
Package ‘googlesheets’
June 29, 2018

Title Manage Google Spreadsheets from R

Version 0.3.0

Description Interact with Google Sheets from R.

License MIT + file LICENSE

URL https://github.com/jennybc/googlesheets

BugReports https://github.com/jennybc/googlesheets/issues

Depends R (>= 3.2.0)

Imports cellranger (>= 1.0.0), dplyr (>= 0.4.2), httr (>= 1.1.0),
jsonlite, purrr, readr (>= 0.2.2), stats, stringr, tibble,
tidyr, utils, xml2 (>= 1.0.0)

Suggests covr, ggplot2, knitr, rmarkdown, rprojroot, testthat (>=
1.0.0)

VignetteBuilder knitr

Encoding UTF-8

LazyData true

RoxygenNote 6.0.1.9000

NeedsCompilation no

Author Jennifer Bryan [aut, cre],
Joanna Zhao [aut]

Maintainer Jennifer Bryan <jenny@rstudio.com>

Repository CRAN

Date/Publication 2018-06-29 04:38:09 UTC

R topics documented:
cell-specification . 2
example-sheets . 3
extract_key_from_url . 5
gd_token . 5

1

https://github.com/jennybc/googlesheets
https://github.com/jennybc/googlesheets/issues

2 cell-specification

gd_user . 6
googlesheet . 7
googlesheets . 9
gs_add_row . 9
gs_auth . 10
gs_browse . 12
gs_copy . 13
gs_deauth . 13
gs_delete . 14
gs_download . 15
gs_edit_cells . 16
gs_grepdel . 17
gs_inspect . 18
gs_ls . 19
gs_new . 21
gs_read . 22
gs_read_cellfeed . 24
gs_read_csv . 26
gs_read_listfeed . 27
gs_rename . 30
gs_reshape_cellfeed . 31
gs_simplify_cellfeed . 32
gs_upload . 34
gs_webapp_auth_url . 34
gs_webapp_get_token . 35
gs_ws_delete . 36
gs_ws_ls . 37
gs_ws_new . 38
gs_ws_rename . 39
print.googlesheet . 40

Index 41

cell-specification Specify cells for reading or writing

Description

If you aren’t targetting all the cells in a worksheet, you can request that googlesheets limit a
read or write operation to a specific rectangle of cells. Any function that offers this flexibility
will have a range argument. The simplest usage is to specify an Excel-like cell range, such as
range = "D12:F15" or range = "R1C12:R6C15". The cell rectangle can be specified in various
other ways, using helper functions. In all cases, cell range processing is handled by the cellranger
package, where you can find full documentation for the functions used in the examples below.

example-sheets 3

See Also

The cellranger package has full documentation on cell specification and offers additional func-
tions for manipulating "A1:D10" style spreadsheet ranges. Here are the most relevant:

• cell_limits

• cell_rows

• cell_cols

• anchored

See a full list of functions in the cellranger index.

Examples

Not run:
gs_gap() %>% gs_read(ws = 2, range = "A1:D8")
gs_gap() %>% gs_read(ws = "Europe", range = cell_rows(1:4))
gs_gap() %>% gs_read(ws = "Europe", range = cell_rows(100:103),

col_names = FALSE)
gs_gap() %>% gs_read(ws = "Africa", range = cell_cols(1:4))
gs_gap() %>% gs_read(ws = "Asia", range = cell_limits(c(1, 5), c(4, NA)))

End(Not run)

example-sheets Examples of Google Sheets

Description

These functions return information on some Google Sheets we’ve published to the web for use in
examples and testing. For example, function names that start with gs_gap_ refer to a spreadsheet
based on the Gapminder data, which you can visit it in the browser:

Usage

gs_gap_key()

gs_gap_url()

gs_gap_ws_feed()

gs_gap()

gs_mini_gap_key()

gs_mini_gap_url()

4 example-sheets

gs_mini_gap_ws_feed()

gs_mini_gap()

gs_ff_key()

gs_ff_url()

gs_ff_ws_feed()

gs_ff()

Details

• Gapminder sheet

• mini Gapminder sheet

• Sheet with numeric formatting and formulas

Value

the key, browser URL, worksheets feed or googlesheet object corresponding to one of the example
sheets

Functions

• gs_gap_key: Gapminder sheet key

• gs_gap_url: Gapminder sheet URL

• gs_gap_ws_feed: Gapminder sheet worksheets feed

• gs_gap: Gapminder sheet as registered googlesheet

• gs_mini_gap_key: mini Gapminder sheet key

• gs_mini_gap_url: mini Gapminder sheet URL

• gs_mini_gap_ws_feed: mini Gapminder sheet worksheets feed

• gs_mini_gap: mini Gapminder sheet as registered googlesheet

• gs_ff_key: Key to a sheet with numeric formatting and formulas

• gs_ff_url: URL for a sheet with numeric formatting and formulas

• gs_ff_ws_feed: Worksheets feed for a sheet with numeric formatting and formulas

• gs_ff: Registered googlesheet for a sheet with numeric formatting and formulas

Examples

Not run:
gs_gap_key()
gs_gap_url()
browseURL(gs_gap_url())
gs_gap_ws_feed() # not so interesting to a user!
gs_gap()

https://w3id.org/people/jennybc/googlesheets_gap_url
https://w3id.org/people/jennybc/googlesheets_mini_gap_url
https://w3id.org/people/jennybc/googlesheets_ff_url

extract_key_from_url 5

gs_ff_key()
gs_ff_url()
gs_ff()
gs_browse(gs_ff())

End(Not run)

extract_key_from_url Extract sheet key from a URL

Description

Extract a sheet’s unique key from a wide variety of URLs, i.e. a browser URL for both old and new
Sheets, the "worksheets feed", and other links returned by the Sheets API.

Usage

extract_key_from_url(url)

Arguments

url character; a URL associated with a Google Sheet

Examples

Not run:
GAP_URL <- gs_gap_url()
GAP_KEY <- extract_key_from_url(GAP_URL)
gap_ss <- gs_key(GAP_KEY)
gap_ss

End(Not run)

gd_token Retrieve and report on the current token

Description

Prints information about the Google token that is in force and returns the token invisibly.

Usage

gd_token(verbose = TRUE)

gs_token(verbose = TRUE)

6 gd_user

Arguments

verbose logical; do you want informative messages?

Value

an OAuth token object, specifically a Token2.0, invisibly

Examples

Not run:
load/refresh existing credentials, if available
otherwise, go to browser for authentication and authorization
gs_auth()

gd_token()

End(Not run)

gd_user Retrieve information about the current Google user

Description

Retrieve information about the Google user that has authorized googlesheets to call the Drive and
Sheets APIs on their behalf. As long as full = FALSE (the default), only the most useful subset of
the information available from the "about" endpoint of the Drive API is returned. This is also the
information exposed in the print method:

Usage

gd_user(full = FALSE, verbose = TRUE)

gs_user(full = FALSE, verbose = TRUE)

Arguments

full Logical, indicating whether to return selected (FALSE, the default) or full (TRUE)
user information.

verbose logical; do you want informative messages?

Details

• User’s display name
• User’s email
• Date-time of user info lookup
• User’s permission ID
• User’s root folder ID

When full = TRUE, all information provided by the API is returned.

https://developers.google.com/drive/v2/reference/about/get

googlesheet 7

Value

an object of S3 class ‘drive_user‘, which is just a list

See Also

Other auth functions: gs_auth, gs_deauth

Examples

Not run:
these are synonyms: gd = Google Drive, gs = Google Sheets
gd_user()
gs_user()

End(Not run)

googlesheet Register a Google Sheet

Description

The googlesheets package must gather information on a Google Sheet from the API prior to
any requests to read or write data. We call this registering the sheet and store the result in a
googlesheet object. Note this object does not contain any sheet data, but rather contains metadata
about the sheet. We populate a googlesheet object with information from the worksheets feed and,
if available, also from the spreadsheets feed. Choose from the functions below depending on the
type of sheet-identifying input you will provide. Is it a sheet title, key, browser URL, or worksheets
feed (another URL, mostly used internally)?

Usage

gs_title(x, verbose = TRUE)

gs_key(x, lookup = NULL, visibility = NULL, verbose = TRUE)

gs_url(x, lookup = NULL, visibility = NULL, verbose = TRUE)

gs_ws_feed(x, lookup = NULL, verbose = TRUE)

gs_gs(x, visibility = NULL, verbose = TRUE)

Arguments

x sheet-identifying information; a character vector of length one holding sheet
title, key, browser URL or worksheets feed OR, in the case of gs_gs only, a
googlesheet object

https://developers.google.com/google-apps/spreadsheets/
https://developers.google.com/google-apps/spreadsheets/worksheets
https://developers.google.com/google-apps/spreadsheets/worksheets#retrieve_a_list_of_spreadsheets

8 googlesheet

verbose logical; do you want informative messages?

lookup logical, optional. Controls whether googlesheets will place authorized API
requests during registration. If unspecified, will be set to TRUE if authorization
has previously been used in this R session, if working directory contains a file
named .httr-oauth, or if x is a worksheets feed or googlesheet object that
specifies "public" visibility.

visibility character, either "public" or "private". Consulted during explicit construction
of a worksheets feed from a key, which happens only when lookup = FALSE
and googlesheets is prevented from looking up information in the spreadsheets
feed. If unspecified, will be set to "public" if lookup = FALSE and "private" if
lookup = TRUE. Consult the API docs for more info about visibility

Details

A registered googlesheet will contain information on:

• sheet_key the key of the spreadsheet

• sheet_title the title of the spreadsheet

• n_ws the number of worksheets contained in the spreadsheet

• ws_feed the "worksheets feed" of the spreadsheet

• updated the time of last update (at time of registration)

• reg_date the time of registration

• visibility visibility of spreadsheet (Google’s confusing vocabulary); actually, does not de-
scribe a property of spreadsheet itself but rather whether requests will be made with or without
authorization

• is_public logical indicating visibility is "public" (meaning unauthenticated requests will be
sent), as opposed to "private" (meaning authenticated requests will be sent)

• author the name of the owner

• email the email of the owner

• links data.frame of links specific to the spreadsheet

• ws a data.frame about the worksheets contained in the spreadsheet

A googlesheet object will contain this information from the spreadsheets feed if it was available
at the time of registration:

• alt_key alternate key; applies only to "old" sheets

Since the spreadsheets feed contains private user data, googlesheets must be properly autho-
rized to access it. So a googlesheet object will only contain info from the spreadsheets feed if
lookup = TRUE, which directs us to look up sheet-identifying information in the spreadsheets feed.

Value

a googlesheet object

https://developers.google.com/google-apps/spreadsheets/worksheets#sheets_api_urls_visibilities_and_projections

googlesheets 9

googlesheets googlesheets package

Description

Google spreadsheets R API

Details

See the README on CRAN or GitHub

gs_add_row Append rows to a spreadsheet

Description

Add rows to an existing worksheet within an existing spreadsheet. This is based on the list feed,
which has a strong assumption that the data occupies a neat rectangle in the upper left corner of the
sheet. This function specifically uses this method, which "inserts the new row immediately after
the last row that appears in the list feed, which is to say immediately before the first entirely blank
row."

Usage

gs_add_row(ss, ws = 1, input = "", verbose = TRUE)

Arguments

ss a registered Google spreadsheet, i.e. a googlesheet object

ws positive integer or character string specifying index or title, respectively, of the
worksheet

input new cell values, as an object that can be coerced into a character vector, presum-
ably an atomic vector, a factor, a matrix or a data.frame

verbose logical; do you want informative messages?

Details

At the moment, this function will only work in a sheet that has a proper header row of variable
or column names and at least one pre-existing data row. If you get Error : No matches, that
suggests the worksheet doesn’t meet these minimum requirements. In the future, we will try harder
to populate the sheet as necessary, e.g. create default variable names in a header row and be able to
cope with input being the first row of data.

If input is two-dimensional, internally we call gs_add_row once per input row.

https://cran.r-project.org/package=googlesheets/README.html
https://github.com/jennybc/googlesheets#readme
https://developers.google.com/google-apps/spreadsheets/#working_with_list-based_feeds
https://developers.google.com/google-apps/spreadsheets/#adding_a_list_row

10 gs_auth

See Also

gs_edit_cells

Examples

Not run:
yo <- gs_copy(gs_gap(), to = "yo")
yo <- gs_add_row(yo, ws = "Oceania",

input = c("Valinor", "Aman", "2015", "10000",
"35", "1000.5"))

tail(gs_read(yo, ws = "Oceania"))

gs_delete(yo)

End(Not run)

gs_auth Authorize googlesheets

Description

Authorize googlesheets to view and manage your files. You will be directed to a web browser,
asked to sign in to your Google account, and to grant googlesheets permission to operate on your
behalf with Google Sheets and Google Drive. By default, these user credentials are cached in a
file named .httr-oauth in the current working directory, from where they can be automatically
refreshed, as necessary.

Usage

gs_auth(token = NULL, new_user = FALSE,
key = getOption("googlesheets.client_id"),
secret = getOption("googlesheets.client_secret"),
cache = getOption("googlesheets.httr_oauth_cache"), verbose = TRUE)

Arguments

token optional; an actual token object or the path to a valid token stored as an .rds file

new_user logical, defaults to FALSE. Set to TRUE if you want to wipe the slate clean and
re-authenticate with the same or different Google account. This disables the
.httr-oauth file in current working directory.

key, secret the "Client ID" and "Client secret" for the application; defaults to the ID and
secret built into the googlesheets package

cache logical indicating if googlesheets should cache credentials in the default cache
file .httr-oauth

verbose logical; do you want informative messages?

gs_auth 11

Details

Most users, most of the time, do not need to call this function explicitly – it will be triggered by the
first action that requires authorization. Even when called, the default arguments will often suffice.
However, when necessary, this function allows the user to

• force the creation of a new token

• retrieve current token as an object, for possible storage to an .rds file

• read the token from an object or from an .rds file

• provide your own app key and secret – this requires setting up a new project in Google Devel-
opers Console

• prevent caching of credentials in .httr-oauth

In a direct call to gs_auth, the user can provide the token, app key and secret explicitly and can
dictate whether interactively-obtained credentials will be cached in .httr_oauth. If unspecified,
these arguments are controlled via options, which, if undefined at the time googlesheets is loaded,
are defined like so:

key Set to option googlesheets.client_id, which defaults to a client ID that ships with the
package

secret Set to option googlesheets.client_secret, which defaults to a client secret that ships
with the package

cache Set to option googlesheets.httr_oauth_cache, which defaults to TRUE

To override these defaults in persistent way, predefine one or more of them with lines like this in a
.Rprofile file:

options(googlesheets.client_id = "FOO",
googlesheets.client_secret = "BAR",
googlesheets.httr_oauth_cache = FALSE)

See Startup for possible locations for this file and the implications thereof.

More detail is available from Using OAuth 2.0 for Installed Applications. See gs_webapp_auth_url
and gs_webapp_get_token for functions that execute the "web server application" flow.

Value

an OAuth token object, specifically a Token2.0, invisibly

See Also

Other auth functions: gd_user, gs_deauth

https://console.developers.google.com
https://console.developers.google.com
https://developers.google.com/identity/protocols/OAuth2InstalledApp

12 gs_browse

Examples

Not run:
load/refresh existing credentials, if available
otherwise, go to browser for authentication and authorization
gs_auth()

force a new token to be obtained
gs_auth(new_user = TRUE)

store token in an object and then to file
ttt <- gs_auth()
saveRDS(ttt, "ttt.rds")

load a pre-existing token
gs_auth(token = ttt) # from an object
gs_auth(token = "ttt.rds") # from .rds file

End(Not run)

gs_browse Visit a Google Sheet in the browser

Description

Visit a Google Sheet in the browser

Usage

gs_browse(ss, ws = 1)

Arguments

ss a registered Google spreadsheet, i.e. a googlesheet object

ws positive integer or character string specifying index or title, respectively, of the
worksheet

Value

the googlesheet object given as input, invisibly

Examples

Not run:
gap_ss <- gs_gap()
gs_browse(gap_ss)
gs_browse(gap_ss, ws = 3)
gs_browse(gap_ss, ws = "Europe")

assign and browse at once

gs_copy 13

gap_ss <- gs_gap() %>% gs_browse()

End(Not run)

gs_copy Copy an existing spreadsheet

Description

You can copy a spreadsheet that you own or a sheet owned by a third party that has been made
accessible via the sharing dialog options. This function calls the Google Drive API.

Usage

gs_copy(from, to = NULL, verbose = TRUE)

Arguments

from a registered Google spreadsheet, i.e. a googlesheet object

to character string giving the new title of the sheet; if NULL, then the copy will be
titled "Copy of ..."

verbose logical; do you want informative messages?

Examples

Not run:
copy the Gapminder example sheet
gap_ss <- gs_copy(gs_gap(), to = "Gapminder_copy")
gap_ss
gs_delete(gap_ss)

End(Not run)

gs_deauth Suspend authorization

Description

Suspend googlesheets’ authorization to place requests to the Drive and Sheets APIs on behalf of
the authenticated user.

Usage

gs_deauth(clear_cache = TRUE, verbose = TRUE)

https://developers.google.com/drive/v2/reference/

14 gs_delete

Arguments

clear_cache logical indicating whether to disable the .httr-oauth file in working directory,
if such exists, by renaming to .httr-oauth-SUSPENDED

verbose logical; do you want informative messages?

See Also

Other auth functions: gd_user, gs_auth

Examples

Not run:
gs_deauth()

End(Not run)

gs_delete Delete a spreadsheet

Description

Move a spreadsheet to trash on Google Drive. You must own a sheet in order to move it to the trash.
If you try to delete a sheet you do not own, a 403 Forbidden HTTP status code will be returned;
third party spreadsheets can only be moved to the trash manually in the web browser (which only
removes them from your Google Sheets home screen, in any case). If you trash a spreadsheet that is
shared with others, it will no longer appear in any of their Google Drives. If you delete something
by mistake, remain calm, and visit the trash in Google Drive, find the sheet, and restore it.

Usage

gs_delete(ss, verbose = TRUE)

Arguments

ss a registered Google spreadsheet, i.e. a googlesheet object

verbose logical; do you want informative messages?

Value

logical indicating if the deletion was successful

See Also

gs_grepdel and gs_vecdel for handy wrappers that help you delete sheets by title, with the ability
to delete multiple sheets at once

Other sheet deletion functions: gs_grepdel

https://drive.google.com/drive/#trash

gs_download 15

Examples

Not run:
foo <- gs_new("new_sheet")
gs_delete(foo)

End(Not run)

gs_download Download a spreadsheet

Description

Export a Google Sheet as a .csv, .pdf, or .xlsx file. You can download a sheet that you own or a
sheet owned by a third party that has been made accessible via the sharing dialog options. You can
download the entire spreadsheet (.pdf and .xlsx formats only) or a single worksheet (all formats).
This function calls the Google Drive API.

Usage

gs_download(from, ws = NULL, to = NULL, overwrite = FALSE,
verbose = TRUE)

Arguments

from a registered Google spreadsheet, i.e. a googlesheet object

ws positive integer or character string specifying index or title, respectively, of the
worksheet

to path to write file; file extension must be one of .csv, .pdf, or .xlsx, which dictates
the export format; defaults to foo.xlsx where foo is a safe filename constructed
from the title of the Sheet being downloaded

overwrite logical, indicating whether to overwrite an existing local file

verbose logical; do you want informative messages?

Details

If the worksheet is unspecified, i.e. if ws = NULL, then the entire spreadsheet will be exported (.pdf
and xlsx formats) or the first worksheet will be exported (.csv format)

Value

The normalized path of the downloaded file, after confirmed success, or NULL, otherwise, invisibly.

https://developers.google.com/drive/v2/reference/

16 gs_edit_cells

Examples

Not run:
gs_download(gs_gap(), to = "gapminder.xlsx")
file.remove("gapminder.xlsx")

End(Not run)

gs_edit_cells Edit cells

Description

Modify the contents of one or more cells. The cells to be edited are specified implicitly by a single
anchor cell, which will be the upper left corner of the edited cell region, and the size and shape of
the input. If the input has rectangular shape, i.e. is a data.frame or matrix, then a similarly shaped
range of cells will be updated. If the input has no dimension, i.e. it’s a vector, then byrow controls
whether edited cells will extend from the anchor across a row or down a column.

Usage

gs_edit_cells(ss, ws = 1, input = "", anchor = "A1", byrow = FALSE,
col_names = NULL, trim = FALSE, verbose = TRUE)

Arguments

ss a registered Google spreadsheet, i.e. a googlesheet object

ws positive integer or character string specifying index or title, respectively, of the
worksheet

input new cell values, as an object that can be coerced into a character vector, presum-
ably an atomic vector, a factor, a matrix or a data.frame

anchor single character string specifying the upper left cell of the cell range to edit;
positioning notation can be either "A1" or "R1C1"

byrow logical; should we fill cells across a row (byrow = TRUE) or down a col-
umn (byrow = FALSE, default); consulted only when input is a vector, i.e.
dim(input) is NULL

col_names logical; indicates whether column names of input should be included in the edit,
i.e. prepended to the input; consulted only when length(dim(input)) equals
2, i.e. input is a matrix or data.frame

trim logical; do you want the worksheet extent to be modified to correspond exactly
to the cells being edited?

verbose logical; do you want informative messages?

See Also

gs_add_row

gs_grepdel 17

Examples

Not run:
yo <- gs_new("yo")
yo <- gs_edit_cells(yo, input = head(iris), trim = TRUE)
gs_read(yo)

yo <- gs_ws_new(yo, ws = "byrow_FALSE")
yo <- gs_edit_cells(yo, ws = "byrow_FALSE",

input = LETTERS[1:5], anchor = "A8")
gs_read_cellfeed(yo, ws = "byrow_FALSE", range = "A8:A12") %>%

gs_simplify_cellfeed()

yo <- gs_ws_new(yo, ws = "byrow_TRUE")
yo <- gs_edit_cells(yo, ws = "byrow_TRUE", input = LETTERS[1:5],

anchor = "A8", byrow = TRUE)
gs_read_cellfeed(yo, ws = "byrow_TRUE", range = "A8:E8") %>%

gs_simplify_cellfeed()

yo <- gs_ws_new(yo, ws = "col_names_FALSE")
yo <- gs_edit_cells(yo, ws = "col_names_FALSE", input = head(iris),

trim = TRUE, col_names = FALSE)
gs_read_cellfeed(yo, ws = "col_names_FALSE") %>%

gs_reshape_cellfeed(col_names = FALSE)

gs_delete(yo)

End(Not run)

gs_grepdel Delete several spreadsheets at once by title

Description

These functions violate the general convention of operating on a registered Google sheet, i.e. on a
googlesheet object. But the need to delete a bunch of sheets at once, based on a vector of titles or
on a regular expression, came up so much during development and testing, that it seemed wise to
package this as a function.

Usage

gs_grepdel(regex, ..., verbose = TRUE)

gs_vecdel(vec, verbose = TRUE)

Arguments

regex character; a regular expression; sheets whose titles match will be deleted

... optional arguments to be passed to grep when matching regex to sheet titles

18 gs_inspect

verbose logical; do you want informative messages?
vec character vector of sheet titles to delete

See Also

gs_delete for more detail on what you can and cannot delete and how to recover from accidental
deletion

Other sheet deletion functions: gs_delete

Examples

Not run:
sheet_title <- c("cat", "catherine", "tomCAT", "abdicate", "FLYCATCHER")
ss <- lapply(paste0("TEST-", sheet_title), gs_new)
list, for safety!, then delete 'TEST-abdicate' and 'TEST-catherine'
gs_ls(regex = "TEST-[a-zA-Z]*cat[a-zA-Z]+$")
gs_grepdel(regex = "TEST-[a-zA-Z]*cat[a-zA-Z]+$")

list, for safety!, then delete the rest,
i.e. 'TEST-cat', 'TEST-tomCAT', and 'TEST-FLYCATCHER'
gs_ls(regex = "TEST-[a-zA-Z]*cat[a-zA-Z]*$", ignore.case = TRUE)
gs_grepdel(regex = "TEST-[a-zA-Z]*cat[a-zA-Z]*$", ignore.case = TRUE)

using gs_vecdel()
sheet_title <- c("cat", "catherine", "tomCAT", "abdicate", "FLYCATCHER")
ss <- lapply(paste0("TEST-", sheet_title), gs_new)
delete two of these sheets
gs_vecdel(c("TEST-cat", "TEST-abdicate"))
see? they are really gone, but the others remain
gs_ls(regex = "TEST-[a-zA-Z]*cat[a-zA-Z]*$", ignore.case = TRUE)
delete the remainder
gs_vecdel(c("TEST-FLYCATCHER", "TEST-tomCAT", "TEST-catherine"))
see? they are all gone now
gs_ls(regex = "TEST-[a-zA-Z]*cat[a-zA-Z]*$", ignore.case = TRUE)

End(Not run)

gs_inspect Visual overview of populated cells

Description

This function is still experimental. Expect it to change! Or disappear? This function plots a
data.frame and gives a sense of what sort of data is where (e.g. character vs. numeric vs factor).
Empty cells (ie. NA’s) are also indicated. The purpose is to get oriented to sheets that contain more
than one data rectangle. Right now, due to the tabular, data-frame nature of the input, we aren’t
really conveying when disparate data types appear in a column. That might be something to work
on in a future version, if this proves useful. That would require working with cell-by-cell data, i.e.
from the cell feed.

gs_ls 19

Usage

gs_inspect(x)

Arguments

x data.frame or tbl_df

Value

a ggplot object

Examples

Not run:
gs_inspect(iris)

data recorded from a game of ultimate frisbee
ulti_key <- "1223dpf3vnjZUYUnCM8rBSig3JlGrAu1Qu6VmPvdEn4M"
ulti_ss <- ulti_key %>% gs_key()
ulti_dat <- ulti_ss %>% gs_read()
gs_inspect(ulti_dat)

totally synthetic example
x <- suppressWarnings(matrix(0:1, 21, 21))
x[sample(21^2, 10)] <- NA
x <- as.data.frame(x)
some_columns <- seq(from = 1, to = 21, by = 3)
x[some_columns] <- lapply(x[some_columns], as.numeric)
gs_inspect(x)

End(Not run)

gs_ls List sheets a la Google Sheets home screen

Description

Lists spreadsheets that the user would see in the Google Sheets home screen: https://docs.
google.com/spreadsheets/. This function returns the information available from the spread-
sheets feed of the Google Sheets API. Since this is non-public user data, use of gs_ls will require
authorization

Usage

gs_ls(regex = NULL, ..., verbose = TRUE)

https://docs.google.com/spreadsheets/
https://docs.google.com/spreadsheets/
https://developers.google.com/google-apps/spreadsheets/#retrieving_a_list_of_spreadsheets
https://developers.google.com/google-apps/spreadsheets/#retrieving_a_list_of_spreadsheets

20 gs_ls

Arguments

regex character; one or more regular expressions; if non-NULL only sheets whose ti-
tles match will be listed; multiple regular expressions are concatenated with the
vertical bar

... optional arguments to be passed to grep when matching regex to sheet titles

verbose logical; do you want informative messages?

Details

This listing gives a partial view of the sheets available for access (why just partial? see below). For
these sheets, we retrieve sheet title, sheet key, author, user’s permission, date-time of last update,
version (old vs new sheet?), various links, and an alternate key (only relevant to old sheets).

The resulting table provides a map between readily available information, such as sheet title, and
more obscure information you might use in scripts, such as the sheet key. This sort of "table lookup"
is exploited in the functions gs_title, gs_key, gs_url, and gs_ws_feed, which register a sheet
based on various forms of user input.

Which sheets show up in this table? Certainly those owned by the user. But also a subset of the
sheets owned by others but visible to the user. We have yet to find explicit Google documentation
on this matter. Anecdotally, sheets owned by a third party but for which the user has read access
seem to appear in this listing if the user has visited them in the browser. This is an important point
for usability because a sheet can be summoned by title instead of key only if it appears in this listing.
For shared sheets that may not appear in this listing, a more robust workflow is to specify the sheet
via its browser URL or unique sheet key.

Value

a googlesheet_ls object, which is a tbl_df with one row per sheet (we use a custom class only
to control how this object is printed)

Examples

Not run:
gs_ls()

yo_names <- paste0(c("yo", "YO"), c("", 1:3))
yo_ret <- yo_names %>% lapply(gs_new)
gs_ls("yo")
gs_ls("yo", ignore.case = TRUE)
gs_ls("yo[23]", ignore.case = TRUE)
gs_grepdel("yo", ignore.case = TRUE)
gs_ls("yo", ignore.case = TRUE)

c("foo", "yo") %>% lapply(gs_new)
gs_ls("yo")
gs_ls("yo|foo")
gs_ls(c("foo", "yo"))
gs_vecdel(c("foo", "yo"))

gs_new 21

End(Not run)

gs_new Create a new spreadsheet

Description

Create a new spreadsheet in your Google Drive. It will contain a single worksheet which, by default,
will [1] have 1000 rows and 26 columns, [2] contain no data, and [3] be titled "Sheet1". Use the
ws_title, row_extent, col_extent, and ... arguments to give the worksheet a different title or
extent or to populate it with some data. This function calls the Google Drive API to create the sheet
and edit the worksheet name or extent. If you provide data for the sheet, then this function also calls
the Google Sheets API.

Usage

gs_new(title = "my_sheet", ws_title = NULL, row_extent = NULL,
col_extent = NULL, ..., verbose = TRUE)

Arguments

title the title for the new spreadsheet
ws_title the title for the new, sole worksheet; if unspecified, the Google Sheets default is

"Sheet1"
row_extent integer for new row extent; if unspecified, the Google Sheets default is 1000
col_extent integer for new column extent; if unspecified, the Google Sheets default is 26
... optional arguments passed along to gs_edit_cells in order to populate the new

worksheet with data
verbose logical; do you want informative messages?

Details

We anticipate that if the user wants to control the extent of the new worksheet, it will be by providing
input data and specifying ‘trim = TRUE‘ (see gs_edit_cells) or by specifying row_extent and
col_extent directly. But not both ... although we won’t stop you. In that case, note that explicit
worksheet sizing occurs before data insertion. If data insertion triggers any worksheet resizing, that
will override any usage of row_extent or col_extent.

Value

a googlesheet object

See Also

gs_edit_cells for specifics on populating the new sheet with some data and gs_upload for cre-
ating a new spreadsheet by uploading a local file. Note that gs_upload is likely much faster than
using gs_new and/or gs_edit_cells, so try both if speed is a concern.

https://developers.google.com/drive/v2/reference/
https://developers.google.com/google-apps/spreadsheets/

22 gs_read

Examples

Not run:
foo <- gs_new()
foo
gs_delete(foo)

foo <- gs_new("foo", ws_title = "numero uno", 4, 15)
foo
gs_delete(foo)

foo <- gs_new("foo", ws = "I know my ABCs", input = letters, trim = TRUE)
foo
gs_delete(foo)

End(Not run)

gs_read Read data

Description

This function reads data from a worksheet and returns a data frame. It wraps up the most common
usage of other, lower-level functions for data consumption and transformation, but you can call
always call them directly for finer control.

Usage

gs_read(ss, ws = 1, range = NULL, literal = TRUE, ..., verbose = TRUE)

Arguments

ss a registered Google spreadsheet, i.e. a googlesheet object

ws positive integer or character string specifying index or title, respectively, of the
worksheet

range a cell range, as described in cell-specification

literal logical, indicating whether to work only with literal values returned by the API
or to consult alternate cell contents

... Optional arguments to control data download, parsing, and reshaping; for most
purposes, the defaults should be fine. Anything that is not listed here will be
silently ignored.

progress Logical. Whether to display download progress if in an interactive
session.

col_types Seize control of type conversion for variables. Passed straight through
to readr::read_csv or readr::type_convert. Follow those links or read
the vignette("column-types") for details.

gs_read 23

locale, trim_ws, na Specify locale, the fate of leading or trailing whites-
pace, or a character vector of strings that should become missing values.
Passed straight through to readr::read_csv or readr::type_convert.

comment, skip, n_max Specify a string used to identify comments, request
to skip lines before reading data, or specify the maximum number of data
rows to read.

col_names Either TRUE, FALSE or a character vector of column names. If TRUE,
the first row of the data rectangle will be used for names. If FALSE, column
names will be X1, X2, etc. If a character vector, it will be used as column
names. If the sheet contains column names and you just don’t like them,
specify skip = 1 so they don’t show up in your data.

check.names Logical. Whether to run column names through make.names
with unique = TRUE, just like read.table does. By default, googlesheets
implements the readr data ingest philosophy, which leaves column names
"as is", with one exception: data frames returned by googlesheets will
have a name for each variable, even if we have to create one.

verbose logical; do you want informative messages?

Details

If the range argument is not specified and literal = TRUE, all data will be read via gs_read_csv.
Don’t worry – no intermediate *.csv files are written! We just request the data from the Sheets API
via the exportcsv link.

If the range argument is specified or if literal = FALSE, data will be read for the targetted
cells via gs_read_cellfeed, then reshaped and type converted with gs_reshape_cellfeed. See
gs_reshape_cellfeed for details.

Value

a data.frame or, if dplyr is loaded, a tbl_df

See Also

The cell-specification topic for more about targetting specific cells.

Other data consumption functions: gs_read_cellfeed, gs_read_csv, gs_read_listfeed, gs_reshape_cellfeed,
gs_simplify_cellfeed

Examples

Not run:
gap_ss <- gs_gap()
oceania_csv <- gs_read(gap_ss, ws = "Oceania")
str(oceania_csv)
oceania_csv

gs_read(gap_ss, ws = "Europe", n_max = 4, col_types = c("cccccc"))

gs_read(gap_ss, ws = "Oceania", range = "A1:C4")
gs_read(gap_ss, ws = "Oceania", range = "R1C1:R4C3")

24 gs_read_cellfeed

gs_read(gap_ss, ws = "Oceania", range = "R2C1:R4C3", col_names = FALSE)
gs_read(gap_ss, ws = "Oceania", range = "R2C5:R4C6",

col_names = c("thing_one", "thing_two"))
gs_read(gap_ss, ws = "Oceania", range = cell_limits(c(1, 3), c(1, 4)),

col_names = FALSE)
gs_read(gap_ss, ws = "Oceania", range = cell_rows(1:5))
gs_read(gap_ss, ws = "Oceania", range = cell_cols(4:6))
gs_read(gap_ss, ws = "Oceania", range = cell_cols("A:D"))

ff_ss <- gs_ff() # register example sheet with formulas and formatted nums
gs_read(ff_ss) # almost all vars are character
gs_read(ff_ss, literal = FALSE) # more vars are properly numeric

End(Not run)

gs_read_cellfeed Read data from cells

Description

This function consumes data via the "cell feed", which, as the name suggests, retrieves data cell by
cell. Note that the output is a data frame with one row per cell. Consult the Google Sheets API
documentation for more details about the cell feed.

Usage

gs_read_cellfeed(ss, ws = 1, range = NULL, ..., return_empty = FALSE,
return_links = FALSE, verbose = TRUE)

Arguments

ss a registered Google spreadsheet, i.e. a googlesheet object

ws positive integer or character string specifying index or title, respectively, of the
worksheet

range a cell range, as described in cell-specification

... Optional arguments to control data download, parsing, and reshaping; for most
purposes, the defaults should be fine. Anything that is not listed here will be
silently ignored.

progress Logical. Whether to display download progress if in an interactive
session.

col_types Seize control of type conversion for variables. Passed straight through
to readr::read_csv or readr::type_convert. Follow those links or read
the vignette("column-types") for details.

locale, trim_ws, na Specify locale, the fate of leading or trailing whites-
pace, or a character vector of strings that should become missing values.
Passed straight through to readr::read_csv or readr::type_convert.

https://developers.google.com/google-apps/spreadsheets/data#work_with_cell-based_feeds

gs_read_cellfeed 25

comment, skip, n_max Specify a string used to identify comments, request
to skip lines before reading data, or specify the maximum number of data
rows to read.

col_names Either TRUE, FALSE or a character vector of column names. If TRUE,
the first row of the data rectangle will be used for names. If FALSE, column
names will be X1, X2, etc. If a character vector, it will be used as column
names. If the sheet contains column names and you just don’t like them,
specify skip = 1 so they don’t show up in your data.

check.names Logical. Whether to run column names through make.names
with unique = TRUE, just like read.table does. By default, googlesheets
implements the readr data ingest philosophy, which leaves column names
"as is", with one exception: data frames returned by googlesheets will
have a name for each variable, even if we have to create one.

return_empty logical; indicates whether to return empty cells

return_links logical; indicates whether to return the edit and self links (used internally in cell
editing workflow)

verbose logical; do you want informative messages?

Details

Use the range argument to specify which cells you want to read. See the examples and the help
file for the cell specification functions for various ways to limit consumption to, e.g., a rectangle
or certain columns. If range is specified, the associated cell limits will be checked for internal
consistency and compliance with the known extent of the worksheet. If no limits are provided, all
cells will be returned but consider that gs_read_csv and gs_read_listfeed are much faster ways
to consume all the data from a rectangular worksheet.

Empty cells, even if "embedded" in a rectangular region of populated cells, are not normally re-
turned by the cell feed. This function won’t return them either when return_empty = FALSE
(default), but will if you set return_empty = TRUE.

Value

a data.frame or, if dplyr is loaded, a tbl_df

See Also

gs_reshape_cellfeed or gs_simplify_cellfeed to perform reshaping or simplification, respec-
tively; gs_read is a pre-made wrapper that combines gs_read_cellfeed and gs_reshape_cellfeed

Other data consumption functions: gs_read_csv, gs_read_listfeed, gs_read, gs_reshape_cellfeed,
gs_simplify_cellfeed

Examples

Not run:
gap_ss <- gs_gap() # register the Gapminder example sheet
col_4_and_above <-

gs_read_cellfeed(gap_ss, ws = "Asia", range = cell_limits(c(NA, 4)))
col_4_and_above

26 gs_read_csv

gs_reshape_cellfeed(col_4_and_above)

gs_read_cellfeed(gap_ss, range = "A2:F3")

End(Not run)

gs_read_csv Read data via the exportcsv link

Description

This function reads all data from a worksheet and returns it as a tbl_df or data.frame. Don’t be
spooked by the "csv" thing – the data is NOT actually written to file during this process. Data is
read from the "maximal data rectangle", i.e. the rectangle spanned by the maximal row and column
extent of the data. By default, empty cells within this rectangle will be assigned NA. This is the
fastest method of data consumption, so use it as long as you can tolerate the lack of control re:
which cells are being read.

Usage

gs_read_csv(ss, ws = 1, ..., verbose = TRUE)

Arguments

ss a registered Google spreadsheet, i.e. a googlesheet object

ws positive integer or character string specifying index or title, respectively, of the
worksheet

... Optional arguments to control data download, parsing, and reshaping; for most
purposes, the defaults should be fine. Anything that is not listed here will be
silently ignored.

progress Logical. Whether to display download progress if in an interactive
session.

col_types Seize control of type conversion for variables. Passed straight through
to readr::read_csv or readr::type_convert. Follow those links or read
the vignette("column-types") for details.

locale, trim_ws, na Specify locale, the fate of leading or trailing whites-
pace, or a character vector of strings that should become missing values.
Passed straight through to readr::read_csv or readr::type_convert.

comment, skip, n_max Specify a string used to identify comments, request
to skip lines before reading data, or specify the maximum number of data
rows to read.

col_names Either TRUE, FALSE or a character vector of column names. If TRUE,
the first row of the data rectangle will be used for names. If FALSE, column
names will be X1, X2, etc. If a character vector, it will be used as column
names. If the sheet contains column names and you just don’t like them,
specify skip = 1 so they don’t show up in your data.

gs_read_listfeed 27

check.names Logical. Whether to run column names through make.names
with unique = TRUE, just like read.table does. By default, googlesheets
implements the readr data ingest philosophy, which leaves column names
"as is", with one exception: data frames returned by googlesheets will
have a name for each variable, even if we have to create one.

verbose logical; do you want informative messages?

Value

a data.frame or, if dplyr is loaded, a tbl_df

See Also

Other data consumption functions: gs_read_cellfeed, gs_read_listfeed, gs_read, gs_reshape_cellfeed,
gs_simplify_cellfeed

Examples

Not run:
gap_ss <- gs_gap() # register the Gapminder example sheet
oceania_csv <- gs_read_csv(gap_ss, ws = "Oceania")
str(oceania_csv)
oceania_csv

crazy demo of passing args through to readr::read_csv()
oceania_crazy <- gs_read_csv(gap_ss, ws = "Oceania",

col_names = paste0("Z", 1:6), na = "1962", col_types = "cccccc", skip = 1)
oceania_crazy

End(Not run)

gs_read_listfeed Read data via the "list feed"

Description

Gets data via the "list feed", which assumes populated cells form a neat rectangle. The list feed
consumes data row by row. The first row is assumed to hold variable or column names; it can be
empty. The second row is assumed to hold the first data row and, if it is empty, no data will be read
and you will get an empty data frame.

Usage

gs_read_listfeed(ss, ws = 1, reverse = NULL, orderby = NULL, sq = NULL,
..., verbose = TRUE)

28 gs_read_listfeed

Arguments

ss a registered Google spreadsheet, i.e. a googlesheet object

ws positive integer or character string specifying index or title, respectively, of the
worksheet

reverse logical, optional. Indicates whether to request reverse row order in the actual
API call.

orderby character, optional. Specifies a column to sort on in the actual API call.

sq character, optional. Provides a structured query for row filtering in the actual
API call.

... Optional arguments to control data download, parsing, and reshaping; for most
purposes, the defaults should be fine. Anything that is not listed here will be
silently ignored.

progress Logical. Whether to display download progress if in an interactive
session.

col_types Seize control of type conversion for variables. Passed straight through
to readr::read_csv or readr::type_convert. Follow those links or read
the vignette("column-types") for details.

locale, trim_ws, na Specify locale, the fate of leading or trailing whites-
pace, or a character vector of strings that should become missing values.
Passed straight through to readr::read_csv or readr::type_convert.

comment, skip, n_max Specify a string used to identify comments, request
to skip lines before reading data, or specify the maximum number of data
rows to read.

col_names Either TRUE, FALSE or a character vector of column names. If TRUE,
the first row of the data rectangle will be used for names. If FALSE, column
names will be X1, X2, etc. If a character vector, it will be used as column
names. If the sheet contains column names and you just don’t like them,
specify skip = 1 so they don’t show up in your data.

check.names Logical. Whether to run column names through make.names
with unique = TRUE, just like read.table does. By default, googlesheets
implements the readr data ingest philosophy, which leaves column names
"as is", with one exception: data frames returned by googlesheets will
have a name for each variable, even if we have to create one.

verbose logical; do you want informative messages?

Details

The other read functions are generally superior, so use them if you can. However, you may need
to use this function if you are dealing with an "old" Google Sheet, which is beyond the reach of
gs_read_csv. The list feed also has some ability to sort and filter rows via the API (more below).
Consult the Google Sheets API documentation for more details about the list feed.

Value

a data.frame or, if dplyr is loaded, a tbl_df

https://developers.google.com/google-apps/spreadsheets/data#work_with_list-based_feeds

gs_read_listfeed 29

Column names

For the list feed, and only for the list feed, the Sheets API wants to transform the variable or column
names like so: ’The column names are the header values of the worksheet lowercased and with all
non-alpha-numeric characters removed. For example, if the cell A1 contains the value "Time 2 Eat!"
the column name would be "time2eat".’ In googlesheets, we do not let this happen and, instead,
use the column names "as is", for consistent output across all gs_read* functions. If you direct
gs_read_listfeed to pass query parameters to the actual API call, you must refer to variables
using the column names under this API-enforced transformation. For example, to order the data by
the column with "Time 2 Eat!" in the header row, you must specify orderby = "time2eat" in
the gs_read_listfeed call.

Sorting and filtering via the API

Why on earth would you want to sort and filter via the API instead of in R? Just because you can?
It is conceivable there are situations, such as a large spreadsheet, in which it is faster to sort or
filter via API. Be sure to refer to variables using the API-transformed column names explained
above! It is a known bug that reverse=true alone will NOT, in fact, reverse the row order of the
result. In our experience, the reverse query parameter will only have effect in combination with
explicit specification of a column to sort on via orderby. The syntax for these queries is apparently
undocumented, so keep it simple or bring your spirit of adventure!

See Also

Other data consumption functions: gs_read_cellfeed, gs_read_csv, gs_read, gs_reshape_cellfeed,
gs_simplify_cellfeed

Examples

Not run:
gap_ss <- gs_gap() # register the Gapminder example sheet
oceania_lf <- gs_read_listfeed(gap_ss, ws = "Oceania")
head(oceania_lf, 3)

do row ordering and filtering in the API call
oceania_fancy <-

gs_read_listfeed(gap_ss,
ws = "Oceania",
reverse = TRUE, orderby = "gdppercap",
sq = "lifeexp > 79 or year < 1960")

oceania_fancy

passing args through to readr::type_convert()
oceania_crazy <-

gs_read_listfeed(gap_ss,
ws = "Oceania",
col_names = paste0("z", 1:6), skip = 1,
col_types = "ccncnn",
na = "1962")

oceania_crazy

https://code.google.com/a/google.com/p/apps-api-issues/issues/detail?id=3588
http://stackoverflow.com/questions/25732784/official-reference-for-google-spreadsheet-api-structured-query-syntax
http://stackoverflow.com/questions/25732784/official-reference-for-google-spreadsheet-api-structured-query-syntax

30 gs_rename

End(Not run)

gs_rename Rename a spreadsheet

Description

Give a spreadsheet a new name. Note that file names are not necessarily unique within a folder on
Google Drive.

Usage

gs_rename(ss, to, verbose = TRUE)

Arguments

ss a registered Google spreadsheet, i.e. a googlesheet object

to character string for new title of spreadsheet

verbose logical; do you want informative messages?

Value

a googlesheet object

Examples

Not run:
ss <- gs_gap() %>% gs_copy(to = "jekyll")
gs_ls("jekyll") ## see? it's there
ss <- ss %>% gs_rename("hyde")
gs_ls("hyde") ## see? it's got a new name
gs_delete(ss)

End(Not run)

gs_reshape_cellfeed 31

gs_reshape_cellfeed Reshape data from the "cell feed"

Description

Reshape data from the "cell feed", put it in a tbl_df, and do type conversion. By default, assum-
ing we’re working with the same cells, gs_reshape_cellfeed should return the same result as
other read functions. But when literal = FALSE, something different happens: we attempt to
deliver cell contents free of any numeric formatting. Try this if numeric formatting of literal val-
ues is causing numeric data to come in as character, to be undesirably rounded, or to be otherwise
mangled. Remember you can also control type conversion by using ... to provide arguments to
readr::type_convert. See the vignette("formulas-and-formatting") for more details.

Usage

gs_reshape_cellfeed(x, literal = TRUE, ..., verbose = TRUE)

Arguments

x a data frame returned by gs_read_cellfeed

literal logical, indicating whether to work only with literal values returned by the API
or to consult alternate cell contents

... Optional arguments to control data download, parsing, and reshaping; for most
purposes, the defaults should be fine. Anything that is not listed here will be
silently ignored.

progress Logical. Whether to display download progress if in an interactive
session.

col_types Seize control of type conversion for variables. Passed straight through
to readr::read_csv or readr::type_convert. Follow those links or read
the vignette("column-types") for details.

locale, trim_ws, na Specify locale, the fate of leading or trailing whites-
pace, or a character vector of strings that should become missing values.
Passed straight through to readr::read_csv or readr::type_convert.

comment, skip, n_max Specify a string used to identify comments, request
to skip lines before reading data, or specify the maximum number of data
rows to read.

col_names Either TRUE, FALSE or a character vector of column names. If TRUE,
the first row of the data rectangle will be used for names. If FALSE, column
names will be X1, X2, etc. If a character vector, it will be used as column
names. If the sheet contains column names and you just don’t like them,
specify skip = 1 so they don’t show up in your data.

check.names Logical. Whether to run column names through make.names
with unique = TRUE, just like read.table does. By default, googlesheets
implements the readr data ingest philosophy, which leaves column names
"as is", with one exception: data frames returned by googlesheets will
have a name for each variable, even if we have to create one.

32 gs_simplify_cellfeed

verbose logical; do you want informative messages?

Value

a data.frame or, if dplyr is loaded, a tbl_df

See Also

Other data consumption functions: gs_read_cellfeed, gs_read_csv, gs_read_listfeed, gs_read,
gs_simplify_cellfeed

Examples

Not run:
gap_ss <- gs_gap() # register the Gapminder example sheet
gs_read_cellfeed(gap_ss, "Asia", range = cell_rows(1:4))
gs_reshape_cellfeed(gs_read_cellfeed(gap_ss, "Asia", range = cell_rows(1:4)))
gs_reshape_cellfeed(gs_read_cellfeed(gap_ss, "Asia",

range = cell_rows(2:4)),
col_names = FALSE)

gs_reshape_cellfeed(gs_read_cellfeed(gap_ss, "Asia",
range = cell_rows(2:4)),

col_names = paste0("yo", 1:6))

ff_ss <- gs_ff() # register example sheet with formulas and formatted nums
ff_cf <- gs_read_cellfeed(ff_ss)
gs_reshape_cellfeed(ff_cf) # almost all vars are character
gs_reshape_cellfeed(ff_cf, literal = FALSE) # more vars are numeric

End(Not run)

gs_simplify_cellfeed Simplify data from the "cell feed"

Description

In some cases, you do not want to convert the data retrieved from the cell feed into a data frame via
gs_reshape_cellfeed. Instead, you want the data as an atomic vector. That’s what this function
does. Note that, unlike gs_reshape_cellfeed, embedded empty cells will NOT necessarily appear
in this result. By default, the API does not transmit data for these cells; googlesheets inserts
these cells in gs_reshape_cellfeed because it is necessary to give the data rectangular shape. In
contrast, empty cells will only appear in the output of gs_simplify_cellfeed if they were already
present in the data from the cell feed, i.e. if the original call to gs_read_cellfeed had argument
return_empty set to TRUE.

Usage

gs_simplify_cellfeed(x, convert = TRUE, literal = TRUE, locale = NULL,
trim_ws = NULL, na = NULL, notation = c("A1", "R1C1", "none"),
col_names = NULL)

gs_simplify_cellfeed 33

Arguments

x a data frame returned by gs_read_cellfeed

convert logical. Indicates whether to attempt to convert the result vector from character
to something more appropriate, such as logical, integer, or numeric. If TRUE, re-
sult is passed through readr::type_convert; if FALSE, result will be character.

literal logical, indicating whether to work only with literal values returned by the API
or to consult alternate cell contents

locale, trim_ws, na

Optionally, specify locale, the fate of leading or trailing whitespace, or a charac-
ter vector of strings that should become missing values. Passed straight through
to readr::type_convert.

notation character. The result vector can have names that reflect which cell the data came
from; this argument selects between the "A1" and "R1C1" positioning notations.
Specify "none" to suppress names.

col_names if TRUE, the first row of the input will be interpreted as a column name and NOT
included in the result; useful when reading a single column or variable.

Value

a vector

See Also

Other data consumption functions: gs_read_cellfeed, gs_read_csv, gs_read_listfeed, gs_read,
gs_reshape_cellfeed

Examples

Not run:
gap_ss <- gs_gap() # register the Gapminder example sheet
(gap_cf <- gs_read_cellfeed(gap_ss, range = cell_rows(1)))
gs_simplify_cellfeed(gap_cf)
gs_simplify_cellfeed(gap_cf, notation = "R1C1")

(gap_cf <- gs_read_cellfeed(gap_ss, range = "A1:A10"))
gs_simplify_cellfeed(gap_cf)
gs_simplify_cellfeed(gap_cf, col_names = FALSE)

ff_ss <- gs_ff() # register example sheet with formulas and formatted nums
ff_cf <- gs_read_cellfeed(ff_ss, range = cell_cols(3))
gs_simplify_cellfeed(ff_cf) # rounded to 2 digits
gs_simplify_cellfeed(ff_cf, literal = FALSE) # hello, more digits!

End(Not run)

34 gs_webapp_auth_url

gs_upload Upload a file and convert it to a Google Sheet

Description

Google supports the following file types to be converted to a Google spreadsheet: .xls, .xlsx, .csv,
.tsv, .txt, .tab, .xlsm, .xlt, .xltx, .xltm, .ods. The newly uploaded file will appear in your Google
Sheets home screen. This function calls the Google Drive API.

Usage

gs_upload(file, sheet_title = NULL, verbose = TRUE, overwrite = FALSE)

Arguments

file path to the file to upload
sheet_title the title of the spreadsheet; optional, if not specified then the name of the file

will be used
verbose logical; do you want informative messages?
overwrite whether to overwrite an existing Sheet with the same title

Examples

Not run:
write.csv(head(iris, 5), "iris.csv", row.names = FALSE)
iris_ss <- gs_upload("iris.csv")
iris_ss
gs_read(iris_ss)
file.remove("iris.csv")
gs_delete(iris_ss)

End(Not run)

gs_webapp_auth_url Build URL for authentication

Description

Build the Google URL that googlesheets needs to direct users to in order to authenticate in a
Web Server Application. This function is designed for use in Shiny apps. In contrast, the default
authorization sequence in googlesheets is appropriate for a user working directly with R on a local
computer, where the default handshakes between the local computer and Google work just fine. The
first step in the Shiny-based workflow is to form the Google URL where the user can authenticate
him or herself with Google. After success, the response, in the form of an authorization code, is
sent to the redirect_uri (see below) which gs_webapp_get_token uses to exchange for an access
token. This token is then stored in the usual manner for this package and used for subsequent API
requests.

https://developers.google.com/drive/v2/reference/

gs_webapp_get_token 35

Usage

gs_webapp_auth_url(client_id = getOption("googlesheets.webapp.client_id"),
redirect_uri = getOption("googlesheets.webapp.redirect_uri"),
access_type = "online", approval_prompt = "auto")

Arguments

client_id client id obtained from Google Developers Console

redirect_uri where the response is sent, should be one of the redirect_uri values listed for the
project in Google’s Developer Console, must match exactly as listed including
any trailing ’/’

access_type either "online" (no refresh token) or "offline" (refresh token), determines whether
a refresh token is returned in the response

approval_prompt

either "force" or "auto", determines whether the user is reprompted for consent,
If set to "auto", then the user only has to see the consent page once for the first
time through the authorization sequence. If set to "force" then user will have to
grant consent everytime even if they have previously done so.

Details

That was the good news. The bad news is you’ll need to use the Google Developers Console to
obtain your own client ID and secret and declare the redirect_uri specific to your project.
Inform googlesheets of this information by providing as function arguments or by defining these
options. For example, you can put lines like this into a Project-specific .Rprofile file:

options("googlesheets.webapp.client_id" = MY_CLIENT_ID) options("googlesheets.webapp.client_secret"
= MY_CLIENT_SECRET) options("googlesheets.webapp.redirect_uri" = MY_REDIRECT_URI)

Based on Google Developers’ guide to Using OAuth2.0 for Web Server Applications.

See Also

gs_webapp_get_token

gs_webapp_get_token Exchange authorization code for an access token

Description

Exchange the authorization code in the URL returned by gs_webapp_auth_url to get an ac-
cess_token. This function plays a role similar to gs_auth, but in a Shiny-based workflow: it stores
a token object in an internal environment, where it can be retrieved for making calls to the Google
Sheets and Drive APIs. Read the documentation for gs_webapp_auth_url for more details on
OAuth2 within Shiny.

https://console.developers.google.com
https://developers.google.com/identity/protocols/OAuth2WebServer

36 gs_ws_delete

Usage

gs_webapp_get_token(auth_code,
client_id = getOption("googlesheets.webapp.client_id"),
client_secret = getOption("googlesheets.webapp.client_secret"),
redirect_uri = getOption("googlesheets.webapp.redirect_uri"))

Arguments

auth_code authorization code returned by Google that appears in URL

client_id client id obtained from Google Developers Console

client_secret client secret obtained from Google Developers Console

redirect_uri where the response is sent, should be one of the redirect_uri values listed for the
project in Google’s Developer Console, must match exactly as listed including
any trailing ’/’

See Also

gs_webapp_auth_url

gs_ws_delete Delete a worksheet from a spreadsheet

Description

The worksheet and all of its contents will be removed from the spreadsheet.

Usage

gs_ws_delete(ss, ws = 1, verbose = TRUE)

Arguments

ss a registered Google spreadsheet, i.e. a googlesheet object

ws positive integer or character string specifying index or title, respectively, of the
worksheet

verbose logical; do you want informative messages?

Value

a googlesheet object

gs_ws_ls 37

Examples

Not run:
gap_ss <- gs_copy(gs_gap(), to = "gap_copy")
gs_ws_ls(gap_ss)
gap_ss <- gs_ws_new(gap_ss, "new_stuff")
gap_ss <- gs_edit_cells(gap_ss, "new_stuff", input = head(iris), trim = TRUE)
gap_ss
gap_ss <- gs_ws_delete(gap_ss, "new_stuff")
gs_ws_ls(gap_ss)
gap_ss <- gs_ws_delete(gap_ss, ws = 3)
gs_ws_ls(gap_ss)
gs_delete(gap_ss)

End(Not run)

gs_ws_ls List the worksheets in a spreadsheet

Description

Retrieve the titles of all the worksheets in a googlesheet.

Usage

gs_ws_ls(ss)

Arguments

ss a registered Google spreadsheet, i.e. a googlesheet object

Examples

Not run:
gs_ws_ls(gs_gap())

End(Not run)

38 gs_ws_new

gs_ws_new Add a new worksheet within a spreadsheet

Description

Add a new worksheet to an existing spreadsheet. By default, it will [1] have 1000 rows and
26 columns, [2] contain no data, and [3] be titled "Sheet1". Use the ws_title, row_extent,
col_extent, and ... arguments to give the worksheet a different title or extent or to populate
it with some data. This function calls the Google Drive API to create the worksheet and edit its title
or extent. If you provide data for the sheet, then this function also calls the Google Sheets API. The
title of the new worksheet can not be the same as any existing worksheet in the sheet.

Usage

gs_ws_new(ss, ws_title = "Sheet1", row_extent = 1000, col_extent = 26,
..., verbose = TRUE)

Arguments

ss a registered Google spreadsheet, i.e. a googlesheet object

ws_title the title for the new, sole worksheet; if unspecified, the Google Sheets default is
"Sheet1"

row_extent integer for new row extent; if unspecified, the Google Sheets default is 1000

col_extent integer for new column extent; if unspecified, the Google Sheets default is 26

... optional arguments passed along to gs_edit_cells in order to populate the new
worksheet with data

verbose logical; do you want informative messages?

Details

We anticipate that if the user wants to control the extent of the new worksheet, it will be by providing
input data and specifying ‘trim = TRUE‘ (see gs_edit_cells) or by specifying row_extent and
col_extent directly. But not both ... although we won’t stop you. In that case, note that explicit
worksheet sizing occurs before data insertion. If data insertion triggers any worksheet resizing, that
will override any usage of row_extent or col_extent.

Value

a googlesheet object

Examples

Not run:
get a copy of the Gapminder spreadsheet
gap_ss <- gs_copy(gs_gap(), to = "Gapminder_copy")
gap_ss <- gs_ws_new(gap_ss)

https://developers.google.com/drive/v2/reference/
https://developers.google.com/google-apps/spreadsheets/

gs_ws_rename 39

gap_ss <- gs_ws_delete(gap_ss, ws = "Sheet1")
gap_ss <-

gs_ws_new(gap_ss, ws_title = "Atlantis", input = head(iris), trim = TRUE)
gap_ss
gs_delete(gap_ss)

End(Not run)

gs_ws_rename Rename a worksheet within a spreadsheet

Description

Give a worksheet a new title that does not duplicate the title of any existing worksheet within the
spreadsheet.

Usage

gs_ws_rename(ss, from = 1, to, verbose = TRUE)

Arguments

ss a registered Google spreadsheet, i.e. a googlesheet object

from positive integer or character string specifying index or title, respectively, of the
worksheet

to character string for new title of worksheet

verbose logical; do you want informative messages?

Value

a googlesheet object

Note

Since the edit link is used in the PUT request, the version path in the url changes everytime changes
are made to the worksheet, hence consecutive function calls using the same edit link from the same
sheet object without ’refreshing’ it by re-registering results in a HTTP 409 Conflict.

Examples

Not run:
gap_ss <- gs_copy(gs_gap(), to = "gap_copy")
gs_ws_ls(gap_ss)
gap_ss <- gs_ws_rename(gap_ss, from = "Oceania", to = "ANZ")
gs_ws_ls(gap_ss)
gap_ss <- gs_ws_rename(gap_ss, from = 1, to = "I am the first sheet!")
gs_ws_ls(gap_ss)

40 print.googlesheet

gs_delete(gap_ss)

End(Not run)

print.googlesheet Print info about a googlesheet object

Description

Display information about a Google spreadsheet that has been registered with googlesheets: the
title of the spreadsheet, date-time of registration, date-time of last update (at time of registration),
visibility, permissions, version, the number of worksheets contained, worksheet titles and extent,
and sheet key.

Usage

S3 method for class 'googlesheet'
print(x, ...)

Arguments

x googlesheet object returned by functions such as gs_title, gs_key, and friends

... potential further arguments (required for Method/Generic reasons)

Examples

Not run:
foo <- gs_new("foo")
foo
print(foo)

End(Not run)

Index

anchored, 3
anchored (cell-specification), 2

cell specification functions, 25
cell-specification, 2
cell_cols, 3
cell_cols (cell-specification), 2
cell_limits, 3
cell_limits (cell-specification), 2
cell_rows, 3
cell_rows (cell-specification), 2
cellranger, 2, 3

example-sheets, 3
extract_key_from_url, 5

gd_token, 5
gd_user, 6, 11, 14
googlesheet, 4, 7, 9, 12–17, 21, 22, 24, 26,

28, 30, 36–40
googlesheets, 6, 9, 13
googlesheets-package (googlesheets), 9
grep, 17, 20
gs_add_row, 9, 16
gs_auth, 7, 10, 14, 35
gs_browse, 12
gs_copy, 13
gs_deauth, 7, 11, 13
gs_delete, 14, 18
gs_download, 15
gs_edit_cells, 10, 16, 21, 38
gs_ff (example-sheets), 3
gs_ff_key (example-sheets), 3
gs_ff_url (example-sheets), 3
gs_ff_ws_feed (example-sheets), 3
gs_gap (example-sheets), 3
gs_gap_key (example-sheets), 3
gs_gap_url (example-sheets), 3
gs_gap_ws_feed (example-sheets), 3
gs_grepdel, 14, 17

gs_gs (googlesheet), 7
gs_inspect, 18
gs_key, 20, 40
gs_key (googlesheet), 7
gs_ls, 19
gs_mini_gap (example-sheets), 3
gs_mini_gap_key (example-sheets), 3
gs_mini_gap_url (example-sheets), 3
gs_mini_gap_ws_feed (example-sheets), 3
gs_new, 21, 21
gs_read, 22, 25, 27, 29, 32, 33
gs_read_cellfeed, 23, 24, 27, 29, 31–33
gs_read_csv, 23, 25, 26, 28, 29, 32, 33
gs_read_listfeed, 23, 25, 27, 27, 32, 33
gs_rename, 30
gs_reshape_cellfeed, 23, 25, 27, 29, 31, 32,

33
gs_simplify_cellfeed, 23, 25, 27, 29, 32, 32
gs_title, 20, 40
gs_title (googlesheet), 7
gs_token (gd_token), 5
gs_upload, 21, 34
gs_url, 20
gs_url (googlesheet), 7
gs_user (gd_user), 6
gs_vecdel, 14
gs_vecdel (gs_grepdel), 17
gs_webapp_auth_url, 11, 34, 35, 36
gs_webapp_get_token, 11, 34, 35, 35
gs_ws_delete, 36
gs_ws_feed, 20
gs_ws_feed (googlesheet), 7
gs_ws_ls, 37
gs_ws_new, 38
gs_ws_rename, 39

make.names, 23, 25, 27, 28, 31

print.googlesheet, 40

41

42 INDEX

read.table, 23, 25, 27, 28, 31
readr::read_csv, 22–24, 26, 28, 31
readr::type_convert, 22–24, 26, 28, 31, 33

Startup, 11

tbl_df, 20, 23, 25, 27, 28, 32
Token2.0, 6, 11

	cell-specification
	example-sheets
	extract_key_from_url
	gd_token
	gd_user
	googlesheet
	googlesheets
	gs_add_row
	gs_auth
	gs_browse
	gs_copy
	gs_deauth
	gs_delete
	gs_download
	gs_edit_cells
	gs_grepdel
	gs_inspect
	gs_ls
	gs_new
	gs_read
	gs_read_cellfeed
	gs_read_csv
	gs_read_listfeed
	gs_rename
	gs_reshape_cellfeed
	gs_simplify_cellfeed
	gs_upload
	gs_webapp_auth_url
	gs_webapp_get_token
	gs_ws_delete
	gs_ws_ls
	gs_ws_new
	gs_ws_rename
	print.googlesheet
	Index

