glmaag: Adaptive LASSO and Network Regularized Generalized Linear Models

Efficient procedures for adaptive LASSO and network regularized for Gaussian, logistic, and Cox model. Provides network estimation procedure (combination of methods proposed by Ucar, et. al (2007) <doi:10.1093/bioinformatics/btm423> and Meinshausen and Buhlmann (2006) <doi:10.1214/009053606000000281>), cross validation and stability selection proposed by Meinshausen and Buhlmann (2010) <doi:10.1111/j.1467-9868.2010.00740.x> and Liu, Roeder and Wasserman (2010) <arXiv:1006.3316> methods. Interactive R app is available.

Version: 0.0.6
Depends: R (≥ 3.6.0), survival, data.table
Imports: Rcpp (≥ 1.0.0), methods, stats, Matrix, ggplot2, gridExtra, maxstat, survminer, plotROC, shiny, foreach, pROC, huge, OptimalCutpoints
LinkingTo: Rcpp, RcppArmadillo
Suggests: knitr, rmarkdown
Published: 2019-05-10
Author: Kaiqiao Li [aut, cre], Pei Fen Kuan [aut], Xuefeng Wang [aut]
Maintainer: Kaiqiao Li <kaiqiao.li at stonybrook.edu>
License: MIT + file LICENSE
NeedsCompilation: yes
CRAN checks: glmaag results

Downloads:

Reference manual: glmaag.pdf
Vignettes: Vignette Title
Package source: glmaag_0.0.6.tar.gz
Windows binaries: r-devel: glmaag_0.0.6.zip, r-release: glmaag_0.0.6.zip, r-oldrel: glmaag_0.0.6.zip
macOS binaries: r-release: glmaag_0.0.6.tgz, r-oldrel: glmaag_0.0.6.tgz
Old sources: glmaag archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=glmaag to link to this page.