
Package ‘gh’
January 24, 2020

Title 'GitHub' 'API'

Version 1.1.0

Description Minimal client to access the 'GitHub' 'API'.

License MIT + file LICENSE

LazyData true

URL https://github.com/r-lib/gh#readme

BugReports https://github.com/r-lib/gh/issues

Suggests covr, keyring, pingr, testthat, withr

Imports cli, ini, jsonlite, httr (>= 1.2)

RoxygenNote 7.0.2.9000

Encoding UTF-8

NeedsCompilation no

Author Gábor Csárdi [cre, ctb],
Jennifer Bryan [aut],
Hadley Wickham [aut]

Maintainer Gábor Csárdi <csardi.gabor@gmail.com>

Repository CRAN

Date/Publication 2020-01-24 06:50:17 UTC

R topics documented:
gh . 2
gh_gql . 4
gh_next . 6
gh_token . 7
gh_tree_remote . 8
gh_whoami . 9
print.gh_response . 10
slugify_url . 11

Index 12

1

https://github.com/r-lib/gh#readme
https://github.com/r-lib/gh/issues

2 gh

gh GitHub API

Description

Minimal wrapper to access GitHub’s API.

This is an extremely minimal client. You need to know the API to be able to use this client. All this
function does is:

• Try to substitute each listed parameter into endpoint, using the :parameter notation.

• If a GET request (the default), then add all other listed parameters as query parameters.

• If not a GET request, then send the other parameters in the request body, as JSON.

• Convert the response to an R list using jsonlite::fromJSON().

Usage

gh(
endpoint,
...,
per_page = NULL,
.token = NULL,
.destfile = NULL,
.overwrite = FALSE,
.api_url = NULL,
.method = "GET",
.limit = NULL,
.accept = "application/vnd.github.v3+json",
.send_headers = NULL,
.progress = TRUE

)

Arguments

endpoint GitHub API endpoint. Must be one of the following forms:

• METHOD path, e.g. GET /rate_limit,
• path, e.g. /rate_limit,
• METHOD url, e.g. GET https://api.github.com/rate_limit,
• url, e.g. https://api.github.com/rate_limit.

If the method is not supplied, will use .method, which defaults to "GET".

... Name-value pairs giving API parameters. Will be matched into endpoint place-
holders, sent as query parameters in GET requests, and as a JSON body of POST
requests. If there is only one unnamed parameter, and it is a raw vector, then it
will not be JSON encoded, but sent as raw data, as is. This can be used for
example to add assets to releases. Named NULL values are silently dropped, and
named NA values trigger an error.

gh 3

per_page Number of items to return per page. If omitted, will be substituted by max(.limit,100)
if .limit is set, otherwise determined by the API (never greater than 100).

.token Authentication token. Defaults to GITHUB_PAT or GITHUB_TOKEN environment
variables, in this order if any is set. See gh_token() if you need more flexibility,
e.g. different tokens for different GitHub Enterprise deployments.

.destfile path to write response to disk. If NULL (default), response will be processed
and returned as an object. If path is given, response will be written to disk in the
form sent.

.overwrite if .destfile is provided, whether to overwrite an existing file. Defaults to
FALSE.

.api_url Github API url (default: https://api.github.com). Used if endpoint just
contains a path. Defaults to GITHUB_API_URL environment variable if set.

.method HTTP method to use if not explicitly supplied in the endpoint.

.limit Number of records to return. This can be used instead of manual pagination.
By default it is NULL, which means that the defaults of the GitHub API are used.
You can set it to a number to request more (or less) records, and also to Inf to
request all records. Note, that if you request many records, then multiple GitHub
API calls are used to get them, and this can take a potentially long time.

.accept The value of the Accept HTTP header. Defaults to "application/vnd.github.v3+json"
. If Accept is given in .send_headers, then that will be used. This paramter
can be used to provide a custom media type, in order to access a preview feature
of the API.

.send_headers Named character vector of header field values (except Authorization, which
is handled via .token). This can be used to override or augment the default
User-Agent header: "https://github.com/r-lib/gh".

.progress Whether to show a progress indicator for calls that need more than one HTTP
request.

Value

Answer from the API as a gh_response object, which is also a list. Failed requests will generate
an R error. Requests that generate a raw response will return a raw vector.

Author(s)

Maintainer: Gábor Csárdi <csardi.gabor@gmail.com> [contributor]

Authors:

• Jennifer Bryan

• Hadley Wickham

See Also

Useful links:

• https://github.com/r-lib/gh#readme

https://api.github.com
https://github.com/r-lib/gh#readme

4 gh_gql

• Report bugs at https://github.com/r-lib/gh/issues

gh_gql() if you want to use the GitHub GraphQL API, gh_whoami() for details on GitHub API
token management.

Examples

Repositories of a user, these are equivalent
gh("/users/hadley/repos")
gh("/users/:username/repos", username = "hadley")

Starred repositories of a user
gh("/users/hadley/starred")
gh("/users/:username/starred", username = "hadley")

Create a repository, needs a token in GITHUB_PAT (or GITHUB_TOKEN)
environment variable
gh("POST /user/repos", name = "foobar")

Issues of a repository
gh("/repos/hadley/dplyr/issues")
gh("/repos/:owner/:repo/issues", owner = "hadley", repo = "dplyr")

Automatic pagination
users <- gh("/users", .limit = 50)
length(users)

Access developer preview of Licenses API (in preview as of 2015-09-24)
gh("/licenses") # used to error code 415
gh("/licenses", .accept = "application/vnd.github.drax-preview+json")

Access Github Enterprise API
Use GITHUB_API_URL environment variable to change the default.
gh("/user/repos", type = "public", .api_url = "https://github.foobar.edu/api/v3")

Use I() to force body part to be sent as an array, even if length 1
This works whether assignees has length 1 or > 1
assignees <- "gh_user"
assignees <- c("gh_user1", "gh_user2")
gh("PATCH /repos/OWNER/REPO/issues/1", assignees = I(assignees))

gh_gql A simple interface for the GitHub GraphQL API v4.

https://github.com/r-lib/gh/issues

gh_gql 5

Description

See more about the GraphQL API here: https://developer.github.com/v4/

Usage

gh_gql(
query,
...,
.token = NULL,
.destfile = NULL,
.overwrite = FALSE,
.api_url = NULL,
.send_headers = NULL

)

Arguments

query The GraphQL query, as a string.

... Name-value pairs giving API parameters. Will be matched into endpoint place-
holders, sent as query parameters in GET requests, and as a JSON body of POST
requests. If there is only one unnamed parameter, and it is a raw vector, then it
will not be JSON encoded, but sent as raw data, as is. This can be used for
example to add assets to releases. Named NULL values are silently dropped, and
named NA values trigger an error.

.token Authentication token. Defaults to GITHUB_PAT or GITHUB_TOKEN environment
variables, in this order if any is set. See gh_token() if you need more flexibility,
e.g. different tokens for different GitHub Enterprise deployments.

.destfile path to write response to disk. If NULL (default), response will be processed
and returned as an object. If path is given, response will be written to disk in the
form sent.

.overwrite if .destfile is provided, whether to overwrite an existing file. Defaults to
FALSE.

.api_url Github API url (default: https://api.github.com). Used if endpoint just
contains a path. Defaults to GITHUB_API_URL environment variable if set.

.send_headers Named character vector of header field values (except Authorization, which
is handled via .token). This can be used to override or augment the default
User-Agent header: "https://github.com/r-lib/gh".

Details

Note: pagination and the .limit argument does not work currently, as pagination in the GraphQL
API is different from the v3 API. If you need pagination with GraphQL, you’ll need to do that
manually.

See Also

gh() for the GitHub v3 API.

https://developer.github.com/v4/
https://api.github.com

6 gh_next

Examples

gh_gql("query { viewer { login }}")

gh_next Get the next, previous, first or last page of results

Description

Get the next, previous, first or last page of results

Usage

gh_next(gh_response)

gh_prev(gh_response)

gh_first(gh_response)

gh_last(gh_response)

Arguments

gh_response An object returned by a gh() call.

Details

Note that these are not always defined. E.g. if the first page was queried (the default), then there are
no first and previous pages defined. If there is no next page, then there is no next page defined, etc.

If the requested page does not exist, an error is thrown.

Value

Answer from the API.

See Also

The .limit argument to gh() supports fetching more than one page.

Examples

x <- gh("/users")
vapply(x, "[[", character(1), "login")
x2 <- gh_next(x)
vapply(x2, "[[", character(1), "login")

gh_token 7

gh_token Return the local user’s GitHub Personal Access Token (PAT)

Description

You can read more about PATs here: https://help.github.com/articles/creating-a-personal-access-token-for-the-command-line/
and you can access your PATs here (if logged in to GitHub): https://github.com/settings/
tokens.

Usage

gh_token(api_url = NULL)

Arguments

api_url Github API url. Defaults to GITHUB_API_URL environment variable if set, oth-
erwise https://api.github.com.

Details

Set the GITHUB_PAT environment variable to avoid having to include your PAT in the code. If you
work with multiple GitHub deployments, e.g. via GitHub Enterprise, then read ’PATs for GitHub
Enterprise’ below.

If you want a more secure solution than putting authentication tokens into environment variables,
read ’Storing PATs in the system keyring’ below.

Value

A string, with the token, or a zero length string scalar, if no token is available.

NA

gh supports storing your PAT in the system keyring, on Windows, macOS and Linux, using the
keyring package. To turn on keyring support, you need to set the GH_KEYRING environment variables
to true, in your .Renviron file or profile.

If keyring support is turned on, then for each PAT environment variable, gh first checks whether
the key with that value is set in the system keyring, and if yes, it will use its value as the PAT. I.e.
without a custom GITHUB_API_URL variable, it checks the GITHUB_PAT_API_GITHUB_COM key first,
then the env var with the same name, then the GITHUB_PAT key, etc. Such a check looks like this:

keyring::key_get("GITHUB_PAT_API_GITHUB_COM")

and it uses the default keyring backend and the default keyring within that backend. See keyring::default_backend()
for details and changing these defaults.

If the selected keyring is locked, and the session is interactive, then gh will try to unlock it. If the
keyring is locked, and the session is not interactive, then gh will not use the keyring. Note that some
keyring backends cannot be locked (e.g. the one that uses environment variables).

https://help.github.com/articles/creating-a-personal-access-token-for-the-command-line/
https://github.com/settings/tokens
https://github.com/settings/tokens
https://api.github.com

8 gh_tree_remote

On some OSes, e.g. typically on macOS, you need to allow R to access the system keyring. You
can allow this separately for each access, or for all future accesses, until you update or re-install R.
You typically need to give access to each R GUI (e.g. RStudio) and the command line R program
separately.

To store your PAT on the keyring run

keyring::key_set("GITHUB_PAT")

Storing PATs in the system keyring

gh supports storing your PAT in the system keyring, on Windows, macOS and Linux, using the
keyring package. To turn on keyring support, you need to set the GH_KEYRING environment variables
to true, in your .Renviron file or profile.

If keyring support is turned on, then for each PAT environment variable, gh first checks whether
the key with that value is set in the system keyring, and if yes, it will use its value as the PAT. I.e.
without a custom GITHUB_API_URL variable, it checks the GITHUB_PAT_API_GITHUB_COM key first,
then the env var with the same name, then the GITHUB_PAT key, etc. Such a check looks like this:

keyring::key_get("GITHUB_PAT_API_GITHUB_COM")

and it uses the default keyring backend and the default keyring within that backend. See keyring::default_backend()
for details and changing these defaults.

If the selected keyring is locked, and the session is interactive, then gh will try to unlock it. If the
keyring is locked, and the session is not interactive, then gh will not use the keyring. Note that some
keyring backends cannot be locked (e.g. the one that uses environment variables).

On some OSes, e.g. typically on macOS, you need to allow R to access the system keyring. You
can allow this separately for each access, or for all future accesses, until you update or re-install R.
You typically need to give access to each R GUI (e.g. RStudio) and the command line R program
separately.

To store your PAT on the keyring run

keyring::key_set("GITHUB_PAT")

See Also

slugify_url() for computing the environment variables that gh uses to search for API URL spe-
cific PATs.

gh_tree_remote Find the GitHub remote associated with a path

Description

This is handy helper if you want to make gh requests related to the current project.

gh_whoami 9

Usage

gh_tree_remote(path = ".")

Arguments

path Path that is contained within a git repo.

Value

If the repo has a github remote, a list containing username and repo. Otherwise, an error.

Examples

gh_tree_remote()

gh_whoami Info on current GitHub user and token

Description

Reports wallet name, GitHub login, and GitHub URL for the current authenticated user, the first bit
of the token, and the associated scopes.

Usage

gh_whoami(.token = NULL, .api_url = NULL, .send_headers = NULL)

Arguments

.token Authentication token. Defaults to GITHUB_PAT or GITHUB_TOKEN environment
variables, in this order if any is set. See gh_token() if you need more flexibility,
e.g. different tokens for different GitHub Enterprise deployments.

.api_url Github API url (default: https://api.github.com). Used if endpoint just
contains a path. Defaults to GITHUB_API_URL environment variable if set.

.send_headers Named character vector of header field values (except Authorization, which
is handled via .token). This can be used to override or augment the default
User-Agent header: "https://github.com/r-lib/gh".

https://api.github.com

10 print.gh_response

Details

Get a personal access token for the GitHub API from https://github.com/settings/tokens
and select the scopes necessary for your planned tasks. The repo scope, for example, is one many
are likely to need. The token itself is a string of 40 letters and digits. You can store it any way you
like and provide explicitly via the .token argument to gh().

However, many prefer to define an environment variable GITHUB_PAT (or GITHUB_TOKEN) with this
value in their .Renviron file. Add a line that looks like this, substituting your PAT:

GITHUB_PAT=8c70fd8419398999c9ac5bacf3192882193cadf2

Put a line break at the end! If you’re using an editor that shows line numbers, there should be (at
least) two lines, where the second one is empty. Restart R for this to take effect. Call gh_whoami()
to confirm success.

To get complete information on the authenticated user, call gh("/user").

For token management via API (versus the browser), use the Authorizations API. This API requires
Basic Authentication using your username and password, not tokens, and is outside the scope of the
gh package.

Value

A gh_response object, which is also a list.

Examples

gh_whoami()

explicit token + use with GitHub Enterprise
gh_whoami(.token = "8c70fd8419398999c9ac5bacf3192882193cadf2",

.api_url = "https://github.foobar.edu/api/v3")

print.gh_response Print the result of a GitHub API call

Description

Print the result of a GitHub API call

Usage

S3 method for class 'gh_response'
print(x, ...)

https://github.com/settings/tokens
https://developer.github.com/v3/oauth_authorizations

slugify_url 11

Arguments

x The result object.

... Ignored.

Value

The JSON result.

slugify_url Compute the suffix that gh uses for GitHub API URL specific PATs

Description

Compute the suffix that gh uses for GitHub API URL specific PATs

Usage

slugify_url(url)

Arguments

url Character vector HTTP/HTTPS URLs.

Value

Character vector of suffixes.

See Also

gh_token()

Examples

The main GH site
slugify_url("https://api.github.com")

A custom one
slugify_url("https://github.acme.com")

Index

gh, 2
gh(), 5, 6, 10
gh-package (gh), 2
gh_first (gh_next), 6
gh_gql, 4
gh_gql(), 4
gh_last (gh_next), 6
gh_next, 6
gh_prev (gh_next), 6
gh_token, 7
gh_token(), 3, 5, 9, 11
gh_tree_remote, 8
gh_whoami, 9
gh_whoami(), 4

jsonlite::fromJSON(), 2

keyring::default_backend(), 7, 8

print.gh_response, 10

slugify_url, 11
slugify_url(), 8

12

	gh
	gh_gql
	gh_next
	gh_token
	gh_tree_remote
	gh_whoami
	print.gh_response
	slugify_url
	Index

