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GMMN_model Generative Moment Matching Network

Description

Setup of a generative moment matching network (GMMN) model.

Usage

GMMN_model(dim, activation = c(rep("relu", length(dim) - 2), "sigmoid"),
batch.norm = FALSE, dropout.rate = 0, nGPU = 0, ...)

Arguments

dim numeric vector of length at least two, giving the dimensions of the input layer,
the hidden layer(s) (if any) and the output layer (in this order).

activation character vector of length length(dim) -1 specifying the activation functions
for all hidden layers and the output layer (in this order); note that the input layer
does not have an activation function.

batch.norm logical indicating whether batch normalization layers are to be added after
each hidden layer.

dropout.rate numeric value in [0,1] specifying the fraction of input to be dropped; see the
rate parameter of layer_dropout(). Note that only if positive, dropout layers
are added after each hidden layer.

nGPU non-negative integer specifying the number of GPUs available if the GPU ver-
sion of TensorFlow is installed. If positive, a (special) multiple GPU model for
data parallelism is instantiated. Note that for multi-layer perceptrons on a few
GPUs, this model does not yet yield any scale-up computational factor (in fact,
currently very slightly negative scale-ups are likely due to overhead costs).

... additional arguments passed to loss().

Value

GMMN_model() returns a list with components

model: GMMN model (a keras object inheriting from the classes "keras.engine.training.Model",
"keras.engine.network.Network", "keras.engine.base_layer.Layer" and "python.builtin.object").

type: character string indicating the type of model ("GMMN").

dim: see above.

activation: see above.
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batch.norm: see above.

dropout.rate: see above.

dim.train: dimension of the training data (NA unless trained).

batch.size: batch size (NA unless trained).

nepoch: number of epochs (NA unless trained).

Author(s)

Marius Hofert and Avinash Prasad

References

Li, Y., Swersky, K. and Zemel, R. (2015). Generative moment matching networks. Proceedings of
Machine Learning Research, 37 (International Conference on Maching Learning), 1718–1727. See
http://proceedings.mlr.press/v37/li15.pdf (2019-08-24)

Dziugaite, G. K., Roy, D. M. and Ghahramani, Z. (2015). Training generative neural networks via
maximum mean discrepancy optimization. AUAI Press, 258–267. See http://www.auai.org/uai2015/proceedings/papers/230.pdf
(2019-08-24)

See Also

VAE_model()

Examples

# to avoid win-builder error "Error: Installation of TensorFlow not found"
## Example model with a 5d input, 300d hidden and 4d output layer
str(GMMN_model(c(5, 300, 4)))

GMMN_trained Trained Generative Moment Matching Networks

Description

Trained generative moment matching networks (GMMNs); see also the demo GMMN_QMC or the
vignette GMMN_QMC.

Usage

data("GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_C_tau_0.25")
data("GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_C_tau_0.5")
data("GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_C_tau_0.75")
data("GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_G_tau_0.25")
data("GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_G_tau_0.5")
data("GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_G_tau_0.75")
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data("GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_eqmix_C_tau_0.5_rot90_t4_tau_0.5")
data("GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_eqmix_G_tau_0.5_rot90_t4_tau_0.5")
data("GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_eqmix_MO_0.75_0.6_rot90_t4_tau_0.5")
data("GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_MO_0.75_0.6")
data("GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_t4_tau_0.25")
data("GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_t4_tau_0.5")
data("GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_t4_tau_0.75")
data("GMMN_dim_3_300_3_ntrn_60000_nbat_5000_nepo_300_NC21_tau_0.25_0.5")
data("GMMN_dim_3_300_3_ntrn_60000_nbat_5000_nepo_300_NG21_tau_0.25_0.5")
data("GMMN_dim_5_300_5_ntrn_60000_nbat_5000_nepo_300_C_tau_0.5")
data("GMMN_dim_5_300_5_ntrn_60000_nbat_5000_nepo_300_G_tau_0.5")
data("GMMN_dim_5_300_5_ntrn_60000_nbat_5000_nepo_300_NC23_tau_0.25_0.5_0.75")
data("GMMN_dim_5_300_5_ntrn_60000_nbat_5000_nepo_300_NG23_tau_0.25_0.5_0.75")
data("GMMN_dim_5_300_5_ntrn_60000_nbat_5000_nepo_300_t4_tau_0.5")
data("GMMN_dim_10_300_10_ntrn_60000_nbat_5000_nepo_300_C_tau_0.5")
data("GMMN_dim_10_300_10_ntrn_60000_nbat_5000_nepo_300_G_tau_0.5")
data("GMMN_dim_10_300_10_ntrn_60000_nbat_5000_nepo_300_NC55_tau_0.25_0.5_0.75")
data("GMMN_dim_10_300_10_ntrn_60000_nbat_5000_nepo_300_NG55_tau_0.25_0.5_0.75")
data("GMMN_dim_10_300_10_ntrn_60000_nbat_5000_nepo_300_t4_tau_0.5")

Format

GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_C_tau_0.25 rawR object represent-
ing a GMMN (input and output layer are two-dimensional, the single hidden layer is 300-
dimensional) trained on 60000 pseudo-samples (with batch size 5000 and 300 epochs) from a
bivariate Clayton copula (with parameter chosen such that Kendall’s tau equals 0.25).

GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_C_tau_0.5 raw R object represent-
ing a GMMN (input and output layer are two-dimensional, the single hidden layer is 300-
dimensional) trained on 60000 pseudo-samples (with batch size 5000 and 300 epochs) from a
bivariate Clayton copula (with parameter chosen such that Kendall’s tau equals 0.5).

GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_C_tau_0.75 rawR object represent-
ing a GMMN (input and output layer are two-dimensional, the single hidden layer is 300-
dimensional) trained on 60000 pseudo-samples (with batch size 5000 and 300 epochs) from a
bivariate Clayton copula (with parameter chosen such that Kendall’s tau equals 0.75).

GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_G_tau_0.25 rawR object represent-
ing a GMMN (input and output layer are two-dimensional, the single hidden layer is 300-
dimensional) trained on 60000 pseudo-samples (with batch size 5000 and 300 epochs) from a
bivariate Gumbel copula (with parameter chosen such that Kendall’s tau equals 0.25).

GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_G_tau_0.5 raw R object represent-
ing a GMMN (input and output layer are two-dimensional, the single hidden layer is 300-
dimensional) trained on 60000 pseudo-samples (with batch size 5000 and 300 epochs) from a
bivariate Gumbel copula (with parameter chosen such that Kendall’s tau equals 0.5).

GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_G_tau_0.75 rawR object represent-
ing a GMMN (input and output layer are two-dimensional, the single hidden layer is 300-
dimensional) trained on 60000 pseudo-samples (with batch size 5000 and 300 epochs) from a
bivariate Gumbel copula (with parameter chosen such that Kendall’s tau equals 0.75).
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GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_eqmix_C_tau_0.5_rot90_t4_tau_0.5
raw R object representing a GMMN (input and output layer are two-dimensional, the single
hidden layer is 300-dimensional) trained on 60000 pseudo-samples (with batch size 5000
and 300 epochs) from a bivariate half-half mixture of a Clayton copula (with parameter cho-
sen such that Kendall’s tau equals 0.5) and a rotated (by 90 degree) $t$ copula (with 4 de-
grees of freedom and correlation parameter chosen such that Kendall’s tau equals 0.5); see
vignette("GMMN_QRNG",package = "gnn").

GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_eqmix_G_tau_0.5_rot90_t4_tau_0.5
raw R object representing a GMMN (input and output layer are two-dimensional, the single
hidden layer is 300-dimensional) trained on 60000 pseudo-samples (with batch size 5000 and
300 epochs) from a bivariate half-half mixture of a Gumbel copula (with parameter chosen
such that Kendall’s tau equals 0.5) and a rotated (by 90 degree) $t$ copula (with 4 degrees of
freedom and correlation parameter chosen such that Kendall’s tau equals 0.5).

GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_eqmix_MO_0.75_0.6_rot90_t4_tau_0.5
raw R object representing a GMMN (input and output layer are two-dimensional, the single
hidden layer is 300-dimensional) trained on 60000 pseudo-samples (with batch size 5000 and
300 epochs) from a bivariate half-half mixture of a Marshall–Olkin copula (with α1 = 0.75
and α2 = 0.60) and a rotated (by 90 degree) $t$ copula (with 4 degrees of freedom and
correlation parameter chosen such that Kendall’s tau equals 0.5).

GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_MO_0.75_0.6 raw R object repre-
senting a GMMN (input and output layer are two-dimensional, the single hidden layer is
300-dimensional) trained on 60000 pseudo-samples (with batch size 5000 and 300 epochs)
from a Marshall–Olkin copula (with α1 = 0.75 and α2 = 0.60).

GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_t4_tau_0.25 rawR object represent-
ing a GMMN (input and output layer are two-dimensional, the single hidden layer is 300-
dimensional) trained on 60000 pseudo-samples (with batch size 5000 and 300 epochs) from a
two-dimensional $t$ copula (with 4 degrees of freedom and equi-correlation parameter chosen
such that Kendall’s tau equals 0.25).

GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_t4_tau_0.5 raw R object represent-
ing a GMMN (input and output layer are two-dimensional, the single hidden layer is 300-
dimensional) trained on 60000 pseudo-samples (with batch size 5000 and 300 epochs) from a
two-dimensional $t$ copula (with 4 degrees of freedom and equi-correlation parameter chosen
such that Kendall’s tau equals 0.5).

GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_t4_tau_0.75 rawR object represent-
ing a GMMN (input and output layer are two-dimensional, the single hidden layer is 300-
dimensional) trained on 60000 pseudo-samples (with batch size 5000 and 300 epochs) from a
two-dimensional $t$ copula (with 4 degrees of freedom and equi-correlation parameter chosen
such that Kendall’s tau equals 0.75).

GMMN_dim_3_300_3_ntrn_60000_nbat_5000_nepo_300_NC21_tau_0.25_0.5 rawR object rep-
resenting a GMMN (input and output layer are three-dimensional, the single hidden layer is
300-dimensional) trained on 60000 pseudo-samples (with batch size 5000 and 300 epochs)
from a three-dimensional nested Clayton copula (with sector dimensions 2 and 1, correspond-
ing Kendall’s tau 0.5 within the first sector and Kendall’s tau 0.25 between the two sectors).

GMMN_dim_3_300_3_ntrn_60000_nbat_5000_nepo_300_NG21_tau_0.25_0.5 rawR object rep-
resenting a GMMN (input and output layer are three-dimensional, the single hidden layer is
300-dimensional) trained on 60000 pseudo-samples (with batch size 5000 and 300 epochs)
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from a three-dimensional nested Gumbel copula (with sector dimensions 2 and 1, correspond-
ing Kendall’s tau 0.5 within the first sector and Kendall’s tau 0.25 between the two sectors).

GMMN_dim_5_300_5_ntrn_60000_nbat_5000_nepo_300_C_tau_0.5 raw R object represent-
ing a GMMN (input and output layer are five-dimensional, the single hidden layer is 300-
dimensional) trained on 60000 pseudo-samples (with batch size 5000 and 300 epochs) from a
five-dimensional Clayton copula (with parameter chosen such that Kendall’s tau equals 0.5).

GMMN_dim_5_300_5_ntrn_60000_nbat_5000_nepo_300_G_tau_0.5 raw R object represent-
ing a GMMN (input and output layer are five-dimensional, the single hidden layer is 300-
dimensional) trained on 60000 pseudo-samples (with batch size 5000 and 300 epochs) from a
five-dimensional Gumbel copula (with parameter chosen such that Kendall’s tau equals 0.5).

GMMN_dim_5_300_5_ntrn_60000_nbat_5000_nepo_300_NC23_tau_0.25_0.5_0.75 rawR ob-
ject representing a GMMN (input and output layer are five-dimensional, the single hidden
layer is 300-dimensional) trained on 60000 pseudo-samples (with batch size 5000 and 300
epochs) from a five-dimensional nested Clayton copula (with sector dimensions 2 and 3, cor-
responding Kendall’s tau 0.5 and 0.75, and Kendall’s tau 0.25 between the two sectors).

GMMN_dim_5_300_5_ntrn_60000_nbat_5000_nepo_300_NG23_tau_0.25_0.5_0.75 rawR ob-
ject representing a GMMN (input and output layer are five-dimensional, the single hidden
layer is 300-dimensional) trained on 60000 pseudo-samples (with batch size 5000 and 300
epochs) from a five-dimensional nested Gumbel copula (with sector dimensions 2 and 3, cor-
responding Kendall’s tau 0.5 and 0.75, and Kendall’s tau 0.25 between the two sectors); see
vignette("GMMN_QRNG",package = "gnn").

GMMN_dim_5_300_5_ntrn_60000_nbat_5000_nepo_300_t4_tau_0.5 raw R object represent-
ing a GMMN (input and output layer are five-dimensional, the single hidden layer is 300-
dimensional) trained on 60000 pseudo-samples (with batch size 5000 and 300 epochs) from a
five-dimensional $t$ copula (with 4 degrees of freedom and equi-correlation parameter chosen
such that Kendall’s tau equals 0.5); see vignette("GMMN_QRNG",package = "gnn").

GMMN_dim_10_300_10_ntrn_60000_nbat_5000_nepo_300_C_tau_0.5 rawR object represent-
ing a GMMN (input and output layer are 10-dimensional, the single hiddenlayer is 300-
dimensional) trained on 60000 pseudo-samples (with batch size 5000 and 300 epochs) from a
10-dimensional Clayton copula (with parameter chosen such that Kendall’s tau equals 0.5).

GMMN_dim_10_300_10_ntrn_60000_nbat_5000_nepo_300_G_tau_0.5 rawR object represent-
ing a GMMN (input and output layer are 10-dimensional, the single hiddenlayer is 300-
dimensional) trained on 60000 pseudo-samples (with batch size 5000 and 300 epochs) from a
10-dimensional Gumbel copula (with parameter chosen such that Kendall’s tau equals 0.5).

GMMN_dim_10_300_10_ntrn_60000_nbat_5000_nepo_300_NC55_tau_0.25_0.5_0.75 raw R
object representing a GMMN (input and output layer are 10-dimensional, the single hidden
layer is 300-dimensional) trained on 60000 pseudo-samples (with batch size 5000 and 300
epochs) from a 10-dimensional nested Clayton copula (with sector dimensions 5 and 5, corre-
sponding Kendall’s tau 0.5 and 0.75, and Kendall’s tau 0.25 between the two sectors).

GMMN_dim_10_300_10_ntrn_60000_nbat_5000_nepo_300_NG55_tau_0.25_0.5_0.75 raw R
object representing a GMMN (input and output layer are 10-dimensional, the single hidden
layer is 300-dimensional) trained on 60000 pseudo-samples (with batch size 5000 and 300
epochs) from a 10-dimensional nested Gumbel copula (with sector dimensions 5 and 5, cor-
responding Kendall’s tau 0.5 and 0.75, and Kendall’s tau 0.25 between the two sectors).

GMMN_dim_10_300_10_ntrn_60000_nbat_5000_nepo_300_t4_tau_0.5 rawR object represent-
ing a GMMN (input and output layer are 10-dimensional, the single hidden layer is 300-
dimensional) trained on 60000 pseudo-samples (with batch size 5000 and 300 epochs) from a
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10-dimensional $t$ copula (with 4 degrees of freedom and equi-correlation parameter chosen
such that Kendall’s tau equals 0.5).

Author(s)

Marius Hofert and Avinash Prasad

Source

GPU server with NVIDIA Tesla P100 GPUs.

References

Hofert, M., Prasad, A. and Zhu, M. (2018). Quasi-Monte Carlo for multivariate distributions via
generative neural networks. (See https://arxiv.org/abs/1811.00683 for an early version)

See Also

GMMN_model(), to_callable()

Examples

# to avoid win-builder error "Error: Installation of TensorFlow not found"
## Load a trained GMMN (see train_once())
NNname <- "GMMN_dim_2_300_2_ntrn_60000_nbat_5000_nepo_300_eqmix_C_tau_0.5_rot90_t4_tau_0.5"
NN <- read_rda(NNname, package = "gnn")
GMMN1 <- to_callable(NN)
str(GMMN1)

## Alternative
NNnm <- data(list = NNname)
GMMN2 <- to_callable(get(NNnm))
str(GMMN2)

## Check (the check-able components)
stopifnot(identical(GMMN1[names(GMMN1) != "model"],

GMMN2[names(GMMN2) != "model"]))

## Evaluate
set.seed(271)
N.prior <- matrix(rnorm(2000 * 2), ncol = 2)
X <- predict(GMMN1[["model"]], x = N.prior)
plot(X, xlab = expression(X[1]), ylab = expression(X[2]))
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human_time Time Measurement with Human-Readable Units

Description

system.time() with human-readable output.

Usage

human_time(..., digits = 2)

Arguments

... arguments passed to the underlying system.time().
digits for rounding the output; see round().

Value

Timings with units indicated.

Author(s)

Marius Hofert

Examples

human_time(Sys.sleep(1))

loss Loss Function

Description

Implementation of various loss functions to measure statistical discrepancy between two datasets.

Usage

loss(x, y, type = c("MSE", "binary.cross", "MMD"), ...)

Arguments

x 2d tensor with shape (batch size, dimension of input dataset).
y 2d tensor with shape (batch size, dimension of input dataset).
type character string indicating the type of loss used. Currently available are the

mean squared error ("MSE"), binary cross entropy ("binary.cross") and (ker-
nel) maximum mean discrepancy ("MMD").

... additional arguments passed to the underlying loss function; at the moment, this
is only affects type = "MMD" for which "bandwidth" can be provided.
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Value

loss() returns a 0d tensor containing the loss.

Author(s)

Marius Hofert and Avinash Prasad

References

Kingma, D. P. and Welling, M. (2014). Stochastic gradient VB and the variational auto-encoder.
Second International Conference on Learning Representations (ICLR). See https://keras.rstudio.com/articles/examples/variational_autoencoder.html

See Also

GMMN_model() and VAE_model() where loss() is used.

rda Check Existence, Read, Save and Rename .rda Files and their Objects

Description

Check Existence, Read, Save and Rename .rda Files and their Objects.

Usage

exists_rda(file, names, package = NULL)
read_rda(file, names, package = NULL)
save_rda(..., file, names = NULL)
rename_rda(oldname, oldfile = paste0(oldname, collapse = "_"),

newname, newfile = paste0(newname, collapse = "_", ".rda"),
package = NULL)

Arguments

file exists_rda() character string (with or without ending .rda) specifying the
name of the file to check existence of (if pacakge = NULL) or in (otherwise).

read_rda() character string (with or without ending .rda) specifying the file
to read from.

save_rda() character string (with or without ending .rda) specifying the file
to save to.

names exists_rda() character vector of names of objects to be checked for existence.
read_rda() character vector of names of objects to be read. If not provided,

a name is constructed from file.
save_rda() character vector of names under which the objects in ... are

saved in file. If NULL, the names of the objects provided by . . . are taken
as default values.
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package exists_rda() package name in which to check or NULL (the default) in which
case the current working directory is checked.

read_rda(), rename_rda() package name from which to load the objects or
NULL (the default) in which case the current working directory is searched.

... any number of R objects.

oldname character string specifying the object to be read.

oldfile file name (with or without ending .rda) specifying from which the object named
oldname is read.

newname character string specifying the new name under which the object is to be saved.

newfile file name (with ending .rda) specifying where the object named oldname is
saved under the name newname.

Value

exists_rda() logical indicating whether the .rda file file exists (if names is not provided) or
whether the objects with names names exist inside file (if names is provided).

read_rda() the object read from the .rda.

save_rda() nothing (generated an .rda by side-effect).

rename_rda() nothing (generated an .rda by side-effect).

Author(s)

Marius Hofert

See Also

See the underlying functions load(), data() and save() (among others).

rm_ext Remove a File Extension

Description

Fixes the removal of file extensions of file_path_sans_ext() in the case where file names contain
digits after the last dot (which is often used to incorporate numeric numbers into file names).

Usage

rm_ext(x)

Arguments

x file name(s) with extension(s) to be stripped off.
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Value

The file name without its extension (if the file name had an extension).

Author(s)

Marius Hofert

Examples

myfilepath1 <- "/myusername/my_filename_with_dots_0.25_0.50_0.75.rda"
myfilepath2 <- "/myusername/my_filename_with_dots_0.25_0.50_0.75"
myfilepath3 <- "/myusername/my_filename_with_dots_0.25_0.50_0.75."
myfilepath4 <- "/myusername/my_filename_with_dots_0.25_0.50_0.75._"
myfilepath5 <- "/myusername/my_filename_with_dots_0.25_0.50_0.75._*.rda"
library(tools)
file_path_sans_ext(myfilepath2) # fails (only case)

stopifnot(rm_ext(myfilepath1) == file_path_sans_ext(myfilepath1))
stopifnot(rm_ext(myfilepath2) == myfilepath2)
stopifnot(rm_ext(myfilepath3) == file_path_sans_ext(myfilepath3))
stopifnot(rm_ext(myfilepath4) == file_path_sans_ext(myfilepath4))
stopifnot(rm_ext(myfilepath5) == file_path_sans_ext(myfilepath5))

to_savable_callable Convert GNN objects to Savable or Callable Ones

Description

Keras objects cannot be saved like other R objects. The auxiliary functions to_savable() and
to_callable() address this issue.

Usage

to_savable(gnn)
to_callable(gnn)

Arguments

gnn GNN object.

Details

For GMMNs, to_savable() calls serialize_model() and to_callable() calls unserialize_model().

For VAEs, to_savable() is (indirectly) based on save_model_weights_hdf5() and to_callable()
on load_model_weights_hdf5(); one cannot work with serialize_model() or unserialize_model()
in this case because of the involved layer_lambda().

See the source code for more details.
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Value

to_savable(): The GNN object with keras components replaced by savable ones.

to_callable(): The GNN object with certain components replaced by keras objects.

Author(s)

Marius Hofert

trafos_componentwise Data Transformations for Training or Sampling

Description

Transformations applied to each marginal component sample to map given data to a different range.

Usage

range_trafo(x, lower, upper, inverse = FALSE)
logis_trafo(x, mean = 0, sd = 1, slope = 1, intercept = 0, inverse = FALSE)

Arguments

x (n, d)-matrix of data (typically before training or after sampling).

lower value or d-vector typically containing the smallest value of each column of x.

upper value or d-vector typically containing the largest value of each column of x.

mean value or d-vector.

sd value or d-vector.

slope value or d-vector of slopes of the linear transformations applied after applying
plogis() (before applying qlogis() if inverse = TRUE).

intercept value or d-vector of intercepts of the linear transformations applied after apply-
ing plogis() (before applying qlogis() if inverse = TRUE).

inverse logical indicating whether the inverses of the respective transformations are to
be computed (typically used after generating data from a neural network trained
on data transformed with the respective transformation and inverse = FALSE).

Value

An object as x containing the componentwise transformed data.

Author(s)

Marius Hofert
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Examples

## Generate data
n <- 100
set.seed(271)
x <- cbind(rnorm(n), (1-runif(n))^(-1/2)-1) # normal and Pareto(2) margins
plot(x)

## Range transformation
ran <- apply(x, 2, range) # column j = range of the jth column of x
x.ran <- range_trafo(x, lower = ran[1,], upper = ran[2,]) # marginally transform to [0,1]
plot(x.ran) # => now range [0,1] but points a bit clustered around small y-values
x. <- range_trafo(x.ran, lower = ran[1,], upper = ran[2,], inverse = TRUE) # transform back
stopifnot(all.equal(x., x)) # check

## Logistic transformation
x.logis <- logis_trafo(x) # marginally transform to [0,1] via plogis()
plot(x.logis) # => y-range is [1/2, 1] which can be harder to train
x. <- logis_trafo(x.logis, inverse = TRUE) # transform back
stopifnot(all.equal(x., x)) # check

## Logistic transformation with scaling to all of [0,1] in the second coordinate
x.logis.scale <- logis_trafo(x, slope = 2, intercept = -1)
plot(x.logis.scale) # => now y-range is scaled to [0,1]
x. <- logis_trafo(x.logis.scale, slope = 2, intercept = -1, inverse = TRUE) # transform back
stopifnot(all.equal(x., x)) # check

## Logistic transformation with sample mean and standard deviation and then
## transforming the range to [0,1] with a range transformation (note that
## slope = 2, intercept = -1 would not help here as the y-range is not [1/2, 1])
mu <- colMeans(x)
sig <- apply(x, 2, sd)
x.logis.fit <- logis_trafo(x, mean = mu, sd = sig) # marginally plogis(, location, scale)
plot(x.logis.fit) # => y-range is not [1/2, 1] => use range transformation
ran <- apply(x.logis.fit, 2, range)
x.logis.fit.ran <- range_trafo(x.logis.fit, lower = ran[1,], upper = ran[2,])
plot(x.logis.fit.ran) # => now y-range is [1/2, 1]
x. <- logis_trafo(range_trafo(x.logis.fit.ran, lower = ran[1,], upper = ran[2,],

inverse = TRUE),
mean = mu, sd = sig, inverse = TRUE) # transform back

stopifnot(all.equal(x., x)) # check

## Note that for heavy-tailed data, plogis() can fail to stay inside (0,1)
## even with adapting to sample mean and standard deviation. We now present
## a case where we see that using a fitted logistic distribution function
## is *just* good enough to numerically keep the data inside (0,1).
set.seed(271)
x <- cbind(rnorm(n), (1-runif(n))^(-2)-1) # normal and Pareto(1/2) margins
plot(x) # => heavy-tailed in y-coordinate
## Transforming with standard logistic distribution function
x.logis <- logis_trafo(x)
stopifnot(any(x.logis[,2] == 1))
## => There is value numerically indistinguishable from 1 to which applying
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## the inverse transform will lead to Inf
stopifnot(any(is.infinite(logis_trafo(x.logis, inverse = TRUE))))
## Now adapt the logistic distribution to share the mean and standard deviation
## with the data
mu <- colMeans(x)
sig <- apply(x, 2, sd)
x.logis.scale <- logis_trafo(x, mean = mu, sd = sig)
stopifnot(all(x.logis.scale[,2] != 1)) # => no values equal to 1 anymore

## Alternatively, log() the data first, thus working with a log-logistic
## distribution as transformation
lx <- cbind(x[,1], log(x[,2])) # 2nd coordinate only
lmu <- c(mu[1], mean(lx[,2]))
lsig <- c(sig[1], sd(lx[,2]))
x.llogis <- logis_trafo(lx, mean = lmu, sd = lsig)
x. <- logis_trafo(x.llogis, mean = lmu, sd = lsig, inverse = TRUE)
x.. <- cbind(x.[,1], exp(x.[,2])) # undo log()
stopifnot(all.equal(x.., x))

trafos_dimreduction Dimension-Reduction Transformations for Training or Sampling

Description

Dimension-reduction transformations applied to an input data matrix. Currently on the principal
component transformation and its inverse.

Usage

PCA_trafo(x, mu, Gamma, inverse = FALSE, ...)

Arguments

x (n, d)-matrix of data (typically before training or after sampling). If inverse
= FALSE, then, conceptually, an (n, d)-matrix with 1 ≤ k ≤ d, where d is the
dimension of the original data whose dimension was reduced to k.

mu if inverse = TRUE, a d-vector of centers, where d is the dimension to transform
x to.

Gamma if inverse = TRUE, a (d, k)-matrix with k at least as large as ncol(x) containing
the k orthonormal eigenvectors of a covariance matrix sorted in decreasing order
of their eigenvalues; in other words, the columns of Gamma contain principal axes
or loadings. If a matrix with k greater than ncol(x) is provided, only the first
k-many are considered.

inverse logical indicating whether the inverse transformation of the principal compo-
nent transformation is applied.

... additional arguments passed to the underlying prcomp().
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Details

Conceptually, the principal component transformation transforms a vector X to a vector Y where
Y = ΓT (X − µ), where µ is the mean vector of X and Γ is the (d, d)-matrix whose columns
contains the orthonormal eigenvectors of cov(X).

The corresponding (conceptual) inverse transformation isX = µ+ ΓY .

See McNeil et al. (2015, Section 6.4.5).

Value

If inverse = TRUE, the transformed data whose rows containX = µ+ ΓY , where Y is one row of
x. See the details below for the notation.

If inverse = FALSE, a list containing:

PCs: (n, d)-matrix of principal components.

cumvar: cumulative variances; the jth entry provides the fraction of the explained variance of the
first j principal components.

sd: sample standard deviations of the transformed data.

lambda: eigenvalues of cov(x).

mu: d-vector of centers of x (see also above) typically provided to PCA_trafo(,inverse = TRUE).

Gamma: (d, d)-matrix of principal axes (see also above) typically provided to PCA_trafo(,inverse
= TRUE).

Author(s)

Marius Hofert

References

McNeil, A. J., Frey, R., and Embrechts, P. (2015). Quantitative Risk Management: Concepts,
Techniques, Tools. Princeton University Press.

Examples

## Generate data
library(copula)
set.seed(271)
X <- qt(rCopula(1000, gumbelCopula(2, dim = 10)), df = 3.5)
pairs(X, gap = 0, pch = ".")

## Principal component transformation
PCA <- PCA_trafo(X)
Y <- PCA$PCs
PCA$cumvar[3] # fraction of variance explained by the first 3 principal components
which.max(PCA$cumvar > 0.9) # number of principal components it takes to explain 90%

## Biplot (plot of the first two principal components = data transformed with
## the first two principal axes)
plot(Y[,1:2])
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## Transform back and compare
X. <- PCA_trafo(Y, mu = PCA$mu, Gamma = PCA$Gamma, inverse = TRUE)
stopifnot(all.equal(X., X))

## Note: One typically transforms back with only some of the principal axes
X. <- PCA_trafo(Y[,1:3], mu = PCA$mu, # mu determines the dimension to transform to

Gamma = PCA$Gamma, # must be of dim. (length(mu), k) for k >= ncol(x)
inverse = TRUE)

stopifnot(dim(X.) == c(1000, 10))
## Note: We (typically) transform back to the original dimension.
pairs(X., gap = 0, pch = ".") # pairs of back-transformed first three PCs

training Functions for Training of Generative Neural Networks

Description

Functions for training generative neural networks.

Usage

train(gnn, data, batch.size, nepoch, verbose = 3, ...)
train_once(gnn, data, batch.size, nepoch,

file, name = rm_ext(basename(file)), package = NULL, ...)

Arguments

gnn GNN object as created by GMMN_model() or VAE_model().

data (n, d)-matrix containing the n d-dimensional observations of the training data.

batch.size number of samples used per stochastic gradient step.

nepoch number of epochs (one epoch equals one pass through the complete training
dataset while updating the GNN’s parameters through stochastic gradient steps).

verbose see fit.keras.engine.training.Model().

file character string (with or without ending .rda) specifying the file to save the
trained GNN to.

name name under which the trained GNN is saved in file.

package name of the package from which to read the trained GNN; if NULL (the default)
the current working directory is used.

... additional arguments passed to the underlying train() for train_once() and
fit() (which is keras:::fit.keras.engine.training.Model()) for train().
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Value

train(): The trained GNN object.

train_once(): If object name exists in file, train_once() reads it, converts it to a callable GNN
object via to_callable() and returns it. Otherwise, train_once() calls train() to train the
GNN, converts it to a savable GNN object via to_savable(), saves it and returns the trained
GNN.

Author(s)

Marius Hofert

See Also

GMMN_model(), VAE_model(), to_savable(), to_callable().

Examples

## Training data
d <- 2
P <- matrix(0.9, nrow = d, ncol = d)
diag(P) <- 1
A <- t(chol(P))
set.seed(271)
ntrn <- 60000
Z <- matrix(rnorm(ntrn * d), ncol = d)
X <- t(A %*% t(Z)) # d-dimensional equicorrelated normal
U <- apply(abs(X), 2, rank) / (ntrn + 1) # pseudo-observations of |X|
plot(U[1:2000,], xlab = expression(U[1]), ylab = expression(U[2]))

## Define the model and 'train' it
dim <- c(d, 300, d) # dimensions of the input, hidden and output layers
GMMN.mod <- GMMN_model(dim)
GMMN.trained <- train(GMMN.mod, data = U, batch.size = 500, nepoch = 2)
## Note: Obviously, in a real-world application, batch.size and nepoch
## should be (much) larger (e.g., batch.size = 5000, nepoch = 300).

## Evaluate (roughly picks up the shape even with our bad choices of
## batch.size and nepoch)
set.seed(271)
N.prior <- matrix(rnorm(2000 * d), ncol = d)
V <- predict(GMMN.trained[["model"]], x = N.prior)
plot(V, xlab = expression(V[1]), ylab = expression(V[2]))

## Convert the trained neural network to one that can be saved
## and save it (here: to some temporary file)
GMMN.savable <- to_savable(GMMN.trained)
file <- tempfile("trained_GMMN", fileext = ".rda")
save_rda(GMMN.savable, file = file, names = "GMMN")
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VAE_model Variational Autoencoder

Description

Setup of a variational autoencoder (VAE) model.

Usage

VAE_model(dim, activation = c(rep("relu", length(dim) - 2), "sigmoid"),
batch.norm = FALSE, dropout.rate = 0,
sd = 1, loss.type = c("MSE", "binary.cross", "MMD"), nGPU = 0, ...)

Arguments

dim numeric vector of length at least two, giving the dimensions of the input layer
(equal to the dimension of the output layer), the hidden layer(s) (if any) and the
latent layer (in this order).

activation character vector of length length(dim) -1 specifying the activation functions
for all hidden layers and the output layer (in this order); note that the input layer
does not have an activation function.

batch.norm logical indicating whether batch normalization layers are to be added after
each hidden layer.

dropout.rate numeric value in [0,1] specifying the fraction of input to be dropped; see the
rate parameter of layer_dropout(). Note that only if positive, dropout layers
are added after each hidden layer.

sd positive numeric value giving the standard deviation of the normal distribution
used as prior.

loss.type character string indicating the type of reconstruction loss. Currently available
are the mean squared error ("MSE"), binary cross entropy ("binary.cross")
and (kernel) maximum mean discrepancy ("MMD").

nGPU non-negative integer specifying the number of GPUs available if the GPU ver-
sion of TensorFlow is installed. If positive, a (special) multiple GPU model for
data parallelism is instantiated. Note that for multi-layer perceptrons on a few
GPUs, this model does not yet yield any scale-up computational factor (in fact,
currently very slightly negative scale-ups are likely due to overhead costs).

... additional arguments passed to loss().

Value

VAE_model() returns a list with components

model: VAE model (a keras object inheriting from the classes "keras.engine.training.Model",
"keras.engine.network.Network", "keras.engine.base_layer.Layer" and "python.builtin.object").

encoder: the encoder (a keras object as model).
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generator: the generator (a keras object as model).

type: character string indicating the type of model ("VAE").

dim: see above.

activation: see above.

batch.norm: see above.

dropout.rate: see above.

sd: see above.

loss.type: see above.

dim.train: dimension of the training data (NA unless trained).

batch.size: batch size (NA unless trained).

nepoch: number of epochs (NA unless trained).

Author(s)

Marius Hofert and Avinash Prasad

References

Kingma, D. P. and Welling, M. (2014). Stochastic gradient VB and the variational auto-encoder.
Second International Conference on Learning Representations (ICLR). See https://keras.rstudio.com/articles/examples/variational_autoencoder.html

See Also

GMMN_model()

Examples

# to avoid win-builder error "Error: Installation of TensorFlow not found"
## Example model with a 5d input, 300d hidden and 4d output layer
str(VAE_model(c(5, 300, 4)))
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