polar coordinate reference sys-
tem is used, it calculates the Great circle distance between points using different methods. Unless
method = "polar", when data is a data.frame, it assumes projected coordinates by default.

Value

A pairwise matrix of geographic distances between points in meters

Author(s)

P. Savary

Examples

Projected CRS
data(pts_pop_simul)
mat_dist <- mat_geo_dist(data=pts_pop_simul,

ID = "ID",
x = "x",

plot_graph_lg 59

y = "y")

#Polar CRS
city_us <- data.frame(name = c("New York City", "Chicago",

"Los Angeles", "Atlanta"),
lat = c(40.75170, 41.87440,

34.05420, 33.75280),
lon = c(-73.99420, -87.63940,

-118.24100, -84.39360))
mat_geo_us <- mat_geo_dist(data = city_us,

ID = "name", x = "lon", y = "lat",
crds_type = "polar")

plot_graph_lg Plot graphs

Description

The function enables to plot graphs, whether spatial or not.

Usage

plot_graph_lg(
graph,
crds = NULL,
mode = "aspatial",
node_inter = NULL,
link_width = NULL,
node_size = NULL,
module = NULL,
pts_col = NULL

)

Arguments

graph A graph object of class igraph

crds (optional, default = NULL) If ’mode = ’spatial”, it is a data.frame with the
spatial coordinates of the graph nodes. It must have three columns :

• ID: A character string indicating the name of the graph nodes. The names
must be the same as the node names of the graph of class igraph (igraph::V(graph)$name)

• x: A numeric or integer indicating the longitude of the graph nodes.
• y: A numeric or integer indicating the latitude of the graph nodes.

This argument is not used when ’mode = ’aspatial” and mandatory when ’mode
= ’spatial”.

mode A character string indicating whether the graph is spatial (’mode = ’spatial”) or
not (’mode = ’aspatial” (default))

60 plot_graph_lg

node_inter (optional, default = NULL) A character string indicating whether the links of
the graph are weighted by distances or by similarity indices. It is only used
when ’mode = ’aspatial” to compute the node positions with Fruchterman and
Reingold algorithm. It can be equal to:

• ’distance’: Link weights correspond to distances. Nodes that are close to
each other will be close on the figure.

• ’similarity’: Link weights correspond to similarity indices. Nodes that are
similar to each other will be close on the figure.

link_width (optional, default = NULL) A character string indicating how the width of the
link is set on the figure. Their width can be:

• inversely proportional to link weights ("inv_w", convenient with distances,
default)

• proportional to link weights ("w")

node_size (optional, default = NULL) A character string indicating the graph node attribute
used to set the node size on the figure. It must be the name of a numeric or
integer node attribute from the graph.

module (optional, default = NULL) A character string indicating the graph node modules
used to set the node color on the figure. It must be the name of a node attribute
from the graph with discrete values.

pts_col (optional, default = NULL) A character string indicating the color used to plot
the nodes (default: "#F2B950"). It must be a hexadecimal color code or a color
used by default in R. It cannot be used if ’module’ is specified.

Details

When the graph is not spatial (’mode = ’aspatial”), the nodes coordinates are calculated with
Fruchterman et Reingold algorithm. The graph object graph of class igraph must have node names
(not necessarily in the same order as IDs in crds, given a merging is done).

Value

A ggplot2 object to plot

Author(s)

P. Savary

References

Fruchterman TM, Reingold EM (1991). “Graph drawing by force-directed placement.” Software:
Practice and experience, 21(11), 1129–1164.

Examples

data(pts_pop_ex)
data(data_ex_genind)
mat_w <- mat_gen_dist(data_ex_genind, dist = "DPS")
gp <- gen_graph_topo(mat_w = mat_w, topo = "mst")

plot_w_hist 61

g <- plot_graph_lg(graph = gp,
crds = pts_pop_ex,
mode = "spatial",
link_width = "inv_w")

plot_w_hist Plot histograms of link weights

Description

The function enables to plot histogram to visualize the distribution of the link weights

Usage

plot_w_hist(graph, fill = "#396D35", class_width = NULL)

Arguments

graph A graph object of class igraph whose links are weighted

fill A character string indicating the color used to fill the bars (default: "#396D35").
It must be a hexadecimal color code or a color used by default in R.

class_width (default values: NULL) A numeric or an integer specifying the width of the
classes displayed on the histogram. When it is not specified, the width is equal
to the difference between the minimum and maximum values divided by 80.

Value

A ggplot2 object to plot

Author(s)

P. Savary

Examples

data(data_ex_genind)
mat_w <- mat_gen_dist(data_ex_genind, dist = "DPS")
gp <- gen_graph_topo(mat_w = mat_w, topo = "gabriel")
hist <- plot_w_hist(gp)

62 pop_gen_index

pop_gen_index Compute population-level genetic indices

Description

The function computes population-level genetic indices from an object of class genind.

Usage

pop_gen_index(x, pop_names = NULL, indices = c("Nb_ind", "A", "He", "Ho"))

Arguments

x An object of class genind from package adegenet.
pop_names (optional) A character vector indicating population names. It is of the same

length as the number of populations. Without this argument, populations are
given the names they have initially in the ’genind’ object (which is sometimes
only a number). The order of the population names must match with their order
in the ’genind’ object. The function does not reorder them. Users must be
careful.

indices (optional) A character vector indicating the population-level indices to compute.
These indices can be:

• Mean allelic richness by locus by population (indices = c("A",...))
• Mean expected heterozygosity by locus by population (indices = c("He",...))
• Mean observed heterozygosity by locus by population (indices = c("Ho",...))
• Number of individuals by population (indices = c("Nb_ind",...))
• Total allelic richness by population (indices = c("A_tot",...))

By default, indices = c("Nb_ind","A","He","Ho").

Value

An object of class data.frame whose rows correspond to populations and columns to population
attributes (ID, size, genetic indices). By default, the first column corresponds to the population
names (ID). The order of the columns depends on the vector ’indices’.

Author(s)

P. Savary

Examples

data(data_ex_genind)
x <- data_ex_genind
pop_names <- levels(x@pop)
df_pop_indices <- pop_gen_index(x = x,

pop_names = pop_names,
indices = c("Nb_ind", "A"))

pts_pop_ex 63

pts_pop_ex pts_pop_ex : details on simulated populations

Description

Simulation dataset 10 populations located on a simulated landscape

Usage

pts_pop_ex

Format

An object of class ’data.frame’ with the following columns :

ID Population ID of the 10 populations
x Site longitude (RGF93)
y Site latitude (RGF93)

References

Landguth EL, Cushman S (2010). “CDPOP: a spatially explicit cost distance population genetics
program.” Molecular Ecology Resources, 10(1), 156–161. There are as many rows as there are
sampled populations.

Examples

data("pts_pop_ex")
str(pts_pop_ex)

pts_pop_simul pts_pop_simul : details on simulated populations

Description

Simulation dataset 50 populations located on a simulated landscape

Usage

pts_pop_simul

Format

An object of class ’data.frame’ with the following columns :

ID Population ID of the 50 populations
x Site longitude (RGF93)
y Site latitude (RGF93)

64 pw_mat_to_df

References

Landguth EL, Cushman S (2010). “CDPOP: a spatially explicit cost distance population genetics
program.” Molecular Ecology Resources, 10(1), 156–161. There are as many rows as there are
sampled populations.

Examples

data("pts_pop_simul")
str(pts_pop_simul)

pw_mat_to_df Convert a pairwise matrix into an edge-list data.frame

Description

The function converts a pairwise matrix into an edge-list data.frame

Usage

pw_mat_to_df(pw_mat)

Arguments

pw_mat A pairwise matrix which can be:

• An object of class matrix. It must have the same row names and column
names. If values represent distances, diagonal elements should be equal to
0.

• An object of class dist. In that, its column numbers are used to create IDs
in the resulting data.frame.

Value

An object of class data.frame

Author(s)

P. Savary

Examples

data(data_tuto)
pw_mat <- data_tuto[[1]]
df <- pw_mat_to_df(pw_mat)

reorder_mat 65

reorder_mat Reorder the rows and columns of a symmetric matrix

Description

The function reorders the rows and columns of a symmetric matrix according to a specified order.

Usage

reorder_mat(mat, order)

Arguments

mat An object of class matrix

order A character vector with the rows and columns names of the matrix in the order
in which they will be ordered by the function. All its elements must be rows and
columns names of the matrix mat.

Details

The matrix mat must be symmetric and have rows and columns names. Its values are not modified.

Value

A reordered symmetric matrix

Author(s)

P. Savary

Examples

mat <- matrix(rnorm(36), 6)
mat[lower.tri(mat)] <- t(mat)[lower.tri(mat)]
row.names(mat) <- colnames(mat) <- c("A", "C", "E", "B", "D", "F")
order <- c("A", "B", "C", "D", "E", "F")
mat <- reorder_mat(mat = mat, order = order)

66 scatter_dist

scatter_dist Plot scatterplots of genetic distance vs landscape distance

Description

The function enables to plot scatterplots to visualize the relationship between genetic distance (or
differentiation) and landscape distance (Euclidean distance, cost-distance, etc.)between populations
or sample sites.

Usage

scatter_dist(
mat_gd,
mat_ld,
method = "loess",
thr_gd = NULL,
thr_ld = NULL,
se = TRUE,
smooth_col = "black",
pts_col = "#999999"

)

Arguments

mat_gd A symmetric matrix or dist object with pairwise genetic distances between
populations or sample sites.

mat_ld A symmetric matrix or dist object with pairwise landscape distances between
populations or sample sites. These distances can be Euclidean distances, cost-
distances or resistance distances, among others.

method A character string indicating the smoothing method used to fit a line on the
scatterplot. Possible values are the same as with function ’geom_smooth()’ from
ggplot2 : ’lm’, ’glm’, ’gam’, ’loess’ (default).

thr_gd (optional) A numeric or integer value used to remove values from the data before
to plot. All genetic distances values above thr_gd are removed from the data.

thr_ld (optional) A numeric or integer value used to remove values from the data before
to plot. All landscape distances values above thr_ld are removed from the data.

se Logical (optional, default = TRUE) indicating whether the confidence interval
around the smooth line is displayed.

smooth_col (optional) A character string indicating the color used to plot the smoothing line
(default: "blue"). It must be a hexadecimal color code or a color used by default
in R.

pts_col (optional) Character string indicating the color used to plot the points (default:
"#999999"). It must be a hexadecimal color code or a color used by default in
R.

scatter_dist_g 67

Details

IDs in mat_gd and mat_ld must be the same and refer to the same sampling sites or populations, and
both matrices must be ordered in the same way. Matrix of genetic distance mat_gd can be computed
using mat_gen_dist. Matrix of landscape distance mat_ld can be computed using mat_geo_dist
when the landscape distance needed is a Euclidean geographical distance.

Value

A ggplot2 object to plot

Author(s)

P. Savary

Examples

data(data_tuto)
mat_dps <- data_tuto[[1]]
mat_dist <- suppressWarnings(mat_geo_dist(data = pts_pop_simul,

ID = "ID",
x = "x",
y = "y"))

mat_dist <- mat_dist[order(as.character(row.names(mat_dist))),
order(as.character(colnames(mat_dist)))]

scatterplot_ex <- scatter_dist(mat_gd = mat_dps,
mat_ld = mat_dist)

scatter_dist_g Plot scatterplots of distances to visualize the graph pruning intensity

Description

The function enables to plot scatterplots of the relationship between two distances (often a genetic
distance and a landscape distance between populations or sample sites), while highlighting the
population pairs between which a link was conserved during the creation of a graph whose nodes
are populations (or sample sites). It thereby allows to visualize the graph pruning intensity.

Usage

scatter_dist_g(
mat_y,
mat_x,
graph,
thr_y = NULL,
thr_x = NULL,
pts_col_1 = "#999999",
pts_col_2 = "black"

)

68 scatter_dist_g

Arguments

mat_y A symmetric (complete) matrix or dist object with pairwise (genetic or land-
scape) distances between populations or sample sites. These values will be the
point coordinates on the y axis. mat_y is the matrix used to weight the links of
the graph x, whose nodes correspond to row and column names of mat_y.

mat_x A symmetric (complete) matrix or dist object with pairwise (genetic or land-
scape) distances between populations or sample sites. These values will be the
point coordinates on the x axis. mat_x and mat_y must have the same row and
column names, ordered in the same way.

graph A graph object of class igraph. Its nodes must have the same names as the row
and column of mat_y and mat_x matrices. x must have weighted links. Link
weights have to be values from mat_y matrix. graph must be an undirected
graph.

thr_y (optional) A numeric or integer value used to remove values from the data before
to plot. All values from mat_y above thr_y are removed from the data.

thr_x (optional) A numeric or integer value used to remove values from the data before
to plot. All values from mat_x above thr_x are removed from the data.

pts_col_1 (optional) A character string indicating the color used to plot the points associ-
ated to all populations or sample sites pairs (default: "#999999"). It must be a
hexadecimal color code or a color used by default in R.

pts_col_2 (optional) A character string indicating the color used to plot the points as-
sociated to populations or sample sites pairs connected on the graph (default:
"black"). It must be a hexadecimal color code or a color used by default in R.

Details

IDs in mat_y and mat_x must be the same and refer to the same sampling sites or populations,
and both matrices must be ordered in the same way. Matrices of genetic distance can be computed
using mat_gen_dist. Matrices of landscape distance can be computed using mat_geo_dist when
the landscape distance needed is a Euclidean geographical distance. This function is based upon
scatter_dist function.

Value

A ggplot2 object to plot

Author(s)

P. Savary

Examples

data(data_tuto)
mat_gen <- data_tuto[[1]]
mat_dist <- suppressWarnings(mat_geo_dist(data=pts_pop_simul,

ID = "ID",
x = "x",

structure_to_genind 69

y = "y"))
mat_dist <- mat_dist[order(as.character(row.names(mat_dist))),

order(as.character(colnames(mat_dist)))]
x <- gen_graph_topo(mat_w = mat_gen, mat_topo = mat_dist, topo = "gabriel")
scat <- scatter_dist_g(mat_y = mat_gen, mat_x = mat_dist,

graph = x)

structure_to_genind Convert a file in STRUCTURE format into a genind object

Description

The function converts a text file in STRUCTURE format into a genind object to use in R

Usage

structure_to_genind(
path,
pop_names = NULL,
loci_names = NULL,
ind_names = NULL

)

Arguments

path A character string indicating the path to the STRUCTURE file in format .txt, or
alternatively the name of the file in the working directory. The STRUCTURE
file must only have :

• A first column with the IDs of the individuals (can be a simple number)
• A second column with the IDs of the populations (can be a simple number)
• Some loci columns : as many columns as loci in the data

The row for loci names is optional but recommended. Each individual is dis-
played on 2 rows.

pop_names (optional) A character vector indicating the population names in the same order
as in the STRUCTURE file. It is of the same length as the number of popu-
lations. Without this argument, populations are numbered from 1 to the total
number of individuals.

loci_names A character vector with the names of the loci if not specified in the file first row.
This argument is mandatory if the STRUCTURE file does not include the names
of the loci in the first row. In other cases, the names of the loci is extracted from
the file first row

ind_names (optional) A character vector indicating the individual names in the same order
as in the STRUCTURE file. It is of the same length as the number of individuals.
Without this argument, individuals are numbered from 1 to the total number of
individuals.

70 structure_to_genind

Details

The column order of the resulting object can be different from that of objects returned by gstud_to_genind
and genepop_to_genind, depending on allele and loci coding This function uses functions from
pegas package. For details about STRUCTURE file format : STRUCTURE user manual

Value

An object of type genind.

Author(s)

P. Savary

Examples

data("data_ex_genind")
loci_names <- levels(data_ex_genind@loc.fac)
pop_names <- levels(data_ex_genind@pop)
ind_names <- row.names(data_ex_genind@tab)
path_in <- system.file('extdata', 'data_ex_str.txt',

package = 'graph4lg')
file_n <- file.path(tempdir(), "data_ex_str.txt")
file.copy(path_in, file_n, overwrite = TRUE)
str <- structure_to_genind(path = file_n, loci_names = loci_names,

pop_names = pop_names, ind_names = ind_names)
file.remove(file_n)

http://www.ccg.unam.mx/~vinuesa/tlem09/docs/structure_doc.pdf

Index

∗ datasets
data_ex_genind, 9
data_ex_gstud, 9
data_ex_loci, 10
data_simul_genind, 11
data_tuto, 11
pts_pop_ex, 63
pts_pop_simul, 63

add_nodes_attr, 3

compute_graph_modul, 4
compute_node_metric, 6
convert_cd, 7, 27, 32
cor, 43

data_ex_genind, 9
data_ex_gstud, 9
data_ex_loci, 10
data_simul_genind, 11
data_tuto, 11
df_to_pw_mat, 12
dist_max_corr, 13

g_percol, 51
gen_graph_indep, 18
gen_graph_thr, 21
gen_graph_topo, 22
genepop_to_genind, 15, 18, 70
genind2genpop, 17
genind_to_genepop, 16, 17
get_graphab, 24
get_graphab_linkset, 25
get_graphab_metric, 26
graph_modul_compar, 39
graph_node_compar, 42
graph_plan, 44
graph_plot_compar, 45
graph_to_df, 48
graph_to_shp, 49

graph_topo_compar, 46
graphab_graph, 27, 29, 30, 33, 38
graphab_link, 25, 27, 28, 35, 38
graphab_metric, 30
graphab_modul, 33
graphab_pointset, 35
graphab_project, 27, 29, 36
graphab_to_igraph, 4, 37
gstud_to_genind, 50, 70

kernel_param, 52

loci_to_genind, 53

mantel, 15
mat_cost_dist, 8, 53
mat_gen_dist, 15, 55, 67, 68
mat_geo_dist, 8, 15, 57, 67, 68
mat_pw_fst, 16, 18

plot_graph_lg, 38, 59
plot_w_hist, 61
pop_gen_index, 62
pts_pop_ex, 63
pts_pop_simul, 63
pw_mat_to_df, 64

reorder_mat, 65

scatter_dist, 66, 68
scatter_dist_g, 67
structure_to_genind, 69

71

	add_nodes_attr
	compute_graph_modul
	compute_node_metric
	convert_cd
	data_ex_genind
	data_ex_gstud
	data_ex_loci
	data_simul_genind
	data_tuto
	df_to_pw_mat
	dist_max_corr
	genepop_to_genind
	genind_to_genepop
	gen_graph_indep
	gen_graph_thr
	gen_graph_topo
	get_graphab
	get_graphab_linkset
	get_graphab_metric
	graphab_graph
	graphab_link
	graphab_metric
	graphab_modul
	graphab_pointset
	graphab_project
	graphab_to_igraph
	graph_modul_compar
	graph_node_compar
	graph_plan
	graph_plot_compar
	graph_topo_compar
	graph_to_df
	graph_to_shp
	gstud_to_genind
	g_percol
	kernel_param
	loci_to_genind
	mat_cost_dist
	mat_gen_dist
	mat_geo_dist
	plot_graph_lg
	plot_w_hist
	pop_gen_index
	pts_pop_ex
	pts_pop_simul
	pw_mat_to_df
	reorder_mat
	scatter_dist
	scatter_dist_g
	structure_to_genind
	Index

