
Package ‘googlesheets4’
May 7, 2020

Title Access Google Sheets using the Sheets API V4

Version 0.2.0

Description Interact with Google Sheets through the Sheets API
v4 <https://developers.google.com/sheets/api>. ``API'' is an acronym for
``application programming interface''; the Sheets API allows users to
interact with Google Sheets programmatically, instead of via a web
browser. The ``v4'' refers to the fact that the Sheets API is currently
at version 4. This package can read and write both the metadata and
the cell data in a Sheet.

License MIT + file LICENSE

URL https://github.com/tidyverse/googlesheets4

BugReports https://github.com/tidyverse/googlesheets4/issues

Depends R (>= 3.2)

Imports cellranger,
curl,
gargle (>= 0.5.0),
glue (>= 1.3.0),
googledrive (>= 1.0.0),
httr,
ids,
lifecycle,
magrittr,
methods,
purrr,
rematch2,
rlang,
tibble (>= 2.1.1),
utils,
vctrs (>= 0.2.3)

Suggests covr,
readr,
rmarkdown,
sodium,
spelling,
testthat (>= 2.1.0),
withr

RdMacros lifecycle

1

https://github.com/tidyverse/googlesheets4
https://github.com/tidyverse/googlesheets4/issues

2 R topics documented:

ByteCompile true

Encoding UTF-8

Language en-US

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.1.0

R topics documented:
as_id.googlesheets4_spreadsheet . 3
as_sheets_id . 3
cell-specification . 4
gs4_auth . 5
gs4_auth_configure . 7
gs4_browse . 8
gs4_create . 9
gs4_deauth . 10
gs4_endpoints . 11
gs4_example . 11
gs4_find . 12
gs4_fodder . 13
gs4_formula . 13
gs4_get . 14
gs4_has_token . 15
gs4_random . 16
gs4_token . 16
gs4_user . 17
range_autofit . 17
range_delete . 19
range_flood . 20
range_read . 22
range_read_cells . 25
range_speedread . 26
range_write . 28
request_generate . 30
request_make . 31
sheets_id . 32
sheet_add . 33
sheet_append . 34
sheet_copy . 35
sheet_delete . 37
sheet_properties . 38
sheet_relocate . 39
sheet_rename . 41
sheet_resize . 42
sheet_write . 43
spread_sheet . 45

Index 47

as_id.googlesheets4_spreadsheet 3

as_id.googlesheets4_spreadsheet

Extract the file id from Sheet metadata

Description

This method implements googledrive::as_id() for the class used here to hold metadata for a
Sheet. It just calls as_sheets_id(), but it’s handy in case you forget that exists and hope that
as_id() will "just work".

Usage

S3 method for class 'googlesheets4_spreadsheet'
as_id(x, ...)

Arguments

x An instance of googlesheets4_spreadsheet, which is returned by, e.g., gs4_get().

... Other arguments passed down to methods. (Not used.)

Value

A character vector bearing the S3 class drive_id.

Examples

if (gs4_has_token()) {
ss <- gs4_get(gs4_example("mini-gap"))
class(ss)
googledrive::as_id(ss)

}

as_sheets_id Coerce to a sheets_id object

Description

Converts various representations of a Google Sheet into a sheets_id object. Anticipated inputs:

• Spreadsheet id, "a string containing letters, numbers, and some special characters", typically
44 characters long, in our experience. Example: 1qpyC0XzvTcKT6EISywvqESX3A0MwQoFDE8p-
Bll4hps.

• A URL, from which we can excavate a spreadsheet or file id. Example: https://docs.
google.com/spreadsheets/d/1BzfL0kZUz1TsI5zxJF1WNF01IxvC67FbOJUiiGMZ_mQ/edit#
gid=1150108545.

• A one-row dribble, a "Drive tibble" used by the googledrive package. In general, a dribble
can represent several files, one row per file. Since googlesheets4 is not vectorized over spread-
sheets, we are only prepared to accept a one-row dribble.

https://docs.google.com/spreadsheets/d/1BzfL0kZUz1TsI5zxJF1WNF01IxvC67FbOJUiiGMZ_mQ/edit#gid=1150108545
https://docs.google.com/spreadsheets/d/1BzfL0kZUz1TsI5zxJF1WNF01IxvC67FbOJUiiGMZ_mQ/edit#gid=1150108545
https://docs.google.com/spreadsheets/d/1BzfL0kZUz1TsI5zxJF1WNF01IxvC67FbOJUiiGMZ_mQ/edit#gid=1150108545

4 cell-specification

– googledrive::drive_get("YOUR_SHEET_NAME") is a great way to look up a Sheet via
its name.

– gs4_find("YOUR_SHEET_NAME") is another good way to get your hands on a Sheet.

• Spreadsheet meta data, as returned by, e.g., gs4_get(). Literally, this is an object of class
googlesheets4_spreadsheet.

This is a generic function.

Usage

as_sheets_id(x, ...)

Arguments

x Something that uniquely identifies a Google Sheet: a sheets_id, a URL, one-
row dribble, or a googlesheets4_spreadsheet.

... Other arguments passed down to methods. (Not used.)

Examples

as_sheets_id("abc")

cell-specification Specify cells

Description

Many functions in googlesheets4 use a range argument to target specific cells. The Sheets v4
API expects user-specified ranges to be expressed via its A1 notation, but googlesheets4 accepts
and converts a few alternative specifications provided by the functions in the cellranger package.
Of course, you can always provide A1-style ranges directly to functions like read_sheet() or
range_read_cells(). Why would you use the cellranger helpers? Some ranges are practically
impossible to express in A1 notation, specifically when you want to describe rectangles with some
bounds that are specified and others determined by the data.

Examples

if (gs4_has_token() && interactive()) {
ss <- gs4_example("mini-gap")

Specify only the rows or only the columns
read_sheet(ss, range = cell_rows(1:3))
read_sheet(ss, range = cell_cols("C:D"))
read_sheet(ss, range = cell_cols(1))

Specify upper or lower bound on row or column
read_sheet(ss, range = cell_rows(c(NA, 4)))
read_sheet(ss, range = cell_cols(c(NA, "D")))
read_sheet(ss, range = cell_rows(c(3, NA)))
read_sheet(ss, range = cell_cols(c(2, NA)))
read_sheet(ss, range = cell_cols(c("C", NA)))

Specify a partially open rectangle

https://developers.google.com/sheets/api/guides/concepts#a1_notation

gs4_auth 5

read_sheet(ss, range = cell_limits(c(2, 3), c(NA, NA)), col_names = FALSE)
read_sheet(ss, range = cell_limits(c(1, 2), c(NA, 4)))

}

gs4_auth Authorize googlesheets4

Description

Authorize googlesheets4 to view and manage your Google Sheets. This function is a wrapper
around gargle::token_fetch().

By default, you are directed to a web browser, asked to sign in to your Google account, and to grant
googlesheets4 permission to operate on your behalf with Google Sheets. By default, these user
credentials are cached in a folder below your home directory, ~/.R/gargle/gargle-oauth, from where
they can be automatically refreshed, as necessary. Storage at the user level means the same token
can be used across multiple projects and tokens are less likely to be synced to the cloud by accident.

If you are interacting with R from a web-based platform, like RStudio Server or Cloud, you need to
use a variant of this flow, known as out-of-band auth ("oob"). If this does not happen automatically,
you can request it yourself with use_oob = TRUE or, more persistently, by setting an option via
options(gargle_oob_default = TRUE).

Usage

gs4_auth(
email = gargle::gargle_oauth_email(),
path = NULL,
scopes = "https://www.googleapis.com/auth/spreadsheets",
cache = gargle::gargle_oauth_cache(),
use_oob = gargle::gargle_oob_default(),
token = NULL

)

Arguments

email Optional. Allows user to target a specific Google identity. If specified, this
is used for token lookup, i.e. to determine if a suitable token is already avail-
able in the cache. If no such token is found, email is used to pre-select the
targetted Google identity in the OAuth chooser. Note, however, that the email
associated with a token when it’s cached is always determined from the token
itself, never from this argument. Use NA or FALSE to match nothing and force
the OAuth dance in the browser. Use TRUE to allow email auto-discovery, if ex-
actly one matching token is found in the cache. Defaults to the option named
"gargle_oauth_email", retrieved by gargle::gargle_oauth_email().

path JSON identifying the service account, in one of the forms supported for the txt
argument of jsonlite::fromJSON() (typically, a file path or JSON string).

scopes A character vector of scopes to request. Pick from those listed at https://
developers.google.com/identity/protocols/googlescopes.
For certain token flows, the "https://www.googleapis.com/auth/userinfo.email"
scope is unconditionally included. This grants permission to retrieve the email
address associated with a token; gargle uses this to index cached OAuth tokens.

https://developers.google.com/identity/protocols/googlescopes
https://developers.google.com/identity/protocols/googlescopes

6 gs4_auth

This grants no permission to view or send email. It is considered a low value
scope and does not appear on the consent screen.

cache Specifies the OAuth token cache. Defaults to the option named "gargle_oauth_cache",
retrieved via gargle::gargle_oauth_cache().

use_oob Whether to prefer "out of band" authentication. Defaults to the option named
"gargle_oob_default", retrieved via gargle::gargle_oob_default().

token A token with class Token2.0 or an object of httr’s class request, i.e. a token that
has been prepared with httr::config() and has a Token2.0 in the auth_token
component.

Details

Most users, most of the time, do not need to call gs4_auth() explicitly – it is triggered by the first
action that requires authorization. Even when called, the default arguments often suffice. However,
when necessary, this function allows the user to explicitly:

• Declare which Google identity to use, via an email address. If there are multiple cached
tokens, this can clarify which one to use. It can also force googlesheets4 to switch from one
identity to another. If there’s no cached token for the email, this triggers a return to the browser
to choose the identity and give consent.

• Use a service account token.

• Bring their own Token2.0.

• Specify non-default behavior re: token caching and out-of-bound authentication.

For details on the many ways to find a token, see gargle::token_fetch(). For deeper control
over auth, use gs4_auth_configure() to bring your own OAuth app or API key. Read more about
gargle options, see gargle::gargle_options.

See Also

Other auth functions: gs4_auth_configure(), gs4_deauth()

Examples

if (interactive()) {
load/refresh existing credentials, if available
otherwise, go to browser for authentication and authorization
gs4_auth()

force use of a token associated with a specific email
gs4_auth(email = "jenny@example.com")

use a 'read only' scope, so it's impossible to edit or delete Sheets
gs4_auth(

scopes = "https://www.googleapis.com/auth/spreadsheets.readonly"
)

use a service account token
gs4_auth(path = "foofy-83ee9e7c9c48.json")

}

gs4_auth_configure 7

gs4_auth_configure Edit and view auth configuration

Description

These functions give more control over and visibility into the auth configuration than gs4_auth()
does. gs4_auth_configure() lets the user specify their own:

• OAuth app, which is used when obtaining a user token.

• API key. If googlesheets4 is de-authorized via gs4_deauth(), all requests are sent with an
API key in lieu of a token. See the vignette How to get your own API credentials for more. If
the user does not configure these settings, internal defaults are used. gs4_oauth_app() and
gs4_api_key() retrieve the currently configured OAuth app and API key, respectively.

Usage

gs4_auth_configure(app, path, api_key)

gs4_api_key()

gs4_oauth_app()

Arguments

app OAuth app, in the sense of httr::oauth_app().

path JSON downloaded from Google Cloud Platform Console, containing a client
id (aka key) and secret, in one of the forms supported for the txt argument of
jsonlite::fromJSON() (typically, a file path or JSON string).

api_key API key.

Value

• gs4_auth_configure(): An object of R6 class gargle::AuthState, invisibly.

• gs4_oauth_app(): the current user-configured httr::oauth_app().

• gs4_api_key(): the current user-configured API key.

See Also

Other auth functions: gs4_auth(), gs4_deauth()

Examples

see and store the current user-configured OAuth app (probaby `NULL`)
(original_app <- gs4_oauth_app())

see and store the current user-configured API key (probaby `NULL`)
(original_api_key <- gs4_api_key())

if (require(httr)) {
bring your own app via client id (aka key) and secret
google_app <- httr::oauth_app(

https://gargle.r-lib.org/articles/get-api-credentials.html

8 gs4_browse

"my-awesome-google-api-wrapping-package",
key = "YOUR_CLIENT_ID_GOES_HERE",
secret = "YOUR_SECRET_GOES_HERE"

)
google_key <- "YOUR_API_KEY"
gs4_auth_configure(app = google_app, api_key = google_key)

confirm the changes
gs4_oauth_app()
gs4_api_key()

bring your own app via JSON downloaded from Google Developers Console
this file has the same structure as the JSON from Google
app_path <- system.file(

"extdata", "fake-oauth-client-id-and-secret.json",
package = "googlesheets4"

)
gs4_auth_configure(path = app_path)

confirm the changes
gs4_oauth_app()

}

restore original auth config
gs4_auth_configure(app = original_app, api_key = original_api_key)

gs4_browse Visit a Sheet in a web browser

Description

Visits a Google Sheet in your default browser, if session is interactive.

Usage

gs4_browse(ss)

Arguments

ss Something that identifies a Google Sheet: its file ID, a URL from which we
can recover the ID, an instance of googlesheets4_spreadsheet (returned by
gs4_get()), or a dribble, which is how googledrive represents Drive files.
Processed through as_sheets_id().

Value

The Sheet’s browser URL, invisibly.

Examples

gs4_example("mini-gap") %>% gs4_browse()

gs4_create 9

gs4_create Create a new Sheet

Description

Experimental
Creates an entirely new (spread)Sheet (or, in Excel-speak, workbook). Optionally, you can also
provide names and/or data for the initial set of (work)sheets. Any initial data provided via sheets
is styled as a table, as described in sheet_write().

Usage

gs4_create(name = gs4_random(), ..., sheets = NULL)

Arguments

name The name of the new spreadsheet.

... Optional spreadsheet properties that can be set through this API endpoint, such
as locale and time zone.

sheets Optional input for initializing (work)sheets. If unspecified, the Sheets API auto-
matically creates an empty "Sheet1". You can provide a vector of sheet names,
a data frame, or a (possibly named) list of data frames. See the examples.

Value

The input ss, as an instance of sheets_id

See Also

Wraps the spreadsheets.create endpoint:

• https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/create

There is an article on writing Sheets:

• https://googlesheets4.tidyverse.org/articles/articles/write-sheets.html

Other write functions: gs4_formula(), range_delete(), range_flood(), range_write(), sheet_append(),
sheet_write()

Examples

if (gs4_has_token()) {
gs4_create("gs4-create-demo-1")

gs4_create("gs4-create-demo-2", locale = "en_CA")

gs4_create(
"gs4-create-demo-3",
locale = "fr_FR",
timeZone = "Europe/Paris"

)

https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/create
https://googlesheets4.tidyverse.org/articles/articles/write-sheets.html

10 gs4_deauth

gs4_create(
"gs4-create-demo-4",
sheets = c("alpha", "beta")

)

my_data <- data.frame(x = 1)
gs4_create(

"gs4-create-demo-5",
sheets = my_data

)

gs4_create(
"gs4-create-demo-6",
sheets = list(iris = head(iris), mtcars = head(mtcars))

)

clean up
gs4_find("gs4-create-demo") %>%

googledrive::drive_trash()
}

gs4_deauth Suspend authorization

Description

Put googlesheets4 into a de-authorized state. Instead of sending a token, googlesheets4 will send an
API key. This can be used to access public resources for which no Google sign-in is required. This
is handy for using googlesheets4 in a non-interactive setting to make requests that do not require
a token. It will prevent the attempt to obtain a token interactively in the browser. The user can
configure their own API key via gs4_auth_configure() and retrieve that key via gs4_api_key().
In the absence of a user-configured key, a built-in default key is used.

Usage

gs4_deauth()

See Also

Other auth functions: gs4_auth_configure(), gs4_auth()

Examples

if (interactive()) {
gs4_deauth()
gs4_user()

get metadata on the public 'deaths' spreadsheet
gs4_example("deaths") %>%

gs4_get()
}

gs4_endpoints 11

gs4_endpoints List Sheets endpoints

Description

Returns a list of selected Sheets API v4 endpoints, as stored inside the googlesheets4 package. The
names of this list (or the id sub-elements) are the nicknames that can be used to specify an endpoint
in request_generate(). For each endpoint, we store its nickname or id, the associated HTTP
method, the path, and details about the parameters. This list is derived programmatically from the
Sheets API v4 Discovery Document.

Usage

gs4_endpoints(i = NULL)

Arguments

i The name(s) or integer index(ices) of the endpoints to return. Optional. By
default, the entire list is returned.

Value

A list containing some or all of the subset of the Sheets API v4 endpoints that are used internally
by googlesheets4.

Examples

str(gs4_endpoints(), max.level = 2)
gs4_endpoints("sheets.spreadsheets.values.get")
gs4_endpoints(4)

gs4_example File IDs of example Sheets

Description

googlesheets4 ships with static IDs for some world-readable example Sheets for use in examples
and documentation. These functions make them easy to access by their nicknames.

Usage

gs4_example(matches)

gs4_examples(matches)

Arguments

matches A regular expression that matches the nickname of the desired example Sheet(s).
This argument is optional for gs4_examples() and, if provided, multiple matches
are allowed. gs4_example() requires this argument and requires that there is
exactly one match.

https://www.googleapis.com/discovery/v1/apis/sheets/v4/rest

12 gs4_find

Value

• gs4_example(): a single sheets_id object

• gs4_examples(): a named vector of all built-in examples, with class drive_id

Examples

gs4_examples()
gs4_examples("gap")
gs4_example("gapminder")

gs4_find Find Google Sheets

Description

Finds your Google Sheets. This is a very thin wrapper around googledrive::drive_find(), that
specifies you want to list Drive files where type = "spreadsheet". Therefore, note that this will
require auth for googledrive! See the article Using googlesheets4 with googledrive if you want to
coordinate auth between googlesheets4 and googledrive.

Usage

gs4_find(...)

Arguments

... Arguments (other than type, which is hard-wired as type = "spreadsheet")
that are passed along to googledrive::drive_find().

Value

An object of class dribble, a tibble with one row per item.

Examples

if (gs4_has_token()) {
see all your Sheets
gs4_find()

see 5 Sheets, prioritized by creation time
x <- gs4_find(order_by = "createdTime desc", n_max = 5)
x

hoist the creation date, using other packages in the tidyverse
x %>%
tidyr::hoist(drive_resource, created_on = "createdTime") %>%
dplyr::mutate(created_on = as.Date(created_on))

}

https://googlesheets4.tidyverse.org/articles/articles/drive-and-sheets.html

gs4_fodder 13

gs4_fodder Create useful spreadsheet filler

Description

Creates a data frame that is useful for filling a spreadsheet, when you just need a sheet to experiment
with. The data frame has n rows and m columns with these properties:

• Column names match what Sheets displays: "A", "B", "C", and so on.

• Inner cell values reflect the coordinates where each value will land in the sheet, in A1-notation.
So the first row is "B2", "C2", and so on. Note that this n-row data frame will occupy n + 1
rows in the sheet, because the column names occupy the first row.

Usage

gs4_fodder(n = 10, m = n)

Arguments

n Number of rows.

m Number of columns.

Value

A data frame of character vectors.

Examples

gs4_fodder()
gs4_fodder(5, 3)

gs4_formula Class for Google Sheets formulas

Description

In order to write a formula into Google Sheets, you need to store it as an object of class googlesheets4_formula.
This is how we distinguish a "regular" character string from a string that should be interpreted as a
formula. googlesheets4_formula is an S3 class implemented using the vctrs package.

Usage

gs4_formula(x = character())

Arguments

x Character.

Value

An S3 vector of class googlesheets4_formula.

https://vctrs.r-lib.org/articles/s3-vector.html

14 gs4_get

See Also

Other write functions: gs4_create(), range_delete(), range_flood(), range_write(), sheet_append(),
sheet_write()

Examples

if (gs4_has_token()) {
dat <- data.frame(x = c(1, 5, 3, 2, 4, 6))

ss <- gs4_create("gs4-formula-demo", sheets = dat)
ss

summaries <- tibble::tribble(
~desc, ~summaries,
"max", "=max(A:A)",
"sum", "=sum(A:A)",
"min", "=min(A:A)",
"sparkline", "=SPARKLINE(A:A, {\"color\", \"blue\"})"

)

explicitly declare a column as `googlesheets4_formula`
summaries$summaries <- gs4_formula(summaries$summaries)
summaries

range_write(ss, data = summaries, range = "C1", reformat = FALSE)

miscellany <- tibble::tribble(
~desc, ~example,
"hyperlink", "=HYPERLINK(\"http://www.google.com/\",\"Google\")",
"image", "=IMAGE(\"https://www.google.com/images/srpr/logo3w.png\")"

)
miscellany$example <- gs4_formula(miscellany$example)
miscellany

sheet_write(miscellany, ss = ss)

clean up
gs4_find("gs4-formula-demo") %>%

googledrive::drive_trash()
}

gs4_get Get Sheet metadata

Description

Retrieve spreadsheet-specific metadata, such as details on the individual (work)sheets or named
ranges.

• gs4_get() complements googledrive::drive_get(), which returns metadata that exists
for any file on Drive.

Usage

gs4_get(ss)

gs4_has_token 15

Arguments

ss Something that identifies a Google Sheet: its file ID, a URL from which we
can recover the ID, an instance of googlesheets4_spreadsheet (returned by
gs4_get()), or a dribble, which is how googledrive represents Drive files.
Processed through as_sheets_id().

Value

A list with S3 class googlesheets4_spreadsheet, for printing purposes.

See Also

Wraps the spreadsheets.get endpoint:

• https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/get

Examples

if (gs4_has_token()) {
gs4_get(gs4_example("mini-gap"))

}

gs4_has_token Is there a token on hand?

Description

Reports whether googlesheets4 has stored a token, ready for use in downstream requests.

Usage

gs4_has_token()

Value

Logical.

See Also

Other low-level API functions: gs4_token(), request_generate(), request_make()

Examples

gs4_has_token()

https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/get

16 gs4_token

gs4_random Generate a random Sheet name

Description

Generates a random name, suitable for a newly created Sheet, using ids::adjective_animal().

Usage

gs4_random(n = 1)

Arguments

n Number of names to generate.

Value

A character vector.

Examples

gs4_random()

gs4_token Produce configured token

Description

For internal use or for those programming around the Sheets API. Returns a token pre-processed
with httr::config(). Most users do not need to handle tokens "by hand" or, even if they need
some control, gs4_auth() is what they need. If there is no current token, gs4_auth() is called to
either load from cache or initiate OAuth2.0 flow. If auth has been deactivated via gs4_deauth(),
gs4_token() returns NULL.

Usage

gs4_token()

Value

A request object (an S3 class provided by httr).

See Also

Other low-level API functions: gs4_has_token(), request_generate(), request_make()

gs4_user 17

Examples

if (gs4_has_token()) {
req <- request_generate(
"sheets.spreadsheets.get",
list(spreadsheetId = "abc"),
token = gs4_token()

)
req

}

gs4_user Get info on current user

Description

Reveals the email address of the user associated with the current token. If no token has been loaded
yet, this function does not initiate auth.

Usage

gs4_user()

Value

An email address or, if no token has been loaded, NULL.

See Also

gargle::token_userinfo(), gargle::token_email(), gargle::token_tokeninfo()

Examples

gs4_user()

range_autofit Auto-fit columns or rows to the data

Description

Applies automatic resizing to either columns or rows of a (work)sheet. The width or height of
targeted columns or rows, respectively, is determined from the current cell contents. This only
affects the appearance of a sheet in the browser and doesn’t affect its values or dimensions in any
way.

Usage

range_autofit(ss, sheet = NULL, range = NULL, dimension = c("columns", "rows"))

18 range_autofit

Arguments

ss Something that identifies a Google Sheet: its file ID, a URL from which we
can recover the ID, an instance of googlesheets4_spreadsheet (returned by
gs4_get()), or a dribble, which is how googledrive represents Drive files.
Processed through as_sheets_id().

sheet Sheet to modify, in the sense of "worksheet" or "tab". You can identify a sheet
by name, with a string, or by position, with a number. Ignored if the sheet is
specified via range. If neither argument specifies the sheet, defaults to the first
visible sheet.

range Which columns or rows to resize. Optional. If you want to resize all columns
or all rows, use dimension instead. All the usual range specifications are ac-
cepted, but the targeted range must specify only columns (e.g. "B:F") or only
rows (e.g. "2:7").

dimension Ignored if range is given. If consulted, dimension must be either "columns"
(the default) or "rows". This is the simplest way to request auto-resize for all
columns or all rows.

Value

The input ss, as an instance of sheets_id

See Also

Makes an AutoResizeDimensionsRequest:

• https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/request#
autoresizedimensionsrequest

Examples

if (gs4_has_token()) {
dat <- tibble::tibble(
fruit = c("date", "lime", "pear", "plum")

)

ss <- gs4_create("range-autofit-demo", sheets = dat)
ss

open in the browser
gs4_browse(ss)

shrink column A to fit the short fruit names
range_autofit(ss)
in the browser, notice how the column width shrank

send some longer fruit names
dat2 <- tibble::tibble(

fruit = c("cucumber", "honeydew")
)
ss %>% sheet_append(dat2)
in the browser, see that column A is now too narrow to show the data

range_autofit(ss)
in the browser, see the column A reveals all the data now

https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/request#autoresizedimensionsrequest
https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/request#autoresizedimensionsrequest

range_delete 19

clean up
gs4_find("range-autofit-demo") %>%

googledrive::drive_trash()
}

range_delete Delete cells

Description

Deletes a range of cells and shifts other cells into the deleted area. There are several related tasks
that are implemented by other functions:

• To clear cells of their value and/or format, use range_clear().

• To delete an entire (work)sheet, use sheet_delete().

• To change the dimensions of a (work)sheet, use sheet_resize().

Usage

range_delete(ss, sheet = NULL, range, shift = NULL)

Arguments

ss Something that identifies a Google Sheet: its file ID, a URL from which we
can recover the ID, an instance of googlesheets4_spreadsheet (returned by
gs4_get()), or a dribble, which is how googledrive represents Drive files.
Processed through as_sheets_id().

sheet Sheet to delete, in the sense of "worksheet" or "tab". You can identify a sheet
by name, with a string, or by position, with a number. Ignored if the sheet is
specified via range. If neither argument specifies the sheet, defaults to the first
visible sheet.

range Cells to delete. There are a couple differences between range here and how it
works in other functions (e.g. range_read()):

• range must be specified.
• range must not be a named range.
• range must not be the name of a (work) sheet. Instead, use sheet_delete()

to delete an entire sheet. Row-only and column-only ranges are especially
relevant, such as "2:6" or "D". Remember you can also use the helpers in
cell-specification, such as cell_cols(4:6), or cell_rows(5).

shift Must be one of "up" or "left", if specified. Required if range is NOT a rows-only
or column-only range (in which case, we can figure it out for you). Determines
whether the deleted area is filled by shifting surrounding cells up or to the left.

Value

The input ss, as an instance of sheets_id

20 range_flood

See Also

Makes a DeleteRangeRequest:

• https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/request#
DeleteRangeRequest

Other write functions: gs4_create(), gs4_formula(), range_flood(), range_write(), sheet_append(),
sheet_write()

Examples

if (gs4_has_token()) {
create a data frame to use as initial data
df <- gs4_fodder(10)

create Sheet
ss <- gs4_create("range-delete-example", sheets = list(df))

delete some rows
range_delete(ss, range = "2:4")

delete a column
range_delete(ss, range = "C")

delete a rectangle and specify how to shift remaining cells
range_delete(ss, range = "B3:F4", shift = "left")

clean up
gs4_find("range-delete-example") %>%
googledrive::drive_trash()

}

range_flood Flood or clear a range of cells

Description

range_flood() "floods" a range of cells with the same content. range_clear() is a wrapper that
handles the common special case of clearing the cell value. Both functions, by default, also clear
the format, but this can be specified via reformat.

Usage

range_flood(ss, sheet = NULL, range = NULL, cell = NULL, reformat = TRUE)

range_clear(ss, sheet = NULL, range = NULL, reformat = TRUE)

Arguments

ss Something that identifies a Google Sheet: its file ID, a URL from which we
can recover the ID, an instance of googlesheets4_spreadsheet (returned by
gs4_get()), or a dribble, which is how googledrive represents Drive files.
Processed through as_sheets_id().

https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/request#DeleteRangeRequest
https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/request#DeleteRangeRequest

range_flood 21

sheet Sheet to write into, in the sense of "worksheet" or "tab". You can identify a sheet
by name, with a string, or by position, with a number.

range A cell range to read from. If NULL, all non-empty cells are read. Otherwise spec-
ify range as described in Sheets A1 notation or using the helpers documented
in cell-specification. Sheets uses fairly standard spreadsheet range notation, al-
though a bit different from Excel. Examples of valid ranges: "Sheet1!A1:B2",
"Sheet1!A:A", "Sheet1!1:2", "Sheet1!A5:A", "A1:B2", "Sheet1". Inter-
preted strictly, even if the range forces the inclusion of leading, trailing, or em-
bedded empty rows or columns. Takes precedence over skip, n_max and sheet.
Note range can be a named range, like "sales_data", without any cell refer-
ence.

cell The value to fill the cells in the range with. If unspecified, the default of NULL
results in clearing the existing value.

reformat Logical, indicates whether to reformat the affected cells. Currently googlesheets4
provides no real support for formatting, so reformat = TRUE effectively means
that edited cells become unformatted.

Value

The input ss, as an instance of sheets_id

See Also

Makes a RepeatCellRequest:

• https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/request#
repeatcellrequest

Other write functions: gs4_create(), gs4_formula(), range_delete(), range_write(), sheet_append(),
sheet_write()

Examples

if (gs4_has_token()) {
create a data frame to use as initial data
df <- gs4_fodder(10)

create Sheet
ss <- gs4_create("range-flood-demo", sheets = list(df))

default behavior (`cell = NULL`): clear value and format
range_flood(ss, range = "A1:B3")

clear value but preserve format
range_flood(ss, range = "C1:D3", reformat = FALSE)

send new value
range_flood(ss, range = "4:5", cell = ";-)")

send formatting
WARNING: use these unexported, internal functions at your own risk!
This not (yet) officially supported, but it's possible.
blue_background <- googlesheets4:::CellData(

userEnteredFormat = googlesheets4:::new(
"CellFormat",

https://developers.google.com/sheets/api/guides/concepts#a1_notation
https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/request#repeatcellrequest
https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/request#repeatcellrequest

22 range_read

backgroundColor = googlesheets4:::new(
"Color",
red = 159 / 255, green = 183 / 255, blue = 196 / 255

)
)

)
range_flood(ss, range = "I:J", cell = blue_background)

range_clear() is a shortcut where `cell = NULL` always
range_clear(ss, range = "9:9")
range_clear(ss, range = "10:10", reformat = FALSE)

clean up
gs4_find("range-flood-demo") %>%

googledrive::drive_trash()
}

range_read Read a Sheet into a data frame

Description

This is the main "read" function of the googlesheets4 package. It goes by two names, because we
want it to make sense in two contexts:

• read_sheet() evokes other table-reading functions, like readr::read_csv() and readxl::read_excel().
The sheet in this case refers to a Google (spread)Sheet.

• range_read() is the right name according to the naming convention used throughout the
googlesheets4 package.

read_sheet() and range_read() are synonyms and you can use either one. The first release of
googlesheets used a sheets_ prefix everywhere, so we had sheets_read(). It still works, but it’s
deprecated and will go away rather swiftly.

Usage

range_read(
ss,
sheet = NULL,
range = NULL,
col_names = TRUE,
col_types = NULL,
na = "",
trim_ws = TRUE,
skip = 0,
n_max = Inf,
guess_max = min(1000, n_max),
.name_repair = "unique"

)

read_sheet(
ss,
sheet = NULL,

range_read 23

range = NULL,
col_names = TRUE,
col_types = NULL,
na = "",
trim_ws = TRUE,
skip = 0,
n_max = Inf,
guess_max = min(1000, n_max),
.name_repair = "unique"

)

Arguments

ss Something that identifies a Google Sheet: its file ID, a URL from which we
can recover the ID, an instance of googlesheets4_spreadsheet (returned by
gs4_get()), or a dribble, which is how googledrive represents Drive files.
Processed through as_sheets_id().

sheet Sheet to read, in the sense of "worksheet" or "tab". You can identify a sheet
by name, with a string, or by position, with a number. Ignored if the sheet is
specified via range. If neither argument specifies the sheet, defaults to the first
visible sheet.

range A cell range to read from. If NULL, all non-empty cells are read. Otherwise spec-
ify range as described in Sheets A1 notation or using the helpers documented
in cell-specification. Sheets uses fairly standard spreadsheet range notation, al-
though a bit different from Excel. Examples of valid ranges: "Sheet1!A1:B2",
"Sheet1!A:A", "Sheet1!1:2", "Sheet1!A5:A", "A1:B2", "Sheet1". Inter-
preted strictly, even if the range forces the inclusion of leading, trailing, or em-
bedded empty rows or columns. Takes precedence over skip, n_max and sheet.
Note range can be a named range, like "sales_data", without any cell refer-
ence.

col_names TRUE to use the first row as column names, FALSE to get default names, or a
character vector to provide column names directly. If user provides col_types,
col_names can have one entry per column or one entry per unskipped column.

col_types Column types. Either NULL to guess all from the spreadsheet or a string of
readr-style shortcodes, with one character or code per column. If exactly one
col_type is specified, it is recycled. See Details for more.

na Character vector of strings to interpret as missing values. By default, blank cells
are treated as missing data.

trim_ws Logical. Should leading and trailing whitespace be trimmed from cell contents?

skip Minimum number of rows to skip before reading anything, be it column names
or data. Leading empty rows are automatically skipped, so this is a lower bound.
Ignored if range is given.

n_max Maximum number of data rows to parse into the returned tibble. Trailing empty
rows are automatically skipped, so this is an upper bound on the number of rows
in the result. Ignored if range is given. n_max is imposed locally, after reading
all non-empty cells, so, if speed is an issue, it is better to use range.

guess_max Maximum number of data rows to use for guessing column types.

.name_repair Handling of column names. By default, googlesheets4 ensures column names
are not empty and are unique. There is full support for .name_repair as docu-
mented in tibble::tibble().

https://developers.google.com/sheets/api/guides/concepts#a1_notation

24 range_read

Value

A tibble

Column specification

Column types must be specified in a single string of readr-style short codes, e.g. "cci?l" means
"character, character, integer, guess, logical". This is not where googlesheets4’s col spec will end
up, but it gets the ball rolling in a way that is consistent with readr and doesn’t reinvent any wheels.

Shortcodes for column types:

• _ or -: Skip. Data in a skipped column is still requested from the API (the high-level functions
in this package are rectangle-oriented), but is not parsed into the data frame output.

• ?: Guess. A type is guessed for each cell and then a consensus type is selected for the column.
If no atomic type is suitable for all cells, a list-column is created, in which each cell is con-
verted to an R object of "best" type. If no column types are specified, i.e. col_types = NULL,
all types are guessed.

• l: Logical.

• i: Integer. This type is never guessed from the data, because Sheets have no formal cell type
for integers.

• d or n: Numeric, in the sense of "double".

• D: Date. This type is never guessed from the data, because date cells are just serial datetimes
that bear a "date" format.

• t: Time of day. This type is never guessed from the data, because time cells are just serial
datetimes that bear a "time" format. Not implemented yet; returns POSIXct.

• T: Datetime, specifically POSIXct.

• c: Character.

• C: Cell. This type is unique to googlesheets4. This returns raw cell data, as an R list, which
consists of everything sent by the Sheets API for that cell. Has S3 type of "CELL_SOMETHING"
and "SHEETS_CELL". Mostly useful internally, but exposed for those who want direct access
to, e.g., formulas and formats.

• L: List, as in "list-column". Each cell is a length-1 atomic vector of its discovered type.

• Still to come: duration (code will be :) and factor (code will be f).

Examples

if (gs4_has_token()) {
ss <- gs4_example("deaths")
read_sheet(ss, range = "A5:F15")
read_sheet(ss, range = "other!A5:F15", col_types = "ccilDD")
read_sheet(ss, range = "arts_data", col_types = "ccilDD")

read_sheet(gs4_example("mini-gap"))
read_sheet(
gs4_example("mini-gap"),
sheet = "Europe",
range = "A:D",
col_types = "ccid"

)
}

range_read_cells 25

range_read_cells Read cells from a Sheet

Description

This low-level function returns cell data in a tibble with one row per cell. This tibble has inte-
ger variables row and column (referring to location with the Google Sheet), an A1-style refer-
ence loc, and a cell list-column. The flagship function read_sheet(), a.k.a. range_read(),
is what most users are looking for, rather than range_read_cells(). read_sheet() is basically
range_read_cells() (this function), followed by spread_sheet(), which looks after reshaping
and column typing. But if you really want raw cell data from the API, range_read_cells() is for
you!

Usage

range_read_cells(
ss,
sheet = NULL,
range = NULL,
skip = 0,
n_max = Inf,
cell_data = c("default", "full"),
discard_empty = TRUE

)

Arguments

ss Something that identifies a Google Sheet: its file ID, a URL from which we
can recover the ID, an instance of googlesheets4_spreadsheet (returned by
gs4_get()), or a dribble, which is how googledrive represents Drive files.
Processed through as_sheets_id().

sheet Sheet to read, in the sense of "worksheet" or "tab". You can identify a sheet
by name, with a string, or by position, with a number. Ignored if the sheet is
specified via range. If neither argument specifies the sheet, defaults to the first
visible sheet.

range A cell range to read from. If NULL, all non-empty cells are read. Otherwise spec-
ify range as described in Sheets A1 notation or using the helpers documented
in cell-specification. Sheets uses fairly standard spreadsheet range notation, al-
though a bit different from Excel. Examples of valid ranges: "Sheet1!A1:B2",
"Sheet1!A:A", "Sheet1!1:2", "Sheet1!A5:A", "A1:B2", "Sheet1". Inter-
preted strictly, even if the range forces the inclusion of leading, trailing, or em-
bedded empty rows or columns. Takes precedence over skip, n_max and sheet.
Note range can be a named range, like "sales_data", without any cell refer-
ence.

skip Minimum number of rows to skip before reading anything, be it column names
or data. Leading empty rows are automatically skipped, so this is a lower bound.
Ignored if range is given.

n_max Maximum number of data rows to parse into the returned tibble. Trailing empty
rows are automatically skipped, so this is an upper bound on the number of rows
in the result. Ignored if range is given. n_max is imposed locally, after reading
all non-empty cells, so, if speed is an issue, it is better to use range.

https://developers.google.com/sheets/api/guides/concepts#a1_notation

26 range_speedread

cell_data How much detail to get for each cell. "default" retrieves the fields actually
used when googlesheets4 guesses or imposes cell and column types. "full"
retrieves all fields in the CellData schema. The main differences relate to cell
formatting.

discard_empty Whether to discard cells that have no data. Literally, we check for an effectiveValue,
which is one of the fields in the CellData schema.

Value

A tibble with one row per cell in the range.

See Also

Wraps the spreadsheets.get endpoint:

• https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/get

Examples

if (gs4_has_token()) {
range_read_cells(gs4_example("deaths"), range = "arts_data")

if you want detailed and exhaustive cell data, do this
range_read_cells(
gs4_example("formulas-and-formats"),
cell_data = "full",
discard_empty = FALSE

)
}

range_speedread Read Sheet as CSV

Description

This function uses a quick-and-dirty method to read a Sheet that bypasses the Sheets API and,
instead, parses a CSV representation of the data. This can be much faster than range_read() –
noticeably so for "large" spreadsheets. There are real downsides, though, so we recommend this
approach only when the speed difference justifies it. Here are the limitations we must accept to get
faster reading:

• Only formatted cell values are available, not underlying values or details on the formats.

• We can’t target a named range as the range.

• We have no access to the data type of a cell, i.e. we don’t know that it’s logical, numeric, or
datetime. That must be re-discovered based on the CSV data (or specified by the user).

• Auth and error handling have to be handled a bit differently internally, which may lead to
behaviour that differs from other functions in googlesheets4.

Note that the Sheets API is still used to retrieve metadata on the target Sheet, in order to support
range specification. range_speedread() also sends an auth token with the request, unless a previ-
ous call to gs4_deauth() has put googlesheets4 into a de-authorized state.

https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/cells#CellData
https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/cells#CellData
https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/get

range_speedread 27

Usage

range_speedread(ss, sheet = NULL, range = NULL, skip = 0, ...)

Arguments

ss Something that identifies a Google Sheet: its file ID, a URL from which we
can recover the ID, an instance of googlesheets4_spreadsheet (returned by
gs4_get()), or a dribble, which is how googledrive represents Drive files.
Processed through as_sheets_id().

sheet Sheet to read, in the sense of "worksheet" or "tab". You can identify a sheet
by name, with a string, or by position, with a number. Ignored if the sheet is
specified via range. If neither argument specifies the sheet, defaults to the first
visible sheet.

range A cell range to read from. If NULL, all non-empty cells are read. Otherwise spec-
ify range as described in Sheets A1 notation or using the helpers documented
in cell-specification. Sheets uses fairly standard spreadsheet range notation, al-
though a bit different from Excel. Examples of valid ranges: "Sheet1!A1:B2",
"Sheet1!A:A", "Sheet1!1:2", "Sheet1!A5:A", "A1:B2", "Sheet1". Inter-
preted strictly, even if the range forces the inclusion of leading, trailing, or em-
bedded empty rows or columns. Takes precedence over skip, n_max and sheet.
Note range can be a named range, like "sales_data", without any cell refer-
ence.

skip Minimum number of rows to skip before reading anything, be it column names
or data. Leading empty rows are automatically skipped, so this is a lower bound.
Ignored if range is given.

... Passed along to the CSV parsing function (currently readr::read_csv()).

Value

A tibble

Examples

if (gs4_has_token()) {
if (require("readr")) {
since cell type is not available, use readr's col type specification
range_speedread(

gs4_example("deaths"),
sheet = "other",
range = "A5:F15",
col_types = cols(

Age = col_integer(),
`Date of birth` = col_date("%m/%d/%Y"),
`Date of death` = col_date("%m/%d/%Y")

)
)

}

write a Sheet that, by default, is NOT world-readable
(ss <- sheet_write(iris))

demo that range_speedread() sends a token, which is why we can read this
range_speedread(ss)

https://developers.google.com/sheets/api/guides/concepts#a1_notation

28 range_write

clean up
googledrive::drive_trash(ss)

}

range_write (Over)write new data into a range

Description

Experimental
Writes a data frame into a range of cells. Main differences from sheet_write() (a.k.a. write_sheet()):

• Narrower scope. range_write() literally targets some cells, not a whole (work)sheet.

• The edited rectangle is not explicitly styled as a table. Nothing special is done re: formatting
a header row or freezing rows.

• Column names can be suppressed. This means that, although data must be a data frame (at
least for now), range_write() can actually be used to write arbitrary data.

• The target (spread)Sheet and (work)sheet must already exist. There is no ability to create a
Sheet or add a worksheet.

• The target sheet dimensions are not "trimmed" to shrink-wrap the data. However, the sheet
might gain rows and/or columns, in order to write data to the user-specified range.

If you just want to add rows to an existing table, the function you probably want is sheet_append().

Usage

range_write(
ss,
data,
sheet = NULL,
range = NULL,
col_names = TRUE,
reformat = TRUE

)

Arguments

ss Something that identifies a Google Sheet: its file ID, a URL from which we
can recover the ID, an instance of googlesheets4_spreadsheet (returned by
gs4_get()), or a dribble, which is how googledrive represents Drive files.
Processed through as_sheets_id().

data A data frame.

sheet Sheet to write into, in the sense of "worksheet" or "tab". You can identify a
sheet by name, with a string, or by position, with a number. Ignored if the sheet
is specified via range. If neither argument specifies the sheet, defaults to the
first visible sheet.

range Where to write. This range argument has important similarities and differences
to range elsewhere (e.g. range_read()):

range_write 29

• Similarities: Can be a cell range, using A1 notation ("A1:D3") or using the
helpers in cell-specification. Can combine sheet name and cell range
("Sheet1!A5:A") or refer to a sheet by name (range = "Sheet1", although
sheet = "Sheet1" is preferred for clarity).

• Difference: Can NOT be a named range.
• Difference: range can be interpreted as the start of the target rectangle (the

upper left corner) or, more literally, as the actual target rectangle. See the
"Range specification" section for details.

col_names Logical, indicates whether to send the column names of data.

reformat Logical, indicates whether to reformat the affected cells. Currently googlesheets4
provides no real support for formatting, so reformat = TRUE effectively means
that edited cells become unformatted.

Value

The input ss, as an instance of sheets_id

Range specification

The range argument of range_write() is special, because the Sheets API can implement it in 2
different ways:

• If range represents exactly 1 cell, like "B3", it is taken as the start (or upper left corner) of the
targeted cell rectangle. The edited cells are determined implicitly by the extent of the data we
are writing. This frees you from doing fiddly range computations based on the dimensions of
the data.

• If range describes a rectangle with multiple cells, it is interpreted as the actual rectangle to
edit. It is possible to describe a rectangle that is unbounded on the right (e.g. "B2:4"), on the
bottom (e.g. "A4:C"), or on both the right and the bottom (e.g. cell_limits(c(2,3),c(NA,NA)).
Note that all cells inside the rectangle receive updated data and format. Important implication:
if the data object isn’t big enough to fill the target rectangle, the cells that don’t receive new
data are effectively cleared, i.e. the existing value and format are deleted.

See Also

If sheet size needs to change, makes an UpdateSheetPropertiesRequest:

• https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/request#
UpdateSheetPropertiesRequest

The main data write is done via an UpdateCellsRequest:

• https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/request#
updatecellsrequest

Other write functions: gs4_create(), gs4_formula(), range_delete(), range_flood(), sheet_append(),
sheet_write()

Examples

if (gs4_has_token()) {
create a Sheet with some initial, empty (work)sheets
(ss <- gs4_create("range-write-demo", sheets = c("alpha", "beta")))

https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/request#UpdateSheetPropertiesRequest
https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/request#UpdateSheetPropertiesRequest
https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/request#updatecellsrequest
https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/request#updatecellsrequest

30 request_generate

df <- data.frame(
x = 1:3,
y = letters[1:3]

)

write df somewhere other than the "upper left corner"
range_write(ss, data = df, range = "D6")

view your magnificent creation in the browser
gs4_browse(ss)

send data of disparate types to a 1-row rectangle
dat <- tibble::tibble(

string = "string",
logical = TRUE,
datetime = Sys.time()

)
range_write(ss, data = dat, sheet = "beta", col_names = FALSE)

send data of disparate types to a 1-column rectangle
dat <- tibble::tibble(

x = list(Sys.time(), FALSE, "string")
)
range_write(ss, data = dat, range = "beta!C5", col_names = FALSE)

clean up
googledrive::drive_find("range-write-demo") %>%

googledrive::drive_trash()
}

request_generate Generate a Google Sheets API request

Description

Generate a request, using knowledge of the Sheets API from its Discovery Document. Use request_make()
to execute the request. Most users should, instead, use higher-level wrappers that facilitate common
tasks, such as reading or writing worksheets or cell ranges. The functions here are intended for
internal use and for programming around the Sheets API.

request_generate() lets you provide the bare minimum of input. It takes a nickname for an
endpoint and:

• Uses the API spec to look up the method, path, and base_url.

• Checks params for validity and completeness with respect to the endpoint. Uses params for
URL endpoint substitution and separates remaining parameters into those destined for the
body versus the query.

• Adds an API key to the query if and only if token = NULL.

Usage

request_generate(
endpoint = character(),
params = list(),

https://developers.google.com/sheets/api/
https://www.googleapis.com/discovery/v1/apis/sheets/v4/rest

request_make 31

key = NULL,
token = gs4_token()

)

Arguments

endpoint Character. Nickname for one of the selected Sheets API v4 endpoints built into
googlesheets4. Learn more in gs4_endpoints().

params Named list. Parameters destined for endpoint URL substitution, the query, or
the body.

key API key. Needed for requests that don’t contain a token. The need for an API key
in the absence of a token is explained in Google’s document Credentials, access,
security, and identity. In order of precedence, these sources are consulted: the
formal key argument, a key parameter in params, a user-configured API key set
up with gs4_auth_configure() and retrieved with gs4_api_key().

token Set this to NULL to suppress the inclusion of a token. Note that, if auth has been
de-activated via gs4_deauth(), gs4_token() will actually return NULL.

Value

list()
Components are method, url, body, and token, suitable as input for request_make().

See Also

gargle::request_develop(), gargle::request_build(), gargle::request_make()

Other low-level API functions: gs4_has_token(), gs4_token(), request_make()

Examples

req <- request_generate(
"sheets.spreadsheets.get",
list(spreadsheetId = gs4_example("deaths")),
token = NULL

)
req

request_make Make a Google Sheets API request

Description

Low-level function to execute a Sheets API request. Most users should, instead, use higher-level
wrappers that facilitate common tasks, such as reading or writing worksheets or cell ranges. The
functions here are intended for internal use and for programming around the Sheets API.

make_request() does very, very little: it calls an HTTP method, only adding the googlesheets4
user agent. Typically the input has been created with request_generate() or gargle::request_build()
and the output is processed with process_response().

Usage

request_make(x, ..., encode = c("json", "multipart", "form", "raw"))

https://support.google.com/googleapi/answer/6158857?hl=en&ref_topic=7013279
https://support.google.com/googleapi/answer/6158857?hl=en&ref_topic=7013279

32 sheets_id

Arguments

x List. Holds the components for an HTTP request, presumably created with
request_generate() or gargle::request_build(). Must contain a method
and url. If present, body and token are used.

... Optional arguments passed through to the HTTP method.

encode If the body is a named list, how should it be encoded? This is essentially the
same as encode in all the httr::VERB()s, except we choose a different default:
a default of encode = "json" is much more useful when calling Google APIs.

Value

Object of class response from httr.

See Also

Other low-level API functions: gs4_has_token(), gs4_token(), request_generate()

sheets_id sheets_id object

Description

A sheets_id is a spreadsheet identifier, i.e. a string. This is what the Sheets and Drive APIs refer
to as spreadsheetId and fileId, respectively. When you print a sheets_id, we attempt to reveal
its current metadata (via gs4_get()). This can fail for a variety of reasons (e.g. if you’re offline),
but the sheets_id is always revealed and is returned, invisibly.

Any object of class sheets_id will also have the drive_id class, which is used by googledrive for
the same purpose. This means you can pipe a sheets_id object straight into googledrive functions
for all your Google Drive needs that have nothing to do with the file being a spreadsheet. Examples:
examine or change file name, path, or permissions, copy the file, or visit it in a web browser.

See Also

as_sheets_id()

Examples

if (gs4_has_token()) {
gs4_example("mini-gap")

}

sheet_add 33

sheet_add Add one or more (work)sheets

Description

Adds one or more (work)sheets to an existing (spread)Sheet. Note that sheet names must be unique.

Usage

sheet_add(ss, sheet = NULL, ..., .before = NULL, .after = NULL)

Arguments

ss Something that identifies a Google Sheet: its file ID, a URL from which we
can recover the ID, an instance of googlesheets4_spreadsheet (returned by
gs4_get()), or a dribble, which is how googledrive represents Drive files.
Processed through as_sheets_id().

sheet One or more new sheet names. If unspecified, one new sheet is added and Sheets
autogenerates a name of the form "SheetN".

... Optional parameters to specify additional properties, common to all of the new
sheet(s). Not relevant to most users. Specify fields of the SheetProperties
schema in name = value form.

.before, .after

Optional specification of where to put the new sheet(s). Specify, at most, one
of .before and .after. Refer to an existing sheet by name (via a string) or by
position (via a number). If unspecified, Sheets puts the new sheet(s) at the end.

Value

The input ss, as an instance of sheets_id

See Also

Makes a batch of AddSheetRequests (one per sheet):

• https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/request#
addsheetrequest

Other worksheet functions: sheet_append(), sheet_copy(), sheet_delete(), sheet_properties(),
sheet_relocate(), sheet_rename(), sheet_resize(), sheet_write()

Examples

if (gs4_has_token()) {
ss <- gs4_create("add-sheets-to-me")

the only required argument is the target spreadsheet
ss %>% sheet_add()

but you CAN specify sheet name and/or position
ss %>% sheet_add("apple", .after = 1)
ss %>% sheet_add("banana", .after = "apple")

https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/sheets#SheetProperties
https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/sheets#SheetProperties
https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/request#addsheetrequest
https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/request#addsheetrequest

34 sheet_append

add multiple sheets at once
ss %>% sheet_add(c("coconut", "dragonfruit"))

keeners can even specify additional sheet properties
ss %>%

sheet_add(
sheet = "eggplant",
.before = 1,
gridProperties = list(

rowCount = 3, columnCount = 6, frozenRowCount = 1
)

)

get an overview of the sheets
sheet_properties(ss)

clean up
gs4_find("add-sheets-to-me") %>%

googledrive::drive_trash()
}

sheet_append Append rows to a sheet

Description

Adds one or more new rows after the last row with data in a (work)sheet, increasing the row dimen-
sion of the sheet if necessary.

Usage

sheet_append(ss, data, sheet = 1)

Arguments

ss Something that identifies a Google Sheet: its file ID, a URL from which we
can recover the ID, an instance of googlesheets4_spreadsheet (returned by
gs4_get()), or a dribble, which is how googledrive represents Drive files.
Processed through as_sheets_id().

data A data frame.

sheet Sheet to append to, in the sense of "worksheet" or "tab". You can identify a sheet
by name, with a string, or by position, with a number.

Value

The input ss, as an instance of sheets_id

sheet_copy 35

See Also

Makes an AppendCellsRequest:

• https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/request#
AppendCellsRequest

Other write functions: gs4_create(), gs4_formula(), range_delete(), range_flood(), range_write(),
sheet_write()

Other worksheet functions: sheet_add(), sheet_copy(), sheet_delete(), sheet_properties(),
sheet_relocate(), sheet_rename(), sheet_resize(), sheet_write()

Examples

if (gs4_has_token()) {
we will recreate the table of "other" deaths from this example Sheet
(deaths <- gs4_example("deaths") %>%
range_read(range = "other_data", col_types = "????DD"))

split the data into 3 pieces, which we will send separately
deaths_one <- deaths[1:5,]
deaths_two <- deaths[6,]
deaths_three <- deaths[7:10,]

create a Sheet and send the first chunk of data
ss <- gs4_create("sheet-append-demo", sheets = list(deaths = deaths_one))

append a single row
ss %>% sheet_append(deaths_two)

append remaining rows
ss %>% sheet_append(deaths_three)

read and check against the original
deaths_replica <- range_read(ss, col_types = "????DD")
identical(deaths, deaths_replica)

clean up
gs4_find("sheet-append-demo") %>%

googledrive::drive_trash()
}

sheet_copy Copy a (work)sheet

Description

Copies a (work)sheet, within its current (spread)Sheet or to another Sheet.

Usage

sheet_copy(
from_ss,
from_sheet = NULL,

https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/request#AppendCellsRequest
https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/request#AppendCellsRequest

36 sheet_copy

to_ss = from_ss,
to_sheet = NULL,
.before = NULL,
.after = NULL

)

Arguments

from_ss Something that identifies a Google Sheet: its file ID, a URL from which we
can recover the ID, an instance of googlesheets4_spreadsheet (returned by
gs4_get()), or a dribble, which is how googledrive represents Drive files.
Processed through as_sheets_id().

from_sheet Sheet to copy, in the sense of "worksheet" or "tab". You can identify a sheet by
name, with a string, or by position, with a number. Defaults to the first visible
sheet.

to_ss The Sheet to copy to. Accepts all the same types of input as from_ss, which is
also what this defaults to, if unspecified.

to_sheet Optional. Name of the new sheet, as a string. If you don’t specify this, Google
generates a name, along the lines of "Copy of blah". Note that sheet names must
be unique within a Sheet, so if the automatic name would violate this, Google
also de-duplicates it for you, meaning you could conceivably end up with "Copy
of blah 2". If you have better ideas about sheet names, specify to_sheet.

.before, .after

Optional specification of where to put the new sheet. Specify, at most, one of
.before and .after. Refer to an existing sheet by name (via a string) or by
position (via a number). If unspecified, Sheets puts the new sheet at the end.

Value

The receiving Sheet, to_ ss, as an instance of sheets_id.

See Also

If the copy happens within one Sheet, makes a DuplicateSheetRequest:

• https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/request#
duplicatesheetrequest

If the copy is from one Sheet to another, wraps the spreadsheets.sheets/copyTo endpoint:

• https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets.sheets/
copyTo

and possibly makes a subsequent UpdateSheetPropertiesRequest:

• https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/request#
UpdateSheetPropertiesRequest

Other worksheet functions: sheet_add(), sheet_append(), sheet_delete(), sheet_properties(),
sheet_relocate(), sheet_rename(), sheet_resize(), sheet_write()

https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/request#duplicatesheetrequest
https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/request#duplicatesheetrequest
https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets.sheets/copyTo
https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets.sheets/copyTo
https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/request#UpdateSheetPropertiesRequest
https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/request#UpdateSheetPropertiesRequest

sheet_delete 37

Examples

if (gs4_has_token()) {
ss_aaa <- gs4_create(
"sheet-copy-demo-aaa",
sheets = list(iris = head(iris), chickwts = head(chickwts))

)

copy 'iris' sheet within existing Sheet, accept autogenerated name
ss_aaa %>%
sheet_copy()

copy 'iris' sheet within existing Sheet
specify new sheet's name and location
ss_aaa %>%
sheet_copy(to_sheet = "iris-the-sequel", .after = 1)

make a second Sheet
ss_bbb <- gs4_create("sheet-copy-demo-bbb")

copy 'chickwts' sheet from first Sheet to second
accept auto-generated name and default location
ss_aaa %>%
sheet_copy("chickwts", to_ss = ss_bbb)

copy 'chickwts' sheet from first Sheet to second,
WITH a specific name and into a specific location
ss_aaa %>%
sheet_copy(

"chickwts",
to_ss = ss_bbb, to_sheet = "chicks-two", .before = 1

)

clean up
googledrive::drive_find("sheet-copy-demo") %>%

googledrive::drive_trash()
}

sheet_delete Delete one or more (work)sheets

Description

Deletes one or more (work)sheets from a (spread)Sheet.

Usage

sheet_delete(ss, sheet)

Arguments

ss Something that identifies a Google Sheet: its file ID, a URL from which we
can recover the ID, an instance of googlesheets4_spreadsheet (returned by
gs4_get()), or a dribble, which is how googledrive represents Drive files.
Processed through as_sheets_id().

38 sheet_properties

sheet Sheet to delete, in the sense of "worksheet" or "tab". You can identify a sheet
by name, with a string, or by position, with a number. You can pass a vector
to delete multiple sheets at once or even a list, if you need to mix names and
positions.

Value

The input ss, as an instance of sheets_id

See Also

Makes an DeleteSheetsRequest:

• https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/request#
DeleteSheetRequest

Other worksheet functions: sheet_add(), sheet_append(), sheet_copy(), sheet_properties(),
sheet_relocate(), sheet_rename(), sheet_resize(), sheet_write()

Examples

if (gs4_has_token()) {
ss <- gs4_create("delete-sheets-from-me")
sheet_add(ss, c("alpha", "beta", "gamma", "delta"))

get an overview of the sheets
sheet_properties(ss)

delete sheets
sheet_delete(ss, 1)
sheet_delete(ss, "gamma")
sheet_delete(ss, list("alpha", 2))

get an overview of the sheets
sheet_properties(ss)

clean up
gs4_find("delete-sheets-from-me") %>%
googledrive::drive_trash()

}

sheet_properties Get data about (work)sheets

Description

Reveals full metadata or just the names for the (work)sheets inside a (spread)Sheet.

Usage

sheet_properties(ss)

sheet_names(ss)

https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/request#DeleteSheetRequest
https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/request#DeleteSheetRequest

sheet_relocate 39

Arguments

ss Something that identifies a Google Sheet: its file ID, a URL from which we
can recover the ID, an instance of googlesheets4_spreadsheet (returned by
gs4_get()), or a dribble, which is how googledrive represents Drive files.
Processed through as_sheets_id().

Value

• sheet_properties(): A tibble with one row per (work)sheet.

• sheet_names(): A character vector of (work)sheet names.

See Also

Other worksheet functions: sheet_add(), sheet_append(), sheet_copy(), sheet_delete(),
sheet_relocate(), sheet_rename(), sheet_resize(), sheet_write()

Examples

if (gs4_has_token()) {
ss <- gs4_example("gapminder")
sheet_properties(ss)
sheet_names(ss)

}

sheet_relocate Relocate one or more (work)sheets

Description

Move (work)sheets around within a (spread)Sheet. The outcome is most predictable for these com-
mon and simple use cases:

• Reorder and move one or more sheets to the front.

• Move a single sheet to a specific (but arbitrary) location.

• Move multiple sheets to the back with .after = 100 (.after can be any number greater than
or equal to the number of sheets).

If your relocation task is more complicated and you are puzzled by the result, break it into a se-
quence of simpler calls to sheet_relocate().

Usage

sheet_relocate(ss, sheet, .before = if (is.null(.after)) 1, .after = NULL)

Arguments

ss Something that identifies a Google Sheet: its file ID, a URL from which we
can recover the ID, an instance of googlesheets4_spreadsheet (returned by
gs4_get()), or a dribble, which is how googledrive represents Drive files.
Processed through as_sheets_id().

40 sheet_relocate

sheet Sheet to relocate, in the sense of "worksheet" or "tab". You can identify a sheet
by name, with a string, or by position, with a number. You can pass a vector
to move multiple sheets at once or even a list, if you need to mix names and
positions.

.before, .after

Specification of where to locate the sheets(s) identified by sheet. Exactly one
of .before and .after must be specified. Refer to an existing sheet by name
(via a string) or by position (via a number).

Value

The input ss, as an instance of sheets_id

See Also

Constructs a batch of UpdateSheetPropertiesRequests (one per sheet):

• https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/request#
UpdateSheetPropertiesRequest

Other worksheet functions: sheet_add(), sheet_append(), sheet_copy(), sheet_delete(),
sheet_properties(), sheet_rename(), sheet_resize(), sheet_write()

Examples

if (gs4_has_token()) {
sheet_names <- c("alfa", "bravo", "charlie", "delta", "echo", "foxtrot")
ss <- gs4_create("sheet-relocate-demo", sheets = sheet_names)
sheet_names(ss)

move one sheet, forwards then backwards
ss %>%
sheet_relocate("echo", .before = "bravo") %>%
sheet_names()

ss %>%
sheet_relocate("echo", .after = "delta") %>%
sheet_names()

reorder and move multiple sheets to the front
ss %>%

sheet_relocate(list("foxtrot", 4)) %>%
sheet_names()

put the sheets back in the original order
ss %>%

sheet_relocate(sheet_names) %>%
sheet_names()

reorder and move multiple sheets to the back
ss %>%

sheet_relocate(c("bravo", "alfa", "echo"), .after = 10) %>%
sheet_names()

clean up
googledrive::drive_find("sheet-relocate-demo") %>%

googledrive::drive_trash()
}

https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/request#UpdateSheetPropertiesRequest
https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/request#UpdateSheetPropertiesRequest

sheet_rename 41

sheet_rename Rename a (work)sheet

Description

Changes the name of a (work)sheet.

Usage

sheet_rename(ss, sheet = NULL, new_name)

Arguments

ss Something that identifies a Google Sheet: its file ID, a URL from which we
can recover the ID, an instance of googlesheets4_spreadsheet (returned by
gs4_get()), or a dribble, which is how googledrive represents Drive files.
Processed through as_sheets_id().

sheet Sheet to rename, in the sense of "worksheet" or "tab". You can identify a sheet
by name, with a string, or by position, with a number. Defaults to the first visible
sheet.

new_name New name of the sheet, as a string. This is required.

Value

The input ss, as an instance of sheets_id

See Also

Makes an UpdateSheetPropertiesRequest:

• https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/request#
UpdateSheetPropertiesRequest

Other worksheet functions: sheet_add(), sheet_append(), sheet_copy(), sheet_delete(),
sheet_properties(), sheet_relocate(), sheet_resize(), sheet_write()

Examples

if (gs4_has_token()) {
ss <- gs4_create(
"sheet-rename-demo",
sheets = list(iris = head(iris), chickwts = head(chickwts))

)
sheet_names(ss)

ss %>%
sheet_rename(1, new_name = "flowers") %>%
sheet_rename("chickwts", new_name = "poultry")

clean up
googledrive::drive_find("sheet-rename-demo") %>%

googledrive::drive_trash()
}

https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/request#UpdateSheetPropertiesRequest
https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/request#UpdateSheetPropertiesRequest

42 sheet_resize

sheet_resize Change the size of a (work)sheet

Description

Changes the number of rows and/or columns in a (work)sheet.

Usage

sheet_resize(ss, sheet = NULL, nrow = NULL, ncol = NULL, exact = FALSE)

Arguments

ss Something that identifies a Google Sheet: its file ID, a URL from which we
can recover the ID, an instance of googlesheets4_spreadsheet (returned by
gs4_get()), or a dribble, which is how googledrive represents Drive files.
Processed through as_sheets_id().

sheet Sheet to resize, in the sense of "worksheet" or "tab". You can identify a sheet by
name, with a string, or by position, with a number.

nrow, ncol Desired number of rows or columns, respectively. The default of NULL means to
leave unchanged.

exact Logical, indicating whether to impose nrow and ncol exactly or to treat them as
lower bounds. If exact = FALSE, sheet_resize() can only add cells. If exact
= TRUE, cells can be deleted and their contents are lost.

Value

The input ss, as an instance of sheets_id

See Also

Makes an UpdateSheetPropertiesRequest:

• <# https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/request#UpdateSheetPropertiesRequest>

Other worksheet functions: sheet_add(), sheet_append(), sheet_copy(), sheet_delete(),
sheet_properties(), sheet_relocate(), sheet_rename(), sheet_write()

Examples

if (gs4_has_token()) {
create a Sheet with the default initial worksheet
(ss <- gs4_create("sheet-resize-demo"))

see (work)sheet dims
sheet_properties(ss)

no resize occurs
sheet_resize(ss, nrow = 2, ncol = 6)

reduce sheet size
sheet_resize(ss, nrow = 5, ncol = 7, exact = TRUE)

sheet_write 43

add rows
sheet_resize(ss, nrow = 7)

add columns
sheet_resize(ss, ncol = 10)

add rows and columns
sheet_resize(ss, nrow = 9, ncol = 12)

re-inspect (work)sheet dims
sheet_properties(ss)

clean up
googledrive::drive_find("sheet-resize-demo") %>%

googledrive::drive_trash()
}

sheet_write (Over)write new data into a Sheet

Description

Experimental
This is one of the main ways to write data with googlesheets4. This function writes a data frame
into a (work)sheet inside a (spread)Sheet. The target sheet is styled as a table:

• Special formatting is applied to the header row, which holds column names.
• The first row (header row) is frozen.
• The sheet’s dimensions are set to "shrink wrap" the data.

If no existing Sheet is specified via ss, this function delegates to gs4_create() and the new Sheet’s
name is randomly generated. If that’s undesirable, call gs4_create() directly to get more control.

If no sheet is specified or if sheet doesn’t identify an existing sheet, a new sheet is added to receive
the data. If sheet specifies an existing sheet, it is effectively overwritten! All pre-existing values,
formats, and dimensions are cleared and the targeted sheet gets new values and dimensions from
data.

This function goes by two names, because we want it to make sense in two contexts:

• write_sheet() evokes other table-writing functions, like readr::write_csv(). The sheet
here technically refers to an individual (work)sheet (but also sort of refers to the associated
Google (spread)Sheet).

• sheet_write() is the right name according to the naming convention used throughout the
googlesheets4 package.

write_sheet() and sheet_write() are synonyms and you can use either one. The first release of
googlesheets used a sheets_ prefix everywhere, so we had sheets_write(). It still works, but it’s
deprecated and will go away rather swiftly.

Usage

sheet_write(data, ss = NULL, sheet = NULL)

write_sheet(data, ss = NULL, sheet = NULL)

44 sheet_write

Arguments

data A data frame. If it has zero rows, we send one empty pseudo-row of data, so
that we can apply the usual table styling. This empty row goes away (gets filled,
actually) the first time you send more data with sheet_append().

ss Something that identifies a Google Sheet: its file ID, a URL from which we
can recover the ID, an instance of googlesheets4_spreadsheet (returned by
gs4_get()), or a dribble, which is how googledrive represents Drive files.
Processed through as_sheets_id().

sheet Sheet to write into, in the sense of "worksheet" or "tab". You can identify a sheet
by name, with a string, or by position, with a number.

Value

The input ss, as an instance of sheets_id

See Also

Other write functions: gs4_create(), gs4_formula(), range_delete(), range_flood(), range_write(),
sheet_append()

Other worksheet functions: sheet_add(), sheet_append(), sheet_copy(), sheet_delete(),
sheet_properties(), sheet_relocate(), sheet_rename(), sheet_resize()

Examples

if (gs4_has_token()) {
df <- data.frame(
x = 1:3,
y = letters[1:3]

)

specify only a data frame, get a new Sheet, with a random name
ss <- write_sheet(df)
read_sheet(ss)

clean up
googledrive::drive_trash(ss)

create a Sheet with some initial, placeholder data
ss <- gs4_create(

"sheet-write-demo",
sheets = list(alpha = data.frame(x = 1), omega = data.frame(x = 1))

)

write df into its own, new sheet
sheet_write(df, ss = ss)

write mtcars into the sheet named "omega"
sheet_write(mtcars, ss = ss, sheet = "omega")

get an overview of the sheets
sheet_properties(ss)

view your magnificent creation in the browser
gs4_browse(ss)

spread_sheet 45

clean up
gs4_find("sheet-write-demo") %>%

googledrive::drive_trash()
}

spread_sheet Spread a data frame of cells into spreadsheet shape

Description

Reshapes a data frame of cells (presumably the output of range_read_cells()) into another data
frame, i.e., puts it back into the shape of the source spreadsheet. This function exists primarily for
internal use and for testing. The flagship function range_read(), a.k.a. read_sheet(), is what
most users are looking for. It is basically range_read_cells() + spread_sheet().

Usage

spread_sheet(
df,
col_names = TRUE,
col_types = NULL,
na = "",
trim_ws = TRUE,
guess_max = min(1000, max(df$row)),
.name_repair = "unique"

)

Arguments

df A data frame with one row per (nonempty) cell, integer variables row and column
(probably referring to location within the spreadsheet), and a list-column cell
of SHEET_CELL objects.

col_names TRUE to use the first row as column names, FALSE to get default names, or a
character vector to provide column names directly. If user provides col_types,
col_names can have one entry per column or one entry per unskipped column.

col_types Column types. Either NULL to guess all from the spreadsheet or a string of
readr-style shortcodes, with one character or code per column. If exactly one
col_type is specified, it is recycled. See Details for more.

na Character vector of strings to interpret as missing values. By default, blank cells
are treated as missing data.

trim_ws Logical. Should leading and trailing whitespace be trimmed from cell contents?

guess_max Maximum number of data rows to use for guessing column types.

.name_repair Handling of column names. By default, googlesheets4 ensures column names
are not empty and are unique. There is full support for .name_repair as docu-
mented in tibble::tibble().

Value

A tibble in the shape of the original spreadsheet, but enforcing user’s wishes regarding column
names, column types, NA strings, and whitespace trimming.

46 spread_sheet

Examples

if (gs4_has_token()) {
df <- gs4_example("mini-gap") %>%
range_read_cells()

spread_sheet(df)

^^ gets same result as ...
read_sheet(gs4_example("mini-gap"))

}

Index

anchored (cell-specification), 4
as_id.googlesheets4_spreadsheet, 3
as_sheets_id, 3
as_sheets_id(), 3, 8, 15, 18–20, 23, 25, 27,

28, 32–34, 36, 37, 39, 41, 42, 44

cell-specification, 4, 21, 23, 25, 27
cell_cols (cell-specification), 4
cell_limits (cell-specification), 4
cell_rows (cell-specification), 4
cellranger, 4

dribble, 3, 4, 8, 12, 15, 18–20, 23, 25, 27, 28,
33, 34, 36, 37, 39, 41, 42, 44

drive_id, 12, 32

gargle::AuthState, 7
gargle::gargle_oauth_cache(), 6
gargle::gargle_oauth_email(), 5
gargle::gargle_oob_default(), 6
gargle::gargle_options, 6
gargle::request_build(), 31, 32
gargle::request_develop(), 31
gargle::request_make(), 31
gargle::token_email(), 17
gargle::token_fetch(), 5, 6
gargle::token_tokeninfo(), 17
gargle::token_userinfo(), 17
googledrive, 3, 32
googledrive::as_id(), 3
googledrive::drive_find(), 12
googledrive::drive_get(), 14
googledrive::drive_get(YOUR_SHEET_NAME),

4
gs4_api_key (gs4_auth_configure), 7
gs4_api_key(), 10, 31
gs4_auth, 5, 7, 10
gs4_auth(), 7, 16
gs4_auth_configure, 6, 7, 10
gs4_auth_configure(), 6, 10, 31
gs4_browse, 8
gs4_create, 9, 14, 20, 21, 29, 35, 44
gs4_create(), 43
gs4_deauth, 6, 7, 10

gs4_deauth(), 7, 16, 26, 31
gs4_endpoints, 11
gs4_endpoints(), 31
gs4_example, 11
gs4_examples (gs4_example), 11
gs4_find, 12
gs4_find(YOUR_SHEET_NAME), 4
gs4_fodder, 13
gs4_formula, 9, 13, 20, 21, 29, 35, 44
gs4_get, 14
gs4_get(), 3, 4, 8, 15, 18–20, 23, 25, 27, 28,

33, 34, 36, 37, 39, 41, 42, 44
gs4_has_token, 15, 16, 31, 32
gs4_oauth_app (gs4_auth_configure), 7
gs4_random, 16
gs4_token, 15, 16, 31, 32
gs4_user, 17

httr, 16, 32
httr::config(), 6, 16
httr::oauth_app(), 7
httr::VERB(), 32

ids::adjective_animal(), 16

jsonlite::fromJSON(), 5, 7

range_autofit, 17
range_clear (range_flood), 20
range_clear(), 19
range_delete, 9, 14, 19, 21, 29, 35, 44
range_flood, 9, 14, 20, 20, 29, 35, 44
range_read, 22
range_read(), 19, 25, 26, 28, 45
range_read_cells, 25
range_read_cells(), 4, 45
range_speedread, 26
range_write, 9, 14, 20, 21, 28, 35, 44
read_sheet (range_read), 22
read_sheet(), 4, 25, 45
request_generate, 15, 16, 30, 32
request_generate(), 11, 31, 32
request_make, 15, 16, 31, 31
request_make(), 30, 31

47

48 INDEX

sheet_add, 33, 35, 36, 38–42, 44
sheet_append, 9, 14, 20, 21, 29, 33, 34, 36,

38–42, 44
sheet_append(), 28, 44
sheet_copy, 33, 35, 35, 38–42, 44
sheet_delete, 33, 35, 36, 37, 39–42, 44
sheet_delete(), 19
sheet_names (sheet_properties), 38
sheet_properties, 33, 35, 36, 38, 38, 40–42,

44
sheet_relocate, 33, 35, 36, 38, 39, 39, 41,

42, 44
sheet_rename, 33, 35, 36, 38–40, 41, 42, 44
sheet_resize, 33, 35, 36, 38–41, 42, 44
sheet_resize(), 19
sheet_write, 9, 14, 20, 21, 29, 33, 35, 36,

38–42, 43
sheet_write(), 9, 28
sheets_id, 3, 4, 9, 12, 18, 19, 21, 29, 32, 33,

34, 36, 38, 40–42, 44
spread_sheet, 45
spread_sheet(), 25

tibble, 24, 27
tibble::tibble(), 23, 45
Token2.0, 6

write_sheet (sheet_write), 43
write_sheet(), 28

	as_id.googlesheets4_spreadsheet
	as_sheets_id
	cell-specification
	gs4_auth
	gs4_auth_configure
	gs4_browse
	gs4_create
	gs4_deauth
	gs4_endpoints
	gs4_example
	gs4_find
	gs4_fodder
	gs4_formula
	gs4_get
	gs4_has_token
	gs4_random
	gs4_token
	gs4_user
	range_autofit
	range_delete
	range_flood
	range_read
	range_read_cells
	range_speedread
	range_write
	request_generate
	request_make
	sheets_id
	sheet_add
	sheet_append
	sheet_copy
	sheet_delete
	sheet_properties
	sheet_relocate
	sheet_rename
	sheet_resize
	sheet_write
	spread_sheet
	Index

