
Package ‘ggpmisc’
June 1, 2020

Type Package

Title Miscellaneous Extensions to 'ggplot2'

Version 0.3.5

Date 2020-06-01

Maintainer Pedro J. Aphalo <pedro.aphalo@helsinki.fi>

Description Extensions to 'ggplot2' respecting the grammar of graphics
paradigm. Specialization of method ggplot(): accept and convert on the fly
time series data. Geom: ``table'', ``plot'' and ``grob'' add insets to plots
using native data coordinates, while ``table_npc'', ``plot_npc'' and ``grob_npc''
do the same using ``npc'' coordinates through new aesthetics ``npcx'' and ``npcy''.
Statistics: locate and tag peaks and valleys; count observations in different
quadrants of a plot; select observations based on 2D density; label with the
equation of a polynomial fitted with lm() or other types of models; labels
with P-value, R^2 or adjusted R^2 or information criteria for fitted models;
label with ANOVA table for fitted models; label with summary for fitted
models. Model fit classes for which suitable methods are provided by package
'broom' are supported. Scales and stats to build volcano and quadrant plots
based on outcomes, fold changes, p-values and false discovery rates.

License GPL (>= 2)

LazyData TRUE

LazyLoad TRUE

ByteCompile TRUE

Depends R (>= 3.6.0), ggplot2 (>= 3.3.0)

Imports grid, rlang (>= 0.4.5), magrittr (>= 1.5), gridExtra (>= 2.3),
scales (>= 1.1.0), MASS (>= 7.3-51.5), polynom (>= 1.4-0),
splus2R (>= 1.2-2), tibble (>= 3.0.1), plyr (>= 1.8.6), dplyr
(>= 0.8.3), xts (>= 0.12-0), zoo (>= 1.8-7), broom (>= 0.5.5),
lubridate (>= 1.7.8), stringr (>= 1.4.0)

Suggests knitr (>= 1.28), rmarkdown (>= 2.1), nlme (>= 3.1-147),
gginnards(>= 0.0.3), ggrepel (>= 0.8.2), magick (>= 2.3)

URL https://docs.r4photobiology.info/ggpmisc/,

https://bitbucket.org/aphalo/ggpmisc

1

https://docs.r4photobiology.info/ggpmisc/
https://bitbucket.org/aphalo/ggpmisc

2 R topics documented:

BugReports https://bitbucket.org/aphalo/ggpmisc/issues

Encoding UTF-8

RoxygenNote 7.1.0

VignetteBuilder knitr

NeedsCompilation no

Author Pedro J. Aphalo [aut, cre] (<https://orcid.org/0000-0003-3385-972X>),
Kamil Slowikowski [ctb]

Repository CRAN

Date/Publication 2020-06-01 08:10:02 UTC

R topics documented:
ggpmisc-package . 3
geom_grob . 5
geom_label_npc . 7
geom_plot . 10
geom_quadrant_lines . 12
geom_table . 15
geom_x_margin_arrow . 18
geom_x_margin_grob . 20
geom_x_margin_point . 22
ggplot . 24
Moved . 25
outcome2factor . 26
quadrant_example.df . 27
scale_colour_outcome . 27
scale_continuous_npc . 29
scale_shape_outcome . 30
scale_x_logFC . 31
scale_y_Pvalue . 34
stat_apply_group . 36
stat_dens2d_filter . 39
stat_dens2d_labels . 42
stat_fit_augment . 44
stat_fit_deviations . 47
stat_fit_glance . 49
stat_fit_residuals . 52
stat_fit_tb . 54
stat_fit_tidy . 57
stat_fmt_tb . 60
stat_peaks . 62
stat_poly_eq . 65
stat_quadrant_counts . 70
symmetric_limits . 73
try_data_frame . 74

https://bitbucket.org/aphalo/ggpmisc/issues

ggpmisc-package 3

ttheme_gtdefault . 75
ttheme_set . 79
volcano_example.df . 80
xy_outcomes2factor . 81

Index 83

ggpmisc-package ggpmisc: Miscellaneous Extensions to ’ggplot2’

Description

Extensions to ’ggplot2’ respecting the grammar of graphics paradigm. Specialization of method
ggplot(): accept and convert on the fly time series data. Geom: "table", "plot" and "grob" add insets
to plots using native data coordinates, while "table_npc", "plot_npc" and "grob_npc" do the same
using "npc" coordinates through new aesthetics "npcx" and "npcy". Statistics: locate and tag peaks
and valleys; count observations in different quadrants of a plot; select observations based on 2D
density; label with the equation of a polynomial fitted with lm() or other types of models; labels
with P-value, R^2 or adjusted R^2 or information criteria for fitted models; label with ANOVA
table for fitted models; label with summary for fitted models. Model fit classes for which suitable
methods are provided by package ’broom’ are supported. Scales and stats to build volcano and
quadrant plots based on outcomes, fold changes, p-values and false discovery rates.

Details

The new facilities for cleanly defining new stats and geoms added to ’ggplot2’ in version 2.0.0 and
the support for nested tibbles and new syntax for mapping computed values to aesthetics added to
’ggplot2’ in version 3.0.0 are used in this package’s code. This means that ’ggpmisc’ (>= 0.3.0)
requires version 3.0.0 or later of ggplot2 while ’ggpmisc’ (< 0.3.0) requires version 2.0.0 or later of
ggplot2.

Extensions provided:

• Function for conversion of time series data into tibbles that can be plotted with ggplot.

• ggplot() method for time series data.

• Stats for locating and tagging "peaks" and "valleys" (local or global maxima and minima).

• Stat for generating labels from a lm() model fit, including formatted equation. By default
labels are expressions but tikz device is supported optionally with LaTeX formatted labels.

• Stats for extracting information from a any model fit supported by package ’broom’.

• Stats for filtering-out/filtering-in observations in regions of a panel or group where the density
of observations is high.

• Geom for annotating plots with tables.

The stats for peaks and valleys are coded so as to work correctly both with numeric and POSIXct
variables mapped to the x aesthetic. Special handling was needed as text labels are generated from
the data.

4 ggpmisc-package

Warning!

geom_null(), stat_debug_group(), stat_debug_panel(), geom_debug(), append_layers(),
bottom_layer(), delete_layers(), extract_layers(), move_layers(), num_layesr(), shift_layers(),
top_layer() and which_layers() have been moved from package ’ggpmisc’ into their own seper-
ate package ’gginnards-package.

Acknowledgements

We thank Kamil Slowikowski not only for contributing ideas and code examples to this package but
also for adding new features to his package ’ggrepel’ that allow new use cases for stat_dens2d_labels
from this package.

Note

The signatures of stat_peaks() and stat_valleys() are identical to those of stat_peaks and
stat_valleys from package photobiology but the variables returned are a subset as values related
to light spectra are missing. Furthermore the stats from package ggpmisc work correctly when the
x aesthetic uses a date or datetime scale, while those from package photobiology do not generate
correct labels in this case.

Author(s)

Maintainer: Pedro J. Aphalo <pedro.aphalo@helsinki.fi> (ORCID)

Other contributors:

• Kamil Slowikowski [contributor]

References

Package suite ’r4photobiology’ web site at https://www.r4photobiology.info/
Package ’ggplot2’ documentation at https://ggplot2.tidyverse.org/
Package ’ggplot2’ source code at https://github.com/hadley/ggplot2

See Also

Useful links:

• https://docs.r4photobiology.info/ggpmisc/

• https://bitbucket.org/aphalo/ggpmisc

• Report bugs at https://bitbucket.org/aphalo/ggpmisc/issues

Examples

library(tibble)

ggplot(lynx, as.numeric = FALSE) + geom_line() +
stat_peaks(colour = "red") +

stat_peaks(geom = "text", colour = "red", angle = 66,
hjust = -0.1, x.label.fmt = "%Y") +

ylim(NA, 8000)

https://orcid.org/0000-0003-3385-972X
https://www.r4photobiology.info/
https://ggplot2.tidyverse.org/
https://github.com/hadley/ggplot2
https://docs.r4photobiology.info/ggpmisc/
https://bitbucket.org/aphalo/ggpmisc
https://bitbucket.org/aphalo/ggpmisc/issues

geom_grob 5

formula <- y ~ poly(x, 2, raw = TRUE)
ggplot(cars, aes(speed, dist)) +

geom_point() +
geom_smooth(method = "lm", formula = formula) +
stat_poly_eq(aes(label = stat(eq.label)), formula = formula,

parse = TRUE)

formula <- y ~ x
ggplot(PlantGrowth, aes(group, weight)) +

stat_summary(fun.data = "mean_se") +
stat_fit_tb(method = "lm",

method.args = list(formula = formula),
tb.type = "fit.anova") +

theme_classic()

geom_grob Inset graphical objects

Description

geom_grob and geom_grob_npc add a Grob as inset to the ggplot using syntax similar to that of
geom_label.In most respects they behave as any other ggplot geometry: a layer con contain multi-
ple tables and faceting works as usual.

Usage

geom_grob(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = FALSE

)

geom_grob_npc(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = FALSE

)

6 geom_grob

Arguments

mapping The aesthetic mapping, usually constructed with aes or aes_. Only needs to be
set at the layer level if you are overriding the plot defaults.

data A layer specific dataset - only needed if you want to override the plot defaults.

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

na.rm If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

Details

The "width" and "height" of an inset as for a text element are 0, so stacking and dodging inset plots
will not work by default, and axis limits are not automatically expanded to include all inset plots.
Obviously, insets do have height and width, but they are physical units, not data units. The amount
of space they occupy on the main plot is not constant in data units of the base plot: when you modify
scale limits, inset plots stay the same size relative to the physical size of the base plot.

Alignment

You can modify table alignment with the vjust and hjust aesthetics. These can either be a number
between 0 (right/bottom) and 1 (top/left) or a character ("left", "middle", "right", "bottom", "center",
"top").

Inset size

You can modify inset plot size with the vp.width and vp.height aesthetics. These can be a number
between 0 (smallest posisble inset) and 1 (whole plotting area width or height). The default value
for for both of these aesthetics is 1/3.

Note

These geoms work only with tibbles as data, as they expects a list of graphics objects ("grob") to
be mapped to the label aesthetic. Aesthetics mappings in the inset plot are independent of those in
the base plot.

In the case of geom_grob(), x and y aesthetics determine the position of the whole inset grob,
similarly to that of a text label, justification is interpreted as indicating the position of the grob with
respect to the x and y coordinates in the data, and angle is used to rotate the plot as a whole.

geom_label_npc 7

In the case of geom_grob_npc(), npcx and npcy aesthetics determine the position of the whole
inset plot, similarly to that of a text label, justification is interpreted as indicating the position of the
grob with respect to the x and y coordinates in "npc" units, and angle is used to rotate the plot
as a whole.

annotate() cannot be used with geom = "grob". Use annotation_custom directly when adding
inset plots as annotations.

References

The idea of implementing a geom_custom() for grobs has been discussed as an issue at https:
//github.com/tidyverse/ggplot2/issues/1399.

See Also

Other geometries for adding insets to ggplots: geom_plot(), geom_table(), ttheme_gtdefault()

Examples

library(tibble)
df <- tibble(x = 2, y = 15, grob = list(grid::circleGrob(r = 0.2)))
ggplot(data = mtcars, aes(wt, mpg)) +

geom_point(aes(colour = factor(cyl))) +
geom_grob(data = df, aes(x, y, label = grob))

geom_label_npc Text with Normalised Parent Coordinates

Description

‘geom_text_npc()‘ adds text directly to the plot. ‘geom_label_npc()‘ draws a rectangle behind the
text, making it easier to read. The difference is that x and y mappings are expected to be given
in ‘npc‘ graphic units. They are intended to be used for positioning text relative to the physical
dimensions of a plot. This can be achieved with ‘annotate()‘ except when faceting is used.

Usage

geom_label_npc(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
parse = FALSE,
nudge_x = 0,
nudge_y = 0,
label.padding = unit(0.25, "lines"),
label.r = unit(0.15, "lines"),

https://github.com/tidyverse/ggplot2/issues/1399
https://github.com/tidyverse/ggplot2/issues/1399

8 geom_label_npc

label.size = 0.25,
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = FALSE

)

geom_text_npc(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
parse = FALSE,
nudge_x = 0,
nudge_y = 0,
check_overlap = FALSE,
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = FALSE

)

Arguments

mapping The aesthetic mapping, usually constructed with aes or aes_. Only needs to be
set at the layer level if you are overriding the plot defaults.

data A layer specific data set - only needed if you want to override the plot defaults.
stat The statistical transformation to use on the data for this layer, as a string.
position Position adjustment, either as a string, or the result of a call to a position adjust-

ment function.
... other arguments passed on to layer. This can include aesthetics whose values

you want to set, not map. See layer for more details.
parse If TRUE, the labels will be parsed into expressions and displayed as described

in ?plotmath.
nudge_x, nudge_y

Horizontal and vertical adjustment to nudge labels by. Useful for offsetting text
from points, particularly on discrete scales.

label.padding Amount of padding around label. Defaults to 0.25 lines.
label.r Radius of rounded corners. Defaults to 0.15 lines.
label.size Size of label border, in mm.
na.rm If FALSE (the default), removes missing values with a warning. If TRUE silently

removes missing values.
show.legend logical. Should this layer be included in the legends? NA, the default, includes if

any aesthetics are mapped. FALSE never includes, and TRUE always includes.
inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.

This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

check_overlap If ‘TRUE‘, text that overlaps previous text in the same layer will not be plotted.

geom_label_npc 9

Details

Note that the "width" and "height" of a text element are 0, so stacking and dodging text will not
work by default, and axis limits are not automatically expanded to include all text. Obviously,
labels do have height and width, but they are physical units, not data units. The amount of space
they occupy on the plot is not constant in data units: when you resize a plot, labels stay the same
size, but the size of the axes changes.

‘geom_text_npc()‘ and ‘geom_label_npc()‘ add labels for each row in the data, even if coordinates
x, y are set to single values in the call to ‘geom_label_npc()‘ or ‘geom_text_npc()‘. To add labels
at specified points use [annotate()] with ‘annotate(geom = "text_npc", ...)‘ or ‘annotate(geom =
"label_npc", ...)‘.

‘geom_label_npc()‘

Currently ‘geom_label_npc()‘ does not support the ‘angle‘ aesthetic and is considerably slower than
‘geom_text_npc()‘. The ‘fill‘ aesthetic controls the background colour of the label.

Alignment

You can modify text alignment with the ‘vjust‘ and ‘hjust‘ aesthetics. These can either be a number
between 0 (right/bottom) and 1 (top/left) or a character (‘"left"‘, ‘"middle"‘, ‘"right"‘, ‘"bottom"‘,
‘"center"‘, ‘"top"‘). There are two special alignments: ‘"inward"‘ and ‘"outward"‘. Inward always
aligns text towards the center, and outward aligns it away from the center. When using textual
positions a shift is added based on grouping, however unused levels are not dropped. In plots with
faceting so that not all groups appear in each panel, gaps will appear in between labels. To solve
this pass numeric values for the npc coordinates of each label instead of character strings.

Note

This geom is identical to ’ggplot2’ geom_text() except that it interprets x and y positions in npc
units. It translates x and y coordinates from npc units to native data units and calls functions from
’ggplot2”s GeomText().

See Also

geom_text

Examples

df <- data.frame(
x = c(0, 0, 1, 1, 0.5),
x.chr = c("left", "left", "right", "right", "center"),
y = c(0, 1, 0, 1, 0.5),
y.chr = c("bottom", "top", "bottom", "top", "middle"),
text = c("bottom-left", "top-left", "bottom-right", "top-right", "center-middle")

)
ggplot(df) +

geom_text_npc(aes(npcx = x, npcy = y, label = text))

ggplot(df) +

10 geom_plot

geom_text_npc(aes(npcx = x.chr, npcy = y.chr, label = text))

ggplot(data = mtcars, mapping = aes(wt, mpg)) +
geom_point() +
geom_text_npc(data = df, aes(npcx = x, npcy = y, label = text))

ggplot(data = mtcars, mapping = aes(wt, mpg)) +
geom_point() +
geom_text_npc(data = df, aes(npcx = x, npcy = y, label = text)) +
expand_limits(y = 40, x = 6)

ggplot(data = mtcars) +
geom_point(mapping = aes(wt, mpg)) +
geom_label_npc(data = df, aes(npcx = x, npcy = y, label = text))

geom_plot Inset plots

Description

geom_plot and geom_plot_npc add ggplot objects as insets to the base ggplot, using syntax similar
to that of geom_label. In most respects they behave as any other ggplot geometry: a layer con
contain multiple tables and faceting works as usual.

Usage

geom_plot(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = FALSE

)

geom_plot_npc(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = FALSE

)

geom_plot 11

Arguments

mapping The aesthetic mapping, usually constructed with aes or aes_. Only needs to be
set at the layer level if you are overriding the plot defaults.

data A layer specific data set - only needed if you want to override the plot defaults.

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

na.rm If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

Details

The "width" and "height" of an inset as for a text element are 0, so stacking and dodging inset plots
will not work by default, and axis limits are not automatically expanded to include all inset plots.
Obviously, insets do have height and width, but they are physical units, not data units. The amount
of space they occupy on the main plot is not constant in data units of the base plot: when you modify
scale limits, inset plots stay the same size relative to the physical size of the base plot.

Inset alignment

You can modify inset plot alignment with the vjust and hjust aesthetics. These can either be a
number between 0 (right/bottom) and 1 (top/left) or a character ("left", "middle", "right", "bottom",
"center", "top"). The angle aesthetics can be used to rotate the inset plots.

Inset size

You can modify inset plot size with the vp.width and vp.height aesthetics. These can be a number
between 0 (smallest possible inset) and 1 (whole plotting area width or height). The default value
for for both of these aesthetics is 1/3.

Known problem!

In some cases when explicit coordinates are added to the inner plot, it may be also necessary to add
explicitly coordinates to the outer plots.

Note

These geoms work only with tibbles as data, as they expects a list of ggplots ("gg" objects) to be
mapped to the label aesthetic. Aesthetics mappings in the inset plot are independent of those in
the base plot.

12 geom_quadrant_lines

In the case of geom_plot(), x and y aesthetics determine the position of the whole inset plot,
similarly to that of a text label, justification is interpreted as indicating the position of the plot with
respect to the x and y coordinates in the data, and angle is used to rotate the plot as a whole.

In the case of geom_plot_npc(), npcx and npcy aesthetics determine the position of the whole
inset plot, similarly to that of a text label, justification is interpreted as indicating the position of the
plot with respect to the x and y coordinates in "npc" units, and angle is used to rotate the plot
as a whole.

annotate() cannot be used with geom = "plot". Use annotation_custom directly when adding
inset plots as annotations.

References

The idea of implementing a geom_custom() for grobs has been discussed as an issue at https:
//github.com/tidyverse/ggplot2/issues/1399.

See Also

Other geometries for adding insets to ggplots: geom_grob(), geom_table(), ttheme_gtdefault()

Examples

inset plot with enlarged detail from a region of the main plot
library(tibble)
p <-

ggplot(data = mtcars, mapping = aes(wt, mpg)) +
geom_point()

df <- tibble(x = 0.01, y = 0.01,
plot = list(p +

coord_cartesian(xlim = c(3, 4),
ylim = c(13, 16)) +

labs(x = NULL, y = NULL) +
theme_bw(10)))

p +
expand_limits(x = 0, y = 0) +
geom_plot_npc(data = df, aes(npcx = x, npcy = y, label = plot))

geom_quadrant_lines Reference lines: horizontal plus vertical, and quadrants

Description

geom_vhlines() adds in a single layer both vertical and horizontal guide lines. Can be thought
of as a convenience function that helps with producing consistent vertical and horizontal guide
lines. It behaves like geom_vline() and geom_hline(). geom_quadrant_lines() displays the
boundaries of four quadrants with an arbitrary origin. The quadrants are specified in the same way
as in stat_quadrant_counts() and is intended to be used to add guide lines consistent with the
counts by quadrant computed by this stat.

https://github.com/tidyverse/ggplot2/issues/1399
https://github.com/tidyverse/ggplot2/issues/1399

geom_quadrant_lines 13

Usage

geom_quadrant_lines(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
pool.along = "none",
xintercept = 0,
yintercept = 0,
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = FALSE,
...

)

geom_vhlines(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
xintercept = NULL,
yintercept = NULL,
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = FALSE,
...

)

Arguments

mapping The aesthetic mapping, usually constructed with aes or aes_. Only needs to be
set at the layer level if you are overriding the plot defaults.

data A layer specific data set - only needed if you want to override the plot defaults.

stat The statistic object to use display the data

position The position adjustment to use for overlapping points on this layer

pool.along character, one of "none", "x" or "y", indicating which quadrants to pool to cal-
culate counts by pair of quadrants.

xintercept, yintercept

numeric vectors the coordinates of the origin of the quadrants.

na.rm a logical indicating whether NA values should be stripped before the computa-
tion proceeds.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them. This
is most useful for helper functions that define both data and aesthetics and should
not inherit behaviour from the default plot specification, e.g. borders.

14 geom_quadrant_lines

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

Details

While geom_vhlines() does not provide defaults for the intercepts and accept vectors of length >
1, geom_quadrant_lines() sets by default the intercepts to zero producing the natural quadrants
and only accepts vectors of length one per panel. That is geom_vhlines() can be used to plot
a grid while geom_quadrant_lines() plots at most one vertical and one horizontal line. In the
case of geom_quadrant_lines() the pooling along axes can be specified in the same way as in
stat_quadrant_counts().

See Also

geom_abline, the topic where geom_vline() and geom_hline() are described.

Other Functions for quadrant and volcano plots: FC_format(), outcome2factor(), scale_colour_outcome(),
scale_shape_outcome(), scale_y_Pvalue(), stat_quadrant_counts(), xy_outcomes2factor()

Examples

generate artificial data
set.seed(4321)
x <- 1:100
y <- rnorm(length(x), mean = 10)
my.data <- data.frame(x, y)

ggplot(my.data, aes(x, y)) +
geom_quadrant_lines() +
geom_point()

ggplot(my.data, aes(x, y)) +
geom_quadrant_lines(linetype = "dotted") +
geom_point()

ggplot(my.data, aes(x, y)) +
geom_quadrant_lines(xintercept = 50, yintercept = 10, colour = "blue") +
geom_point()

ggplot(my.data, aes(x, y)) +
geom_quadrant_lines(xintercept = 50, pool.along = "y", colour = "blue") +
geom_point()

ggplot(my.data, aes(x, y)) +
geom_vhlines(xintercept = c(25, 50, 75), yintercept = 10 ,

linetype = "dotted", colour = "red") +
geom_point() +
theme_bw()

geom_table 15

geom_table Inset tables

Description

geom_table adds a textual table directly to the ggplot using syntax similar to that of geom_label
while geom_table_npc is similar to geom_label_npc in that x and y coordinates are given in npc
units. In most respects they behave as any other ggplot geometry: a layer con contain multiple
tables and faceting works as usual.

Usage

geom_table(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
table.theme = NULL,
table.rownames = FALSE,
table.colnames = TRUE,
table.hjust = 0.5,
parse = FALSE,
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = FALSE

)

geom_table_npc(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
table.theme = NULL,
table.rownames = FALSE,
table.colnames = TRUE,
table.hjust = 0.5,
parse = FALSE,
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = FALSE

)

Arguments

mapping The aesthetic mapping, usually constructed with aes or aes_. Only needs to be
set at the layer level if you are overriding the plot defaults.

16 geom_table

data A layer specific data set - only needed if you want to override the plot defaults.

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

table.theme NULL, list or function A gridExtra ttheme defintion, or a constructor for a
ttheme or NULL for default.

table.rownames, table.colnames

logical flag to enable or disable printing of row names and column names.

table.hjust numeric Horizontal justification for the core and column headings of the table.

parse If TRUE, the labels will be parsed into expressions and displayed as described
in ?plotmath.

na.rm If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

Details

These geoms work only with tibbles as data, as they expects a list of data frames or tibbles ("tb"
objects) to be mapped to the label aesthetic. Aesthetics mappings in the inset plot are independent
of those in the base plot.

In the case of geom_table(), x and y aesthetics determine the position of the whole inset table,
similarly to that of a text label, justification is interpreted as indicating the position of the table with
respect to the x and y coordinates in the data, and angle is used to rotate the table as a whole.

In the case of geom_table_npc(), npcx and npcy aesthetics determine the position of the whole
inset table, similarly to that of a text label, justification is interpreted as indicating the position of
the table with respect to the x and y coordinates in "npc" units, and angle is used to rotate the
table as a whole.

The "width" and "height" of an inset as for a text element are 0, so stacking and dodging inset plots
will not work by default, and axis limits are not automatically expanded to include all inset plots.
Obviously, insets do have height and width, but they are physical units, not data units. The amount
of space they occupy on the main plot is not constant in data units of the base plot: when you modify
scale limits, inset plots stay the same size relative to the physical size of the base plot.

Alignment

You can modify table alignment with the vjust and hjust aesthetics. These can either be a number
between 0 (right/bottom) and 1 (top/left) or a character ("left", "middle", "right", "bottom", "center",
"top").

geom_table 17

Inset size

You can modify inset table size with the size aesthetics, which determines the size of text within
the table.

Warning!

annotate() cannot be used with geom = "table". Use annotation_custom directly when adding
inset tables as annotations.

Note

As all geoms, geom_table() and geom_table_npc() add a layer to a plot, and behave as expected
in the grammar of graphics: ggplot themes do not affect how layers are rendered. The formatting of
the inset table is done according to the the argument passed to table.theme.

As the table is built with function gridExtra::gtable(), for formatting details, please, consult tableGrob.
If the argument passed to table.theme is a constructor function, the values mapped to size, color,
fill, alpha, and family aesthetics will the passed to the theme constructor for each table. In
the case of colour and fill, the default mapping is to NA which triggers the use of the default
base_colour of the ttheme.

The constructor ttheme_gtdefault is used by default, but others are available predefined or can
created by the user. If instead of a constructor a ready constructed ttheme as a list object is passed
as argument, it will be used as is. In such a case mapped aesthetics normally mapped aesthetics are
ignored if present.

Complex tables with annotations or different coloring of rows or cells can be constructed with
functions in package ’gridExtra’ or in any other way as long as they can be saved as grid graphical
objects and added to a ggplot as a new layer with geom_grob.

References

This geometry is inspired on answers to two questions in Stackoverflow. In contrast to these earlier
examples, the current geom obeys the grammar of graphics, and attempts to be consistent with
the behaviour of ’ggplot2’ geometries. https://stackoverflow.com/questions/12318120/
adding-table-within-the-plotting-region-of-a-ggplot-in-r https://stackoverflow.
com/questions/25554548/adding-sub-tables-on-each-panel-of-a-facet-ggplot-in-r?

See Also

function tableGrob as it is used to construct the table.

Other geometries for adding insets to ggplots: geom_grob(), geom_plot(), ttheme_gtdefault()

Examples

library(dplyr)
library(tibble)

mtcars %>%
group_by(cyl) %>%
summarize(wt = mean(wt), mpg = mean(mpg)) %>%

https://stackoverflow.com/questions/12318120/adding-table-within-the-plotting-region-of-a-ggplot-in-r
https://stackoverflow.com/questions/12318120/adding-table-within-the-plotting-region-of-a-ggplot-in-r
https://stackoverflow.com/questions/25554548/adding-sub-tables-on-each-panel-of-a-facet-ggplot-in-r?
https://stackoverflow.com/questions/25554548/adding-sub-tables-on-each-panel-of-a-facet-ggplot-in-r?

18 geom_x_margin_arrow

ungroup() %>%
mutate(wt = sprintf("%.2f", wt),

mpg = sprintf("%.1f", mpg)) -> tb

df <- tibble(x = 5.45, y = 34, tb = list(tb))

using defaults
ggplot(mtcars, aes(wt, mpg, colour = factor(cyl))) +

geom_point() +
geom_table(data = df, aes(x = x, y = y, label = tb))

ggplot(mtcars, aes(wt, mpg, colour = factor(cyl))) +
geom_point() +
geom_table(data = df, aes(x = x, y = y, label = tb),

table.rownames = TRUE, table.theme = ttheme_gtstripes)

settings aesthetics to constants
ggplot(mtcars, aes(wt, mpg, colour = factor(cyl))) +

geom_point() +
geom_table(data = df, aes(x = x, y = y, label = tb),

color = "red", fill = "#FFCCCC", family = "serif", size = 5,
angle = 90, vjust = 0)

passing a theme constructor as argument
ggplot(mtcars, aes(wt, mpg, colour = factor(cyl))) +

geom_point() +
geom_table(data = df, aes(x = x, y = y, label = tb),

table.theme = ttheme_gtminimal) +
theme_classic()

df2 <- tibble(x = 5.45, y = c(34, 29, 24), cyl = c(4, 6, 8),
tb = list(tb[1, 1:3], tb[2, 1:3], tb[3, 1:3]))

mapped aesthetics
ggplot(data = mtcars, mapping = aes(wt, mpg, color = factor(cyl))) +

geom_point() +
geom_table(data = df2,

inherit.aes = TRUE,
mapping = aes(x = x, y = y, label = tb))

Using native plot coordinates instead of data coordinates
dfnpc <- tibble(x = 0.95, y = 0.95, tb = list(tb))

ggplot(mtcars, aes(wt, mpg, colour = factor(cyl))) +
geom_point() +
geom_table_npc(data = dfnpc, aes(npcx = x, npcy = y, label = tb))

geom_x_margin_arrow Reference arrows on the margins

geom_x_margin_arrow 19

Description

Small arrows on plot margins can supplement a 2d display with annotations. Arrows can be
used to highligth specific values along a margin. The geometries geom_x_margin_arrow() and
geom_y_margin_arrow() behave similarly geom_vline() and geom_hline() and share their "dou-
ble personality" as both annotations and geometries.

Usage

geom_x_margin_arrow(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
xintercept,
sides = "b",
arrow.length = 0.03,
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = FALSE

)

geom_y_margin_arrow(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
yintercept,
sides = "l",
arrow.length = 0.03,
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = FALSE

)

Arguments

mapping The aesthetic mapping, usually constructed with aes or aes_. Only needs to be
set at the layer level if you are overriding the plot defaults.

data A layer specific dataset - only needed if you want to override the plot defaults.

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

20 geom_x_margin_grob

xintercept, yintercept

numeric Parameters that control the position of the marginal points. If these are
set, data, mapping and show.legend are overridden.

sides A string that controls which sides of the plot the rugs appear on. It can be set to
a string containing any of ‘"trbl"‘, for top, right, bottom, and left.

arrow.length numeric value expressed in npc units for the length of the arows inwards from
the edge of the plotting area.

na.rm If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

See Also

Other Geometries for marginal annotations in ggplots: geom_x_margin_grob(), geom_x_margin_point()

Examples

p <- ggplot(mtcars, aes(wt, mpg)) +
geom_point()

p
p + geom_x_margin_arrow(xintercept = 3.5)
p + geom_y_margin_arrow(yintercept = c(18, 28, 15))
p + geom_x_margin_arrow(data = data.frame(x = c(2.5, 4.5)),

mapping = aes(xintercept = x))
p + geom_x_margin_arrow(data = data.frame(x = c(2.5, 4.5)),

mapping = aes(xintercept = x),
sides="tb")

geom_x_margin_grob Add Grobs on the margins

Description

Marging points can supplement a 2d display with annotations. Marging points can highligth individ-
ual cases or values along a margin. The geometries geom_x_margin_grob() and geom_y_margin_grob()
behave similarly geom_vline() and geom_hline() and share their "double personality" as both an-
notations and geometries.

geom_x_margin_grob 21

Usage

geom_x_margin_grob(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
xintercept,
sides = "b",
grob.shift = 0,
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = FALSE

)

geom_y_margin_grob(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
yintercept,
sides = "l",
grob.shift = 0,
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = FALSE

)

Arguments

mapping The aesthetic mapping, usually constructed with aes or aes_. Only needs to be
set at the layer level if you are overriding the plot defaults.

data A layer specific dataset - only needed if you want to override the plot defaults.
stat The statistical transformation to use on the data for this layer, as a string.
position Position adjustment, either as a string, or the result of a call to a position adjust-

ment function.
... other arguments passed on to layer. This can include aesthetics whose values

you want to set, not map. See layer for more details.
xintercept, yintercept

numeric Parameters that control the position of the marginal points. If these are
set, data, mapping and show.legend are overridden.

sides A character string of length one that controls on which side of the plot the grob
annotations appear on. It can be set to a string containing one of "t", "r", "b"
or "l", for top, right, bottom, and left.

grob.shift numeric value expressed in npc units for the shift of the marginal grob inwards
from the edge of the plotting area.

22 geom_x_margin_point

na.rm If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

See Also

Other Geometries for marginal annotations in ggplots: geom_x_margin_arrow(), geom_x_margin_point()

Examples

We can add icons to the margin of a plot to signal events

geom_x_margin_point Reference points on the margins

Description

Marging points can supplement a 2d display with annotations. Marging points can highligth individ-
ual cases or values along a margin. The geometries geom_x_margin_point() and geom_y_margin_point()
behave similarly geom_vline() and geom_hline() and share their "double personality" as both an-
notations and geometries.

Usage

geom_x_margin_point(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
xintercept,
sides = "b",
point.shift = 0.017,
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = FALSE

)

geom_y_margin_point(

geom_x_margin_point 23

mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
yintercept,
sides = "l",
point.shift = 0.017,
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = FALSE

)

Arguments

mapping The aesthetic mapping, usually constructed with aes or aes_. Only needs to be
set at the layer level if you are overriding the plot defaults.

data A layer specific dataset - only needed if you want to override the plot defaults.

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

xintercept, yintercept

numeric Parameters that control the position of the marginal points. If these are
set, data, mapping and show.legend are overridden.

sides A string that controls which sides of the plot the rugs appear on. It can be set to
a string containing any of ‘"trbl"‘, for top, right, bottom, and left.

point.shift numeric value expressed in npc units for the shift of the rug points inwards from
the edge of the plotting area.

na.rm If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

See Also

Other Geometries for marginal annotations in ggplots: geom_x_margin_arrow(), geom_x_margin_grob()

Examples

p <- ggplot(mtcars, aes(wt, mpg)) +
geom_point()

24 ggplot

p
p + geom_x_margin_point(xintercept = 3.5)
p + geom_y_margin_point(yintercept = c(18, 28, 15))
p + geom_x_margin_point(data = data.frame(x = c(2.5, 4.5)),

mapping = aes(xintercept = x))
p + geom_x_margin_point(data = data.frame(x = c(2.5, 4.5)),

mapping = aes(xintercept = x),
sides="tb")

ggplot Create a new ggplot plot from time series data

Description

ggplot() initializes a ggplot object. It can be used to declare the input spectral object for a graphic
and to optionally specify the set of plot aesthetics intended to be common throughout all subsequent
layers unless specifically overridden.

Usage

S3 method for class 'ts'
ggplot(
data,
mapping = NULL,
...,
time.resolution = "day",
as.numeric = TRUE,
environment = parent.frame()

)

S3 method for class 'xts'
ggplot(
data,
mapping = NULL,
...,
time.resolution = "day",
as.numeric = TRUE,
environment = parent.frame()

)

Arguments

data Default spectrum dataset to use for plot. If not a spectrum, the methods used
will be those defined in package ggplot2. See ggplot. If not specified, must be
suppled in each layer added to the plot.

mapping Default list of aesthetic mappings to use for plot. If not specified, in the case of
spectral objects, a default mapping will be used.

Moved 25

... Other arguments passed on to methods. Not currently used.
time.resolution

character The time unit to which the returned time values will be rounded.

as.numeric logical If TRUE convert time to numeric, expressed as fractional calendar years.

environment If an variable defined in the aesthetic mapping is not found in the data, ggplot
will look for it in this environment. It defaults to using the environment in which
ggplot() is called.

Details

ggplot() is typically used to construct a plot incrementally, using the + operator to add layers to the
existing ggplot object. This is advantageous in that the code is explicit about which layers are added
and the order in which they are added. For complex graphics with multiple layers, initialization with
ggplot is recommended.

There are three common ways to invoke ggplot:

• ggplot(ts,aes(x,y,<other aesthetics>))

• ggplot(ts)

The first method is recommended if all layers use the same data and the same set of aesthetics,
although this method can also be used to add a layer using data from another data frame. See the
first example below. The second method specifies the default spectrum object to use for the plot,
and the units to be used for y in the plot, but no aesthetics are defined up front. This is useful when
one data frame is used predominantly as layers are added, but the aesthetics may vary from one
layer to another. The third method specifies the default spectrum object to use for the plot, but no
aesthetics are defined up front. This is useful when one spectrum is used predominantly as layers
are added, but the aesthetics may vary from one layer to another.

Note

Current implementation does not merge default mapping with user supplied mapping. If user sup-
plies a mapping, it is used as is. To add to the default mapping, aes() can be used by itself to
compose the ggplot.

Examples

library(ggplot2)
ggplot(lynx) + geom_line()

Moved Moved to package ’gginnards’

Description

Some stats, geoms and the plot layer manipulation functions have been moved from package ’ggp-
misc’ to a separate new package called ’gginnards’.

26 outcome2factor

Details

To continue using any of these functions and methods, simply run at the R prompt or add to your
script library(gginnards), after installing package ’gginnards’.

See Also

gginnards-package, geom_null, stat_debug_group, stat_debug_panel, geom_debug and delete_layers.

outcome2factor Convert numeric ternary outcomes into a factor

Description

Convert numeric ternary outcomes into a factor

Usage

outcome2factor(x, n.levels = 3L)

threshold2factor(x, n.levels = 3L, threshold = 0)

Arguments

x a numeric vector of -1, 0, and +1 values, indicating down-regulation, uncertain
response or up-regulation, or a numeric vector that can be converted into such
values using a pair of thresholds.

n.levels numeric Number of levels to create, either 3 or 2.

threshold numeric vector Range enclosing the values to be considered uncertain.

Details

These functions convert the numerically encoded values into a factor with the three levels "down",
"uncertain" and "up", or into a factor with two levels de and uncertain as expected by de-
fault by scales scale_colour_outcome, scale_fill_outcome and scale_shape_outcome. When
n.levels = 2 both -1 and +1 are merged to the same level of the factor with label "de".

Note

These are convenience functions that only save some typing. The same result can be achieved by
a direct call to factor and comparisons. These functions aim at making it easier to draw volcano
and quadrant plots.

See Also

Other Functions for quadrant and volcano plots: FC_format(), geom_quadrant_lines(), scale_colour_outcome(),
scale_shape_outcome(), scale_y_Pvalue(), stat_quadrant_counts(), xy_outcomes2factor()

Other scales for omics data: scale_shape_outcome(), scale_x_logFC(), xy_outcomes2factor()

quadrant_example.df 27

Examples

outcome2factor(c(-1, 1, 0, 1))
outcome2factor(c(-1, 1, 0, 1), n.levels = 2L)

threshold2factor(c(-0.1, -2, 0, +5))
threshold2factor(c(-0.1, -2, 0, +5), n.levels = 2L)
threshold2factor(c(-0.1, -2, 0, +5), threshold = c(-1, 1))

quadrant_example.df Example gene expression data

Description

A dataset containing reshaped and simplified output from an analysis of data from RNAseq done
with package edgeR. Original data from gene expression in the plant species Arabidopsis thaliana.

Usage

quadrant_example.df

Format

A data.frame object with 6088 rows and 6 variables

See Also

Other Transcriptomics data examples: volcano_example.df

Examples

names(quadrant_example.df)
head(quadrant_example.df)

scale_colour_outcome Colour and fill scales for ternary outcomes

Description

Manual scales for colour and fill aesthetics with defaults suitable for the three way outcome from
some statistical tests.

28 scale_colour_outcome

Usage

scale_colour_outcome(
...,
name = "Outcome",
ns.colour = "grey80",
up.colour = "red",
down.colour = "dodgerblue2",
de.colour = "goldenrod",
na.colour = "black",
aesthetics = "colour"

)

scale_color_outcome(
...,
name = "Outcome",
ns.colour = "grey80",
up.colour = "red",
down.colour = "dodgerblue2",
de.colour = "goldenrod",
na.colour = "black",
aesthetics = "colour"

)

scale_fill_outcome(
...,
name = "Outcome",
ns.colour = "grey80",
up.colour = "red",
down.colour = "dodgerblue2",
de.colour = "goldenrod",
na.colour = "black",
aesthetics = "fill"

)

Arguments

... other named arguments passed to scale_manual.

name The name of the scale, used for the axis-label.

ns.colour, down.colour, up.colour, de.colour

The colour definitions to use for each of the three possible outcomes.

na.colour colour definition used for NA.

aesthetics Character string or vector of character strings listing the name(s) of the aes-
thetic(s) that this scale works with. This can be useful, for example, to apply
colour settings to the colour and fill aesthetics at the same time, via aesthetics =
c("colour", "fill").

scale_continuous_npc 29

Details

These scales only alter the breaks, values, and na.value default arguments of scale_colour_manual()
and scale_fill_manual(). Please, see documentation for scale_manual for details.

See Also

Other Functions for quadrant and volcano plots: FC_format(), geom_quadrant_lines(), outcome2factor(),
scale_shape_outcome(), scale_y_Pvalue(), stat_quadrant_counts(), xy_outcomes2factor()

Examples

set.seed(12346)
outcome <- sample(c(-1, 0, +1), 50, replace = TRUE)
my.df <- data.frame(x = rnorm(50),

y = rnorm(50),
outcome2 = outcome2factor(outcome, n.levels = 2),
outcome3 = outcome2factor(outcome))

ggplot(my.df, aes(x, y, colour = outcome3)) +
geom_point() +
scale_colour_outcome() +
theme_bw()

ggplot(my.df, aes(x, y, colour = outcome2)) +
geom_point() +
scale_colour_outcome() +
theme_bw()

ggplot(my.df, aes(x, y, fill = outcome3)) +
geom_point(shape = 21) +
scale_fill_outcome() +
theme_bw()

scale_continuous_npc Position scales for continuous data (npcx & npcy)

Description

‘scale_npcx_continuous()‘ and ‘scale_npcy_continuous()‘ are scales for continuous npcx and npcy
aesthetics expressed in "npc" units. There are no variants. Obviously limits are always the full
range of "npc" units and transformations meaningless. These scales are used by the newly defined
aesthetics npcx and npcy.

Usage

scale_npcx_continuous(...)

scale_npcy_continuous(...)

30 scale_shape_outcome

Arguments

... Other arguments passed on to ‘continuous_scale()‘

scale_shape_outcome Shape scale for ternary outcomes

Description

Manual scales for colour and fill aesthetics with defaults suitable for the three way outcome from
some statistical tests.

Usage

scale_shape_outcome(
...,
name = "Outcome",
ns.shape = "circle filled",
up.shape = "triangle filled",
down.shape = "triangle down filled",
de.shape = "square filled",
na.shape = "cross"

)

Arguments

... other named arguments passed to scale_manual.

name The name of the scale, used for the axis-label.
ns.shape, down.shape, up.shape, de.shape

The shapes to use for each of the three possible outcomes.

na.shape Shape used for NA.

Details

These scales only alter the values, and na.value default arguments of scale_shape_manual().
Please, see documentation for scale_manual for details.

See Also

Other Functions for quadrant and volcano plots: FC_format(), geom_quadrant_lines(), outcome2factor(),
scale_colour_outcome(), scale_y_Pvalue(), stat_quadrant_counts(), xy_outcomes2factor()

Other scales for omics data: outcome2factor(), scale_x_logFC(), xy_outcomes2factor()

scale_x_logFC 31

Examples

set.seed(12346)
outcome <- sample(c(-1, 0, +1), 50, replace = TRUE)
my.df <- data.frame(x = rnorm(50),

y = rnorm(50),
outcome2 = outcome2factor(outcome, n.levels = 2),
outcome3 = outcome2factor(outcome))

ggplot(my.df, aes(x, y, shape = outcome3)) +
geom_point() +
scale_shape_outcome() +
theme_bw()

ggplot(my.df, aes(x, y, shape = outcome3)) +
geom_point() +
scale_shape_outcome(guide = FALSE) +
theme_bw()

ggplot(my.df, aes(x, y, shape = outcome2)) +
geom_point(size = 2) +
scale_shape_outcome() +
theme_bw()

ggplot(my.df, aes(x, y, shape = outcome3, fill = outcome2)) +
geom_point() +
scale_shape_outcome() +
scale_fill_outcome() +
theme_bw()

ggplot(my.df, aes(x, y, shape = outcome3, fill = outcome2)) +
geom_point() +
scale_shape_outcome(name = "direction") +
scale_fill_outcome(name = "significance") +
theme_bw()

scale_x_logFC Position scales for log fold change data

Description

Continuous scales for x and y aesthetics with defaults suitable for values expressed as log2 fold
change in data and fold-change in tick labels. Supports tick labels and data expressed in any
combination of fold-change, log2 fold-change and log10 fold-change. Supports addition of units to
axis labels passed as argument to the name formal parameter.

32 scale_x_logFC

Usage

scale_x_logFC(
name = "Abundance of x%unit",
breaks = NULL,
labels = NULL,
limits = symmetric_limits,
oob = scales::squish,
expand = expansion(mult = 0.15, add = 0),
log.base.labels = FALSE,
log.base.data = 2L,
...

)

scale_y_logFC(
name = "Abundance of y%unit",
breaks = NULL,
labels = NULL,
limits = symmetric_limits,
oob = scales::squish,
expand = expansion(mult = 0.15, add = 0),
log.base.labels = FALSE,
log.base.data = 2L,
...

)

Arguments

name The name of the scale without units, used for the axis-label.

breaks The positions of ticks or a function to generate them. Default varies depending
on argument passed to log.base.labels. if supplied as a numeric vector they
should be given using the data as passed to parameter data.

labels The tick labels or a function to generate them from the tick positions. The default
is function that uses the arguments passed to log.base.data and log.base.labels
to generate suitable labels.

limits limits One of: NULL to use the default scale range from ggplot2. A numeric
vector of length two providing limits of the scale, using NA to refer to the ex-
isting minimum or maximum. A function that accepts the existing (automatic)
limits and returns new limits. The default is function symmetric_limits()
which keep 1 at the middle of the axis..

oob Function that handles limits outside of the scale limits (out of bounds). The
default squishes out-of-bounds values to the boundary.

expand Vector of range expansion constants used to add some padding around the data,
to ensure that they are placed some distance away from the axes. The default is
to expand the scale by 15% on each end for log-fold-data, so as to leave space
for counts annotations.

scale_x_logFC 33

log.base.labels, log.base.data

integer or logical Base of logarithms used to express fold-change values in tick
labels and in data. Use FALSE for no logarithm transformation.

... other named arguments passed to scale_y_continuous.

Details

These scales only alter default arguments of scale_x_continuous() and scale_y_continuous().
Please, see documentation for scale_continuous for details. The name argument supports the
use of "%unit" at the end of the string to automatically add a units string, otherwise user-supplied
values for names, breaks, and labels work as usual. Tick labels are built based on the transformation
already applied to the data (log2 by default) and apossibly different log transformation (default is
fold-change with no transformation).

See Also

Other scales for omics data: outcome2factor(), scale_shape_outcome(), xy_outcomes2factor()

Examples

set.seed(12346)
my.df <- data.frame(x = rnorm(50, sd = 4), y = rnorm(50, sd = 4))

ggplot(my.df, aes(x, y)) +
geom_point() +
scale_x_logFC() +
scale_y_logFC()

ggplot(my.df, aes(x, y)) +
geom_point() +
scale_x_logFC(labels = scales::trans_format(function(x) {log10(2^x)},

scales::math_format())) +
scale_y_logFC(labels = scales::trans_format(function(x) {log10(2^x)},

scales::math_format()))

ggplot(my.df, aes(x, y)) +
geom_point() +
scale_x_logFC(log.base.labels = 2) +
scale_y_logFC(log.base.labels = 2)

ggplot(my.df, aes(x, y)) +
geom_point() +
scale_x_logFC("A concentration%unit", log.base.labels = 10) +
scale_y_logFC("B concentration%unit", log.base.labels = 10)

ggplot(my.df, aes(x, y)) +
geom_point() +
scale_x_logFC("A concentration%unit", breaks = NULL) +
scale_y_logFC("B concentration%unit", breaks = NULL)

taking into account that data are expressed as log2 FC.

34 scale_y_Pvalue

ggplot(my.df, aes(x, y)) +
geom_point() +
scale_x_logFC("A concentration%unit", breaks = log2(c(1/100, 1, 100))) +
scale_y_logFC("B concentration%unit", breaks = log2(c(1/100, 1, 100)))

ggplot(my.df, aes(x, y)) +
geom_point() +
scale_x_logFC(labels = scales::trans_format(function(x) {log10(2^x)},

scales::math_format())) +
scale_y_logFC(labels = scales::trans_format(function(x) {log10(2^x)},

scales::math_format()))

override "special" default arguments.
ggplot(my.df, aes(x, y)) +

geom_point() +
scale_x_logFC("A concentration",

breaks = waiver(),
labels = waiver()) +

scale_y_logFC("B concentration",
breaks = waiver(),
labels = waiver())

ggplot(my.df, aes(x, y)) +
geom_point() +
scale_x_logFC() +
scale_y_logFC() +
geom_quadrant_lines() +
stat_quadrant_counts(size = 3.5)

scale_y_Pvalue Covenience scale for P-values

Description

Scales for y aesthetic mapped to P-values as used in volcano plots with transcriptomics and metabolomics
data.

Usage

scale_y_Pvalue(
...,
name = expression(italic(P) - plain(value)),
trans = NULL,
breaks = NULL,
labels = NULL,
limits = c(1, 1e-20),
oob = NULL,
expand = NULL

scale_y_Pvalue 35

)

scale_y_FDR(
...,
name = "False discovery rate",
trans = NULL,
breaks = NULL,
labels = NULL,
limits = c(1, 1e-10),
oob = NULL,
expand = NULL

)

scale_x_Pvalue(
...,
name = expression(italic(P) - plain(value)),
trans = NULL,
breaks = NULL,
labels = NULL,
limits = c(1, 1e-20),
oob = NULL,
expand = NULL

)

scale_x_FDR(
...,
name = "False discovery rate",
trans = NULL,
breaks = NULL,
labels = NULL,
limits = c(1, 1e-10),
oob = NULL,
expand = NULL

)

Arguments

... other named arguments passed to scale_y_continuous.

name The name of the scale without units, used for the axis-label.

trans Either the name of a transformation object, or the object itself. Use NULL for
the default.

breaks The positions of ticks or a function to generate them. Default varies depending
on argument passed to log.base.labels.

labels The tick labels or a function to generate them from the tick positions. The default
is function that uses the arguments passed to log.base.data and log.base.labels
to generate suitable labels.

limits Use one of: NULL to use the default scale range, a numeric vector of length two

36 stat_apply_group

providing limits of the scale; NA to refer to the existing minimum or maximum;
a function that accepts the existing (automatic) limits and returns new limits.

oob Function that handles limits outside of the scale limits (out of bounds). The
default squishes out-of-bounds values to the boundary.

expand Vector of range expansion constants used to add some padding around the data,
to ensure that they are placed some distance away from the axes. The default is
to expand the scale by 15% on each end for log-fold-data, so as to leave space
for counts annotations.

Details

These scales only alter default arguments of scale_x_continuous() and scale_y_continuous().
Please, see documentation for scale_continuous for details.

See Also

Other Functions for quadrant and volcano plots: FC_format(), geom_quadrant_lines(), outcome2factor(),
scale_colour_outcome(), scale_shape_outcome(), stat_quadrant_counts(), xy_outcomes2factor()

Examples

set.seed(12346)
my.df <- data.frame(x = rnorm(50, sd = 4),

y = 10^-runif(50, min = 0, max = 20))

ggplot(my.df, aes(x, y)) +
geom_point() +
scale_x_logFC() +
scale_y_Pvalue()

ggplot(my.df, aes(x, y)) +
geom_point() +
scale_x_logFC() +
scale_y_FDR(limits = c(NA, 1e-20))

stat_apply_group Apply a function to x or y values

Description

stat_apply_group and stat_apply_panel apply functions to data. In most cases one should
simply use transformations through scales or summary functions through stat_summary(). There
are some computations that are not scale transformations but are not usual summaries either, the
number of data values does not decrease. It is always possible to precompute quantities like cumu-
lative sums or running medians, and for normalizations it can be convenient to apply such functions

stat_apply_group 37

on-the-fly to ensure that grouping is consistent between computations and aesthetics. One particu-
larity of these statistics is that they can apply simultaneously different functions to x values and to
y values when needed. In contrast geom_smooth applies a function that takes both x and y values
as arguments.

Usage

stat_apply_group(
mapping = NULL,
data = NULL,
geom = "line",
.fun.x = NULL,
.fun.x.args = list(),
.fun.y = NULL,
.fun.y.args = list(),
position = "identity",
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = TRUE,
...

)

stat_apply_panel(
mapping = NULL,
data = NULL,
geom = "line",
.fun.x = NULL,
.fun.x.args = list(),
.fun.y = NULL,
.fun.y.args = list(),
position = "identity",
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = TRUE,
...

)

Arguments

mapping The aesthetic mapping, usually constructed with aes. Only needs to be set at
the layer level if you are overriding the plot defaults.

data A layer specific dataset - only needed if you want to override the plot defaults.

geom The geometric object to use display the data

.fun.x, .fun.y function to be applied or the name of the function to be applied as a charac-
ter string. One and only one of these parameters should be passed a non-null
argument.

.fun.x.args, .fun.y.args

additional arguments to be passed to the function as a named list.

38 stat_apply_group

position The position adjustment to use for overlapping points on this layer

na.rm a logical value indicating whether NA values should be stripped before the com-
putation proceeds.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

Details

The function(s) to be applied is expected to be vectorized and to return a vector of (almost) the same
length. The vector mapped to the x or y aesthetic is passed as the first positional argument to the
call. The function must accept as first argument a vector or list that matches the data.

Computed variables

One of x or y or both x and y replaced by the vector returned by the corresponding applied function.

x x-value as returned by .fun.x

y y-value as returned by .fun.y

Note

This stat is at early stages of development and its interface may change at any time.

References

Answers question "R ggplot on-the-fly calculation by grouping variable" at https://stackoverflow.
com/questions/51412522.

Examples

library(gginnards)
set.seed(123456)
my.df <- data.frame(X = rep(1:20,2),

Y = runif(40),
category = rep(c("A","B"), each = 20))

make sure row are ordered for X as we will use functions that rely on this
my.df <- my.df[order(my.df[["X"]]),]

ggplot(my.df, aes(x = X, y = Y, colour = category)) +
stat_apply_group(.fun.y = cumsum)

Use of geom_debug() to inspect the computed values
ggplot(my.df, aes(x = X, y = Y, colour = category)) +

stat_apply_group(.fun.y = cumsum, geom = "debug")

https://stackoverflow.com/questions/51412522
https://stackoverflow.com/questions/51412522

stat_dens2d_filter 39

ggplot(my.df, aes(x = X, y = Y, colour = category)) +
stat_apply_group(.fun.y = cummax)

ggplot(my.df, aes(x = X, y = Y, colour = category)) +
stat_apply_group(.fun.x = cumsum, .fun.y = cumsum)

diff returns a shorter vector by 1 for each group
ggplot(my.df, aes(x = X, y = Y, colour = category)) +

stat_apply_group(.fun.y = diff, na.rm = TRUE)

ggplot(my.df, aes(x = X, y = Y, colour = category)) +
geom_point() +
stat_apply_group(.fun.y = runmed, .fun.y.args = list(k = 5))

Rescaling per group
ggplot(my.df, aes(x = X, y = Y, colour = category)) +

stat_apply_group(.fun.y = function(x) {(x - min(x)) / (max(x) - min(x))})

Joint rescaling for whole panel
ggplot(my.df, aes(x = X, y = Y, colour = category)) +

stat_apply_panel(.fun.y = function(x) {(x - min(x)) / (max(x) - min(x))})

stat_dens2d_filter Filter observations by local density

Description

stat_dens2d_filter Filters-out/filters-in observations in regions of a plot panel with high density
of observations. stat_dens2d_filter_g does the filtering by group instead of by panel. This
second stat is useful for highlighting observations, while the first one tends to be most useful when
the aim is to prevent clashes among text labels.

Usage

stat_dens2d_filter(
mapping = NULL,
data = NULL,
geom = "point",
position = "identity",
keep.fraction = 0.1,
keep.number = Inf,
keep.sparse = TRUE,
na.rm = TRUE,
show.legend = FALSE,
inherit.aes = TRUE,
h = NULL,
n = NULL,

40 stat_dens2d_filter

...
)

stat_dens2d_filter_g(
mapping = NULL,
data = NULL,
geom = "point",
position = "identity",
keep.fraction = 0.1,
keep.number = Inf,
keep.sparse = TRUE,
na.rm = TRUE,
show.legend = FALSE,
inherit.aes = TRUE,
h = NULL,
n = NULL,
...

)

Arguments

mapping The aesthetic mapping, usually constructed with aes or aes_. Only needs to be
set at the layer level if you are overriding the plot defaults.

data A layer specific dataset - only needed if you want to override the plot defaults.

geom The geometric object to use display the data.

position The position adjustment to use for overlapping points on this layer

keep.fraction numeric [0..1].

keep.number integer number of labels to keep.

keep.sparse logical If false the observations from the densest regions are kept.

na.rm a logical value indicating whether NA values should be stripped before the com-
putation proceeds.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

h vector of bandwidths for x and y directions. Defaults to normal reference band-
width (see bandwidth.nrd). A scalar value will be taken to apply to both direc-
tions.

n Number of grid points in each direction. Can be scalar or a length-2 integer
vector

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

stat_dens2d_filter 41

Computed variables

labels x at centre of range

See Also

kde2d used internally.

Other statistics for selection of observations based on local density: stat_dens2d_labels()

Examples

library(ggrepel)
library(gginnards)

random_string <- function(len = 6) {
paste(sample(letters, len, replace = TRUE), collapse = "")
}

Make random data.
set.seed(1001)
d <- tibble::tibble(

x = rnorm(100),
y = rnorm(100),
group = rep(c("A", "B"), c(50, 50)),
lab = replicate(100, { random_string() })

)

ggplot(data = d, aes(x, y)) +
geom_point() +
stat_dens2d_filter(colour = "red")

Using geom_debug() we can see that only 10 out off 100 rows in \code{d} are
returned. Those highlighted in red in the previous example.
ggplot(data = d, aes(x, y)) +

geom_point() +
stat_dens2d_filter(geom = "debug")

ggplot(data = d, aes(x, y)) +
geom_point() +
stat_dens2d_filter(colour = "red", keep.fraction = 0.5)

ggplot(data = d, aes(x, y)) +
geom_point() +
stat_dens2d_filter(colour = "red",

keep.fraction = 0.5,
keep.number = 12)

ggplot(data = d, aes(x, y, colour = group)) +
geom_point() +
stat_dens2d_filter(shape = 1, size = 3, keep.fraction = 1/4)

ggplot(data = d, aes(x, y, colour = group)) +

42 stat_dens2d_labels

geom_point() +
stat_dens2d_filter_g(shape = 1, size = 3, keep.fraction = 1/4)

ggplot(data = d, aes(x, y, label = lab, colour = group)) +
geom_point() +
stat_dens2d_filter(geom = "text")

ggplot(data = d, aes(x, y, label = lab, colour = group)) +
geom_point() +
stat_dens2d_filter(geom = "text_repel")

stat_dens2d_labels Reset labels of observations in high density regions

Description

stat_low_dens Sets values ampped to label to "" in regions of a plot panel with high density of
observations.

Usage

stat_dens2d_labels(
mapping = NULL,
data = NULL,
geom = "text",
position = "identity",
keep.fraction = 0.1,
keep.number = Inf,
h = NULL,
n = NULL,
label.fill = "",
na.rm = TRUE,
show.legend = FALSE,
inherit.aes = TRUE,
...

)

Arguments

mapping The aesthetic mapping, usually constructed with aes or aes_. Only needs to be
set at the layer level if you are overriding the plot defaults.

data A layer specific dataset - only needed if you want to override the plot defaults.

geom The geometric object to use display the data.

position The position adjustment to use for overlapping points on this layer

keep.fraction numeric [0..1].

keep.number integer number of labels to keep.

stat_dens2d_labels 43

h vector of bandwidths for x and y directions. Defaults to normal reference band-
width (see bandwidth.nrd). A scalar value will be taken to apply to both direc-
tions.

n Number of grid points in each direction. Can be scalar or a length-2 integer
vector

label.fill character.

na.rm a logical value indicating whether NA values should be stripped before the com-
putation proceeds.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

Details

stat_dens2d_labels() is designed to work together with statistics from package ’ggrepel’. To
avoid text labels being plotted over unlabelled points the corresponding rows in data need to be
retained but labels replaced with the empty character string, "". stat_dens2d_labels() replaces
labels by "" based on the local density of observations.

Computed variables

labels x at centre of range

See Also

kde2d used internally.

Other statistics for selection of observations based on local density: stat_dens2d_filter()

Examples

library(ggrepel)
library(gginnards)

random_string <- function(len = 6) {
paste(sample(letters, len, replace = TRUE), collapse = "")
}

Make random data.
set.seed(1001)
d <- tibble::tibble(

x = rnorm(100),
y = rnorm(100),
group = rep(c("A", "B"), c(50, 50)),

44 stat_fit_augment

lab = replicate(100, { random_string() })
)

ggplot(data = d, aes(x, y, label = lab)) +
geom_point() +
stat_dens2d_labels()

Using geom_debug() we can see that all 100 rows in \code{d} are
returned. But only those labelled in the previous example still contain
the original labels.
ggplot(data = d, aes(x, y, label = lab)) +

geom_point() +
stat_dens2d_labels(geom = "debug")

ggplot(data = d, aes(x, y, label = lab, colour = group)) +
geom_point() +
stat_dens2d_labels()

ggplot(data = d, aes(x, y, label = lab, colour = group)) +
geom_point() +
stat_dens2d_labels(geom = "text_repel")

ggplot(data = d, aes(x, y, label = lab, colour = group)) +
geom_point() +
stat_dens2d_labels(geom = "text_repel", label.fill = NA)

stat_fit_augment Augment data with fitted values and statistics

Description

stat_fit_augment fits a model and returns the data augmented with information from the fitted
model, using package ’broom’.

Usage

stat_fit_augment(
mapping = NULL,
data = NULL,
geom = "smooth",
method = "lm",
method.args = list(formula = y ~ x),
augment.args = list(),
level = 0.95,
y.out = ".fitted",
position = "identity",
na.rm = FALSE,
show.legend = FALSE,

stat_fit_augment 45

inherit.aes = TRUE,
...

)

Arguments

mapping The aesthetic mapping, usually constructed with aes or aes_. Only needs to be
set at the layer level if you are overriding the plot defaults.

data A layer specific dataset - only needed if you want to override the plot defaults.

geom The geometric object to use display the data

method character.

method.args list of arguments to pass to method.

augment.args list of arguments to pass to broom:augment.

level numeric Level of confidence interval to use (0.95 by default)

y.out character (or numeric) index to column to return as y.

position The position adjustment to use for overlapping points on this layer

na.rm logical indicating whether NA values should be stripped before the computation
proceeds.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

Details

stat_fit_augment together with stat_fit_glance and stat_fit_tidy, based on package ’broom’
can be used with a broad range of model fitting functions as supported at any given time by ’broom’.
In contrast to stat_poly_eq wich can generate text or expression labels automatically, for these
functions the mapping of aesthetic label needs to be explicitly supplied in the call, and labels built
on the fly.

A ggplot statistic receives as data a data frame that is not the one passed as argument by the user, but
instead a data frame with the variables mapped to aesthetics. In other words, it respects the grammar
of graphics and consequently within arguments passed through method.args names of aesthetics
like x and y should be used intead of the original variable names, while data is automatically
passed the data frame. This helps ensure that the model is fitted to the same data as plotted in other
layers.

Handling of grouping

stat_fit_augment applies the function given by method separately to each group of observations;
in ggplot2 factors mapped to aesthetics generate a separate group for each level. Because of this,
stat_fit_augment is not useful for annotating plots with results from t.test() or ANOVA or
ANCOVA. In such cases use instead stat_fit_tb() which applies the model fitting per panel.

46 stat_fit_augment

Computed variables

The output of augment() is returned as is, except for y which is set based on y.out and y.observed
which preserves the y returned by the broom::augment methods. This renaming is needed so that
the geom works as expected.

To explore the values returned by this statistic, which vary depending on the model fitting function
and model formula we suggest the use of geom_debug. An example is shown below.

Note

The statistic stat_fit_augment can be used only with methods that accept formulas under any for-
mal parameter name and a data argument. Use ggplot2::stat_smooth() instead of stat_fit_augment
in production code if the additional features are not needed.

See Also

broom

Other ggplot2 statistics based on ’broom’.: stat_fit_glance(), stat_fit_tb(), stat_fit_tidy()

Examples

library(gginnards)
Regression by panel, using geom_debug() to explore computed variables
ggplot(mtcars, aes(x = disp, y = mpg)) +

geom_point(aes(colour = factor(cyl))) +
stat_fit_augment(method = "lm",

method.args = list(formula = y ~ x),
geom = "debug",
summary.fun = colnames)

Regression by panel example
ggplot(mtcars, aes(x = disp, y = mpg)) +

geom_point(aes(colour = factor(cyl))) +
stat_fit_augment(method = "lm",

method.args = list(formula = y ~ x))

Residuals from regression by panel example
ggplot(mtcars, aes(x = disp, y = mpg)) +

geom_hline(yintercept = 0, linetype = "dotted") +
stat_fit_augment(geom = "point",

method = "lm",
method.args = list(formula = y ~ x),
y.out = ".resid")

Regression by group example
ggplot(mtcars, aes(x = disp, y = mpg, colour = factor(cyl))) +

geom_point() +
stat_fit_augment(method = "lm",

method.args = list(formula = y ~ x))

Residuals from regression by group example

stat_fit_deviations 47

ggplot(mtcars, aes(x = disp, y = mpg, colour = factor(cyl))) +
geom_hline(yintercept = 0, linetype = "dotted") +
stat_fit_augment(geom = "point",

method.args = list(formula = y ~ x),
y.out = ".resid")

Weighted regression example
ggplot(mtcars, aes(x = disp, y = mpg, weight = cyl)) +

geom_point(aes(colour = factor(cyl))) +
stat_fit_augment(method = "lm",

method.args = list(formula = y ~ x,
weights = quote(weight)))

Residuals from weighted regression example
ggplot(mtcars, aes(x = disp, y = mpg, weight = cyl)) +

geom_hline(yintercept = 0, linetype = "dotted") +
stat_fit_augment(geom = "point",

method.args = list(formula = y ~ x,
weights = quote(weight)),

y.out = ".resid")

stat_fit_deviations Residuals from model fit as segments

Description

stat_fit_deviations fits a linear model and returns fitted values and residuals ready to be plotted
as segments.

Usage

stat_fit_deviations(
mapping = NULL,
data = NULL,
geom = "segment",
method = "lm",
formula = NULL,
position = "identity",
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = TRUE,
...

)

Arguments

mapping The aesthetic mapping, usually constructed with aes or aes_. Only needs to be
set at the layer level if you are overriding the plot defaults.

48 stat_fit_deviations

data A layer specific dataset - only needed if you want to override the plot defaults.

geom The geometric object to use display the data

method character Currently only "lm" is implemented.

formula a "formula" object. Using aesthetic names instead of original variable names.

position The position adjustment to use for overlapping points on this layer

na.rm a logical indicating whether NA values should be stripped before the computa-
tion proceeds.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them. This
is most useful for helper functions that define both data and aesthetics and should
not inherit behaviour from the default plot specification, e.g. borders.

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

Details

This stat can be used to automatically highlight residuals as segments in a plot of a fitted model
equation. At the moment it supports only linear models fitted with function lm(). This stat only
generates the residuals, the predicted values need to be separately added to the plot, so to make sure
that the same model formula is used in all steps it is best to save the formula as an object and supply
this object as argument to the different statistics.

A ggplot statistic receives as data a data frame that is not the one passed as argument by the user,
but instead a data frame with the variables mapped to aesthetics. In other words, it respects the
grammar of graphics and consequently within the model formula names of aesthetics like x and
y should be used intead of the original variable names, while data is automatically passed the
data frame. This helps ensure that the model is fitted to the same data as plotted in other layers.

Computed variables

Data frame with same nrow as data as subset for each group containing five numeric variables.

x x coordinates of observations

y.fitted x coordinates of fitted values

y y coordinates of observations

y.fitted y coordinates of fitted values

To explore the values returned by this statistic we suggest the use of geom_debug. An example is
shown below, where one can also see in addition to the computed values the default mapping of the
fitted values to aesthetics xend and yend.

Note

For linear models x1 is equal to x2.

stat_fit_glance 49

See Also

Other statistics for linear model fits: stat_fit_residuals(), stat_poly_eq()

Examples

library(gginnards) # needed for geom_debug()
generate artificial data
set.seed(4321)
x <- 1:100
y <- (x + x^2 + x^3) + rnorm(length(x), mean = 0, sd = mean(x^3) / 4)
my.data <- data.frame(x, y, group = c("A", "B"), y2 = y * c(0.5,2))

give a name to a formula
my.formula <- y ~ poly(x, 3, raw = TRUE)

plot
ggplot(my.data, aes(x, y)) +

geom_smooth(method = "lm", formula = my.formula) +
stat_fit_deviations(formula = my.formula, colour = "red") +
geom_point()

plot, using geom_debug()
ggplot(my.data, aes(x, y)) +

geom_smooth(method = "lm", formula = my.formula) +
stat_fit_deviations(formula = my.formula, colour = "red",
geom = "debug") +
geom_point()

stat_fit_glance One row summary data frame for a fitted model

Description

stat_fit_glance fits a model and returns a summary "glance" of the model’s statistics, using
package ’broom’.

Usage

stat_fit_glance(
mapping = NULL,
data = NULL,
geom = "text_npc",
method = "lm",
method.args = list(formula = y ~ x),
label.x = "left",
label.y = "top",
hstep = 0,
vstep = 0.075,

50 stat_fit_glance

position = "identity",
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = TRUE,
...

)

Arguments

mapping The aesthetic mapping, usually constructed with aes or aes_. Only needs to be
set at the layer level if you are overriding the plot defaults.

data A layer specific data set - only needed if you want to override the plot defaults.

geom The geometric object to use display the data

method character.

method.args list of arguments to pass to method.
label.x, label.y

numeric with range 0..1 "normalized parent coordinates" (npc units) or charac-
ter if using geom_text_npc() or geom_label_npc(). If using geom_text() or
geom_label() numeric in native data units. If too short they will be recycled.

hstep, vstep numeric in npc units, the horizontal and vertical step used between labels for
different groups.

position The position adjustment to use for overlapping points on this layer

na.rm a logical indicating whether NA values should be stripped before the computa-
tion proceeds.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

Details

stat_fit_glance together with stat_fit_tidy and stat_fit_augment, based on package ’broom’
can be used with a broad range of model fitting functions as supported at any given time by package
’broom’. In contrast to stat_poly_eq wich can generate text or expression labels automatically,
for these functions the mapping of aesthetic label needs to be explicitly supplied in the callm, and
labels built on the fly.

A ggplot statistic receives as data a data frame that is not the one passed as argument by the user, but
instead a data frame with the variables mapped to aesthetics. In other words, it respects the grammar
of graphics and consequently within arguments passed through method.args names of aesthetics
like x and y should be used intead of the original variable names, while data is automatically
passed the data frame. This helps ensure that the model is fitted to the same data as plotted in other
layers.

stat_fit_glance 51

Handling of grouping

stat_fit_glance applies the function given by method separately to each group of observations,
and factors mapped to aesthetics generate a separate group for each factor level. Because of this,
stat_fit_glance is not useful for annotating plots with results from t.test(), ANOVA or AN-
COVA. In such cases use the stat_fit_tb() statistic which applie the model fitting per panel.

Model formula required

The current implementation works only with methods that accept a formula as argument and which
have a data parameter through which a data frame can be passed. For example, lm() should be
used with the formula interface, as the evaluation of x and y needs to be delayed until the internal
object of the ggplot is available. With some methods like cor.test() the data embedded in the
"ggplot" object cannot be automatically passed as argument for the data parameter of the test or
model fit function.

Computed variables

The output of glance() is returned almost as is in the data object. The names of the columns in
the returned data are consitent with those returned by method glance() from package ’broom’, that
will frequently differ from the name of values returned by the print methods corresponding to the fit
or test function used. To explore the values returned by this statistic, which vary depending on the
model fitting function and model formula we suggest the use of geom_debug. An example is shown
below.

See Also

broom

Other ggplot2 statistics based on ’broom’.: stat_fit_augment(), stat_fit_tb(), stat_fit_tidy()

Examples

library(gginnards)
Regression by panel example, using geom_debug.
ggplot(mtcars, aes(x = disp, y = mpg)) +

stat_smooth(method = "lm") +
geom_point(aes(colour = factor(cyl))) +
stat_fit_glance(method = "lm",

method.args = list(formula = y ~ x),
geom = "debug")

Regression by panel example
ggplot(mtcars, aes(x = disp, y = mpg)) +

stat_smooth(method = "lm") +
geom_point(aes(colour = factor(cyl))) +
stat_fit_glance(method = "lm",

label.y = "bottom",
method.args = list(formula = y ~ x),
mapping = aes(label = sprintf('r^2~"="~%.3f~~italic(P)~"="~%.2g',

stat(r.squared), stat(p.value))),
parse = TRUE)

52 stat_fit_residuals

Regression by group example
ggplot(mtcars, aes(x = disp, y = mpg, colour = factor(cyl))) +

stat_smooth(method = "lm") +
geom_point() +
stat_fit_glance(method = "lm",

label.y = "bottom",
method.args = list(formula = y ~ x),
mapping = aes(label = sprintf('r^2~"="~%.3f~~italic(P)~"="~%.2g',

stat(r.squared), stat(p.value))),
parse = TRUE)

Weighted regression example
ggplot(mtcars, aes(x = disp, y = mpg, weight = cyl)) +

stat_smooth(method = "lm") +
geom_point(aes(colour = factor(cyl))) +
stat_fit_glance(method = "lm",

label.y = "bottom",
method.args = list(formula = y ~ x, weights = quote(weight)),
mapping = aes(label = sprintf('r^2~"="~%.3f~~italic(P)~"="~%.2g',

stat(r.squared), stat(p.value))),
parse = TRUE)

stat_fit_residuals Residuals from a model fit

Description

stat_fit_residuals fits a linear model and returns residuals ready to be plotted as points.

Usage

stat_fit_residuals(
mapping = NULL,
data = NULL,
geom = "point",
method = "lm",
formula = NULL,
resid.type = NULL,
position = "identity",
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = TRUE,
...

)

stat_fit_residuals 53

Arguments

mapping The aesthetic mapping, usually constructed with aes or aes_. Only needs to be
set at the layer level if you are overriding the plot defaults.

data A layer specific dataset - only needed if you want to override the plot defaults.

geom The geometric object to use display the data

method character Currently only "lm" is implemented.

formula a "formula" object. Using aesthetic names instead of original variable names.

resid.type character passed to residuals() as argument for type.

position The position adjustment to use for overlapping points on this layer

na.rm a logical indicating whether NA values should be stripped before the computa-
tion proceeds.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them. This
is most useful for helper functions that define both data and aesthetics and should
not inherit behaviour from the default plot specification, e.g. borders.

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

Details

This stat can be used to automatically plot residuals as points in a plot. At the moment it supports
only linear models fitted with function lm(). This stat only generates the residuals.

A ggplot statistic receives as data a data frame that is not the one passed as argument by the user,
but instead a data frame with the variables mapped to aesthetics. In other words, it respects the
grammar of graphics and consequently within the model formula names of aesthetics like x and
y should be used intead of the original variable names, while data is automatically passed the
data frame. This helps ensure that the model is fitted to the same data as plotted in other layers.

Computed variables

Data frame with same nrow as data as subset for each group containing five numeric variables.

x x coordinates of observations

y.resid residuals from fitted values

y.resid.abs absolute residuals from the fit

.

By default stat(y.resid) is mapped to the y aesthetic.

See Also

Other statistics for linear model fits: stat_fit_deviations(), stat_poly_eq()

54 stat_fit_tb

Examples

generate artificial data
set.seed(4321)
x <- 1:100
y <- (x + x^2 + x^3) + rnorm(length(x), mean = 0, sd = mean(x^3) / 4)
my.data <- data.frame(x, y, group = c("A", "B"), y2 = y * c(0.5,2))

give a name to a formula
my.formula <- y ~ poly(x, 3, raw = TRUE)

plot
ggplot(my.data, aes(x, y)) +

stat_fit_residuals(formula = my.formula, resid.type = "working")

library(gginnards) # needed for geom_debug()
print to the console the returned data
ggplot(my.data, aes(x, y)) +

stat_fit_residuals(formula = my.formula, resid.type = "working",
geom = "debug")

stat_fit_tb Model-fit summary or ANOVA

Description

stat_fit_tb fits a model and returns a "tidy" version of the model’s summary or ANOVA table,
using package ’broom’. The annotation is added to the plots in tabular form.

Usage

stat_fit_tb(
mapping = NULL,
data = NULL,
geom = "table_npc",
method = "lm",
method.args = list(formula = y ~ x),
tb.type = "fit.summary",
tb.vars = NULL,
digits = 3,
label.x = "center",
label.y = "top",
label.x.npc = NULL,
label.y.npc = NULL,
position = "identity",
table.theme = NULL,
table.rownames = FALSE,
table.colnames = TRUE,

stat_fit_tb 55

table.hjust = 1,
parse = FALSE,
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = TRUE,
...

)

Arguments

mapping The aesthetic mapping, usually constructed with aes or aes_. Only needs to be
set at the layer level if you are overriding the plot defaults.

data A layer specific dataset, only needed if you want to override the plot defaults.

geom The geometric object to use display the data

method character.

method.args list of arguments to pass to method.

tb.type character One of "fit.summary", "fit.anova" or "fit.coefs".

tb.vars character vector, optionally named, used to select and or rename the columns of
the table returned.

digits integer indicating the number of significant digits to be used.
label.x, label.y

numeric Coordinates (in data units) to be used for absolute positioning of the
output. If too short they will be recycled.

label.x.npc, label.y.npc

numeric with range 0..1 or character. Coordinates to be used for positioning the
output, expressed in "normalized parent coordinates" or character string. If too
short they will be recycled.

position The position adjustment to use for overlapping points on this layer

table.theme NULL, list or function A gridExtra ttheme defintion, or a constructor for a
ttheme or NULL for default.

table.rownames, table.colnames

logical flag to enable or disabling printing of row names and column names.

table.hjust numeric Horizontal justification for the core and column headings of the table.

parse If TRUE, the labels will be parsed into expressions and displayed as described
in ?plotmath.

na.rm a logical indicating whether NA values should be stripped before the computa-
tion proceeds.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

56 stat_fit_tb

Details

stat_fit_tb Applies a model fitting function per panel, using the grouping factors from easthetic
mappings in the fitted model. This is suitable, for example for analysis of variance used to test for
differences among groups.

The argument to method can be any fit method for which a suitable tidy() method is available,
including non-linear regression. Fit methods retain their default arguments unless orverridden.

A ggplot statistic receives as data a data frame that is not the one passed as argument by the user, but
instead a data frame with the variables mapped to aesthetics. In other words, it respects the grammar
of graphics and consequently within arguments passed through method.args names of aesthetics
like x and y should be used instead of the original variable names, while data is automatically
passed the data frame. This helps ensure that the model is fitted to the same data as plotted in other
layers.

Computed variables

The output of tidy() is returned as a single "cell" in a tibble (i.e. a tibble nested within a tibble).
The returned data object contains a single, containing the result from a single model fit to all data
in a panel. If grouping is present, it is ignored.

To explore the values returned by this statistic, which vary depending on the model fitting function
and model formula we suggest the use of geom_debug. An example is shown below.

See Also

broom for details on how the tidying of the result of model fits is done. See geom_table for details
on how inset tables respond to mapped aesthetics and table themes. For details on predefined table
themes see ttheme_gtdefault.

Other ggplot2 statistics based on ’broom’.: stat_fit_augment(), stat_fit_glance(), stat_fit_tidy()

Examples

data for examples
x <- c(44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 45.2, 60.1)
covariate <- sqrt(x) + rnorm(9)
group <- factor(c(rep("A", 4), rep("B", 5)))
my.df <- data.frame(x, group, covariate)

Linear regression
ggplot(my.df, aes(covariate, x)) +

geom_point() +
stat_fit_tb() +
expand_limits(y = 70)

Linear regression using a table theme
ggplot(my.df, aes(covariate, x)) +

geom_point() +
stat_fit_tb(table.theme = ttheme_gtlight) +
expand_limits(y = 70)

Polynomial regression

stat_fit_tidy 57

ggplot(my.df, aes(covariate, x)) +
geom_point() +
stat_fit_tb(method.args = list(formula = y ~ poly(x, 2))) +
expand_limits(y = 70)

ANOVA
ggplot(my.df, aes(group, x)) +

geom_point() +
stat_fit_tb() +
expand_limits(y = 70)

ANOVA with renamed and selected columns
ggplot(my.df, aes(group, x)) +

geom_point() +
stat_fit_tb(tb.vars = c(Effect = "term", "italic(F)" = "statistic", "italic(P)" = "p.value"),

parse = TRUE)

ANCOVA (covariate not plotted)
ggplot(my.df, aes(group, x, z = covariate)) +

geom_point() +
stat_fit_tb(method.args = list(formula = y ~ x + z),

tb.vars = c(Effect = "term", "italic(F)" = "statistic", "italic(P)" = "p.value"),
parse = TRUE)

t-test
ggplot(my.df, aes(group, x)) +

geom_point() +
stat_fit_tb(method = "t.test",

tb.vars = c("italic(t)" = "statistic", "italic(P)" = "p.value"),
parse = TRUE)

t-test (equal variances assumed)
ggplot(my.df, aes(group, x)) +

geom_point() +
stat_fit_tb(method = "t.test",

method.args = list(formula = y ~ x, var.equal = TRUE),
tb.vars = c("italic(t)" = "statistic", "italic(P)" = "p.value"),
parse = TRUE)

stat_fit_tidy One row data frame with fitted parameter estimates

Description

stat_fit_tidy fits a model and returns a "tidy" version of the model’s summary, using package
’broom’. To add the summary in tabular form use stat_fit_tb. When using stat_fit_tidy()
you will most likely want to change the default mapping for label.

58 stat_fit_tidy

Usage

stat_fit_tidy(
mapping = NULL,
data = NULL,
geom = "text_npc",
method = "lm",
method.args = list(formula = y ~ x),
label.x = "left",
label.y = "top",
hstep = 0,
vstep = NULL,
position = "identity",
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = TRUE,
...

)

Arguments

mapping The aesthetic mapping, usually constructed with aes or aes_. Only needs to be
set at the layer level if you are overriding the plot defaults.

data A layer specific dataset - only needed if you want to override the plot defaults.

geom The geometric object to use display the data

method character.

method.args list of arguments to pass to method.

label.x, label.y

numeric with range 0..1 or character. Coordinates to be used for positioning the
output, expressed in "normalized parent coordinates" or character string. If too
short they will be recycled.

hstep, vstep numeric in npc units, the horizontal and vertical step used between labels for
different groups.

position The position adjustment to use for overlapping points on this layer

na.rm a logical indicating whether NA values should be stripped before the computa-
tion proceeds.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

stat_fit_tidy 59

Details

stat_fit_tidy together with stat_fit_glance and stat_fit_augment, based on package ’broom’
can be used with a broad range of model fitting functions as supported at any given time by ’broom’.
In contrast to stat_poly_eq wich can generate text or expression labels automatically, for these
functions the mapping of aesthetic label needs to be explicitly supplied in the call, and labels built
on the fly.

A ggplot statistic receives as data a data frame that is not the one passed as argument by the user, but
instead a data frame with the variables mapped to aesthetics. In other words, it respects the grammar
of graphics and consequently within arguments passed through method.args names of aesthetics
like x and y should be used intead of the original variable names, while data is automatically
passed the data frame. This helps ensure that the model is fitted to the same data as plotted in other
layers.

Handling of grouping

stat_fit_tidy applies the function given by method separately to each group of observations;
in ggplot2 factors mapped to aesthetics generate a separate group for each level. Because of this,
stat_fit_tidy is not useful for annotating plots with results from t.test() or ANOVA or AN-
COVA. In such cases use instead stat_fit_tb() which applies the model fitting per panel.

Computed variables

The output of tidy() is returned after reshaping it into a single row. Grouping is respected, and the
model fit separatately to each group of data. The returned data object has one row for each group
within a panel. To use the intercept, note that output of tidy() is renamed from (Intercept) to
Intercept.

To explore the values returned by this statistic, which vary depending on the model fitting function
and model formula we suggest the use of geom_debug. An example is shown below.

Note

The statistic stat_fit_augment can be used only with methods that accept formulas under any for-
mal parameter name and a data argument. Use ggplot2::stat_smooth() instead of stat_fit_augment
in production code if the additional features are not needed.

See Also

broom

Other ggplot2 statistics based on ’broom’.: stat_fit_augment(), stat_fit_glance(), stat_fit_tb()

Examples

library(gginnards)
Regression by panel, exploring computed variables with geom_debug()
ggplot(mtcars, aes(x = disp, y = mpg)) +

stat_smooth(method = "lm") +
geom_point(aes(colour = factor(cyl))) +
stat_fit_tidy(method = "lm",

method.args = list(formula = y ~ x),

60 stat_fmt_tb

geom = "debug")

Regression by panel example
ggplot(mtcars, aes(x = disp, y = mpg)) +

stat_smooth(method = "lm") +
geom_point(aes(colour = factor(cyl))) +
stat_fit_tidy(method = "lm",

label.x = "right",
method.args = list(formula = y ~ x),
mapping = aes(label = sprintf("Slope = %.3g\np-value = %.3g",

stat(x_estimate),
stat(x_p.value))))

Regression by group example
ggplot(mtcars, aes(x = disp, y = mpg, colour = factor(cyl))) +

stat_smooth(method = "lm") +
geom_point() +
stat_fit_tidy(method = "lm",

label.x = "right",
method.args = list(formula = y ~ x),
mapping = aes(label = sprintf("Slope = %.3g, p-value = %.3g",

stat(x_estimate),
stat(x_p.value))))

Weighted regression example
ggplot(mtcars, aes(x = disp, y = mpg, weight = cyl)) +

stat_smooth(method = "lm") +
geom_point(aes(colour = factor(cyl))) +
stat_fit_tidy(method = "lm",

label.x = "right",
method.args = list(formula = y ~ x, weights = quote(weight)),
mapping = aes(label = sprintf("Slope = %.3g\np-value = %.3g",

stat(x_estimate),
stat(x_p.value))))

stat_fmt_tb Select and slice a tibble nested in data

Description

stat_partial_tb selects columns and/or remanes them and/or slices rows from a tible nested in
data. This stat is designed to be used to pre-process tibble objects mapped to the label aesthetic
before adding them to a plot with geom_table.

Usage

stat_fmt_tb(
mapping = NULL,
data = NULL,

stat_fmt_tb 61

geom = "table",
tb.vars = NULL,
tb.rows = NULL,
digits = 3,
position = "identity",
table.theme = NULL,
table.rownames = FALSE,
table.colnames = TRUE,
table.hjust = 0.5,
parse = FALSE,
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = TRUE,
...

)

Arguments

mapping The aesthetic mapping, usually constructed with aes or aes_. Only needs to be
set at the layer level if you are overriding the plot defaults.

data A layer specific dataset - only needed if you want to override the plot defaults.

geom The geometric object to use display the data

tb.vars character vector, optionally named, used to select and or rename the columns of
the table returned.

tb.rows integer vector of row indexes of rows to be retained.

digits integer indicating the number of significant digits to be retained in data.

position The position adjustment to use for overlapping points on this layer

table.theme NULL, list or function A gridExtra ttheme defintion, or a constructor for a
ttheme or NULL for default.

table.rownames, table.colnames

logical flag to enable or disabling printing of row names and column names.

table.hjust numeric Horizontal justification for the core and column headings of the table.

parse If TRUE, the labels will be parsed into expressions and displayed as described
in ?plotmath.

na.rm a logical indicating whether NA values should be stripped before the computa-
tion proceeds.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

62 stat_peaks

Computed variables

The output of sequentially applying slice with tb.rows as argument and select with tb.vars to
a list variable list mapped to label and containing a single tibble per row in data.

See Also

See geom_table for details on how tables respond to mapped aesthetics and table themes. For
details on predefined table themes see ttheme_gtdefault.

Examples

my.df <-
tibble::tibble(
x = c(1, 2),
y = c(0, 4),
group = c("A", "B"),
tbs = list(a = tibble::tibble(X = 1:6, Y = rep(c("x", "y"), 3)),

b = tibble::tibble(X = 1:3, Y = "x"))
)

ggplot(my.df, aes(x, y, label = tbs)) +
stat_fmt_tb() +
expand_limits(x = c(0,3), y = c(-2, 6))

ggplot(my.df, aes(x, y, label = tbs)) +
stat_fmt_tb(table.theme = ttheme_gtlight) +
expand_limits(x = c(0,3), y = c(-2, 6))

ggplot(my.df, aes(x, y, label = tbs)) +
stat_fmt_tb(tb.vars = c(value = "X", group = "Y"),

tb.rows = 1:3) +
expand_limits(x = c(0,3), y = c(-2, 6))

stat_peaks Local maxima (peaks) or minima (valleys)

Description

stat_peaks finds at which x positions local y maxima are located and stat_valleys finds at
which x positions local y minima are located. Both stats return x and y numeric values for peaks or
valleys and formatted character labels. The formatting is determined by a format string suitable for
sprintf().

Usage

stat_peaks(
mapping = NULL,
data = NULL,

stat_peaks 63

geom = "point",
span = 5,
ignore_threshold = 0,
strict = FALSE,
label.fmt = NULL,
x.label.fmt = NULL,
y.label.fmt = NULL,
position = "identity",
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = TRUE,
...

)

stat_valleys(
mapping = NULL,
data = NULL,
geom = "point",
span = 5,
ignore_threshold = 0,
strict = FALSE,
label.fmt = NULL,
x.label.fmt = NULL,
y.label.fmt = NULL,
position = "identity",
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = TRUE,
...

)

Arguments

mapping The aesthetic mapping, usually constructed with aes or aes_. Only needs to be
set at the layer level if you are overriding the plot defaults.

data A layer specific dataset - only needed if you want to override the plot defaults.

geom The geometric object to use display the data.

span a peak is defined as an element in a sequence which is greater than all other
elements within a window of width span centered at that element. The default
value is 5, meaning that a peak is bigger than two consecutive neighbors on each
side. A NULL value for span is taken as a span covering the whole of the data
range.

ignore_threshold

numeric value between 0.0 and 1.0 indicating the size threshold below which
peaks will be ignored.

strict logical flag: if TRUE, an element must be strictly greater than all other values
in its window to be considered a peak. Default: FALSE.

64 stat_peaks

label.fmt character string giving a format definition for converting values into character
strings by means of function sprintf or strptime, its use is deprecated.

x.label.fmt character string giving a format definition for converting x-values into char-
acter strings by means of function sprintf or strftime. The default argument
varies depending on the scale in use.

y.label.fmt character string giving a format definition for converting y-values into char-
acter strings by means of function sprintf.

position The position adjustment to use for overlapping points on this layer.

na.rm a logical value indicating whether NA values should be stripped before the com-
putation proceeds.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

Details

These stats use geom_point by default as it is the geom most likely to work well in almost any sit-
uation without need of tweaking. The default aesthetics set by these stats allow their direct use with
geom_text, geom_label, geom_line, geom_rug, geom_hline and geom_vline. The formatting of
the labels returned can be controlled by the user.

Computed variables

x x-value at the peak (or valley) as numeric

y y-value at the peak (or valley) as numeric

x.label x-value at the peak (or valley) as character

y.label y-value at the peak (or valley) as character

Note

These stats check the scale of the x aesthetic and if it is Date or Datetime they correctly generate the
labels by transforming the numeric x values to POSIXct objects, in which case the x.label.fmt
must be suitable for strftime() rather than for sprintf(). These stats work nicely together
with geoms geom_text_repel and geom_label_repel from package ggrepel to solve the prob-
lem of overlapping labels by displacing them. Alternatively, to discard overlapping labels use
check_overlap = TRUE as argument to geom_text. By default the labels are character values suit-
able to be plotted as is, but with a suitable label.fmt labels suitable for parsing by the geoms (e.g.
into expressions containing Greek letters, super- or subscripts, maths symbols or maths constructs)
can be also easily obtained.

See Also

Other peaks and valleys functions: find_peaks()

stat_poly_eq 65

Examples

library(ggplot2)
lynx.df <- data.frame(year = as.numeric(time(lynx)), lynx = as.matrix(lynx))
ggplot(lynx.df, aes(year, lynx)) + geom_line() +

stat_peaks(colour = "red") +
stat_valleys(colour = "blue")

ggplot(lynx.df, aes(year, lynx)) + geom_line() +
stat_peaks(colour = "red") +
stat_peaks(colour = "red", geom = "rug")

stat_poly_eq Equation, p-value, R^2, AIC or BIC of fitted polynomial

Description

stat_poly_eq fits a polynomial and generates several labels including the equation, p-value, coef-
ficient of determination (R^2), ’AIC’ and ’BIC’.

Usage

stat_poly_eq(
mapping = NULL,
data = NULL,
geom = "text_npc",
position = "identity",
...,
formula = NULL,
eq.with.lhs = TRUE,
eq.x.rhs = NULL,
coef.digits = 3,
rr.digits = 2,
f.digits = 3,
p.digits = 3,
label.x = "left",
label.y = "top",
label.x.npc = NULL,
label.y.npc = NULL,
hstep = 0,
vstep = NULL,
output.type = "expression",
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = TRUE

)

66 stat_poly_eq

Arguments

mapping The aesthetic mapping, usually constructed with aes or aes_. Only needs to be
set at the layer level if you are overriding the plot defaults.

data A layer specific dataset, only needed if you want to override the plot defaults.

geom The geometric object to use display the data

position The position adjustment to use for overlapping points on this layer

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

formula a formula object. Using aesthetic names instead of original variable names.

eq.with.lhs If character the string is pasted to the front of the equation label before parsing
or a logical (see note).

eq.x.rhs character this string will be used as replacement for "x" in the model equation
when generating the label before parsing it.

coef.digits, rr.digits, f.digits, p.digits

integer Number of significant digits to use for the fitted coefficients, R^2, F-
value and P-value in labels.

label.x, label.y

numeric with range 0..1 "normalized parent coordinates" (npc units) or charac-
ter if using geom_text_npc() or geom_label_npc(). If using geom_text() or
geom_label() numeric in native data units. If too short they will be recycled.

label.x.npc, label.y.npc

numeric with range 0..1 (npc units) DEPRECATED, use label.x and label.y
instead; together with a geom using npcx and npcy aesthetics.

hstep, vstep numeric in npc units, the horizontal and vertical step used between labels for
different groups.

output.type character One of "expression", "LaTeX" or "text", or "numeric".

na.rm a logical indicating whether NA values should be stripped before the computa-
tion proceeds.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

Details

This stat can be used to automatically annotate a plot with R^2, adjusted R^2 or the fitted model
equation. It supports only linear models fitted with function lm(). The R^2 and adjusted R^2 anno-
tations can be used with any linear model formula. The fitted equation label is correctly generated
for polynomials or quasi-polynomials through the origin. Model formulas can use poly() or be
defined algebraically with terms of powers of increasing magnitude with no missing intermediate
terms, except possibly for the intercept indicated by "- 1" or "-1" in the formula. The validity of
the formula is not checked in the current implementation, and for this reason the default aesthetics
sets R^2 as label for the annotation. This stat only generates labels, the predicted values need to be

stat_poly_eq 67

separately added to the plot, so to make sure that the same model formula is used in all steps it is
best to save the formula as an object and supply this object as argument to the different statistics.

A ggplot statistic receives as data a data frame that is not the one passed as argument by the user,
but instead a data frame with the variables mapped to aesthetics. stat_poly_eq() mimics how
stat_smooth() works, except that only polynomials can be fitted. In other words, it respects the
grammar of graphics. This helps ensure that the model is fitted to the same data as plotted in other
layers.

Aesthetics

stat_poly_eq understands x and y, to be referenced in the formula and weight passed as argument
to parameter weights of lm(). All three must be mapped to numeric variables. In addition, the
aesthetics undertood by the geom used ("text" by default) are understood and grouping respected.

Computed variables

If output.type different from "numeric" the returned tibble contains columns:

x,npcx x position

y,npcy y position

coef.ls, r.squared, adj.r.squared, AIC, BIC as numric values extracted from fit object

eq.label equation for the fitted polynomial as a character string to be parsed

rr.label R2 of the fitted model as a character string to be parsed

adj.rr.label Adjusted R2 of the fitted model as a character string to be parsed

f.value.label F value and degrees of freedom for the fitted model as a whole.

p.value..label P-value for the F-value above.

AIC.label AIC for the fitted model.

BIC.label BIC for the fitted model.

hjust, vjust Set to "inward" to override the default of the "text" geom.

If output.type is "numeric" the returned tibble contains columns:

x,npcx x position

y,npcy y position

coef.ls list containing the "coefficients" matrix from the summary of the fit object

r.squared, adj.r.squared, f.value, f.df1, f.df2, p.value, AIC, BIC numeric values extracted or com-
puted from fit object

hjust, vjust Set to "inward" to override the default of the "text" geom.

To explore the computed values returned for a given input we suggest the use of geom_debug as
shown in the example below.

Parsing may be required

if using the computed labels with output.type = "expression", then parse = TRUE is needed,
while if using output.type = "LaTeX" parse = FALSE is needed.

68 stat_poly_eq

Note

For backward compatibility a logical is accepted as argument for eq.with.lhs, giving the same
output than the current default character value. By default "x" is retained as independent variable as
this is the name of the aesthetic. However, it can be substituted by providing a suitable replacement
character string through eq.x.rhs.

References

Written as an answer to a question at Stackoverflow. https://stackoverflow.com/questions/
7549694/adding-regression-line-equation-and-r2-on-graph

See Also

This stat_poly_eq statistic can return ready formatted labels depending on the argument passed
to output.type. This is possible because only polynomial models are supported. For other types
of models, statistics stat_fit_glance, stat_fit_tidy and stat_fit_glance should be used
instead and the code for construction of character strings from numeric values and their mapping to
aesthetic label needs to be explicitly supplied in the call.

Other statistics for linear model fits: stat_fit_deviations(), stat_fit_residuals()

Examples

generate artificial data
set.seed(4321)
x <- 1:100
y <- (x + x^2 + x^3) + rnorm(length(x), mean = 0, sd = mean(x^3) / 4)
my.data <- data.frame(x = x, y = y,

group = c("A", "B"),
y2 = y * c(0.5,2),
w = sqrt(x))

give a name to a formula
formula <- y ~ poly(x, 3, raw = TRUE)

no weights
ggplot(my.data, aes(x, y)) +

geom_point() +
geom_smooth(method = "lm", formula = formula) +
stat_poly_eq(formula = formula, parse = TRUE)

ggplot(my.data, aes(x, y)) +
geom_point() +
geom_smooth(method = "lm", formula = formula) +
stat_poly_eq(formula = formula, parse = TRUE,

label.y = "bottom", label.x = "right")

ggplot(my.data, aes(x, y)) +
geom_point() +
geom_smooth(method = "lm", formula = formula) +
stat_poly_eq(formula = formula, parse = TRUE,

label.y = 0.1, label.x = 0.9)

https://stackoverflow.com/questions/7549694/adding-regression-line-equation-and-r2-on-graph
https://stackoverflow.com/questions/7549694/adding-regression-line-equation-and-r2-on-graph

stat_poly_eq 69

using weights
ggplot(my.data, aes(x, y, weight = w)) +

geom_point() +
geom_smooth(method = "lm", formula = formula) +
stat_poly_eq(formula = formula, parse = TRUE)

no weights, digits for R square
ggplot(my.data, aes(x, y)) +

geom_point() +
geom_smooth(method = "lm", formula = formula) +
stat_poly_eq(formula = formula, rr.digits = 4, parse = TRUE)

user specified label
ggplot(my.data, aes(x, y)) +

geom_point() +
geom_smooth(method = "lm", formula = formula) +
stat_poly_eq(aes(label = paste(stat(eq.label),

stat(adj.rr.label), sep = "*\", \"*")),
formula = formula, parse = TRUE)

ggplot(my.data, aes(x, y)) +
geom_point() +
geom_smooth(method = "lm", formula = formula) +
stat_poly_eq(aes(label = paste(stat(f.value.label),

stat(p.value.label), sep = "*\", \"*")),
formula = formula, parse = TRUE)

user specified label and digits
ggplot(my.data, aes(x, y)) +

geom_point() +
geom_smooth(method = "lm", formula = formula) +
stat_poly_eq(aes(label = paste(stat(eq.label),

stat(adj.rr.label), sep = "*\", \"*")),
formula = formula, rr.digits = 3, coef.digits = 4,
parse = TRUE)

geom = "text"
ggplot(my.data, aes(x, y)) +

geom_point() +
geom_smooth(method = "lm", formula = formula) +
stat_poly_eq(geom = "text", label.x = 100, label.y = 0, hjust = 1,

formula = formula, parse = TRUE)

using numeric values
Here we use column "Estimate" from the matrix.
Other available columns are "Std. Error", "t value" and "Pr(>|t|)".
my.format <-

"b[0]~`=`~%.3g*\", \"*b[1]~`=`~%.3g*\", \"*b[2]~`=`~%.3g*\", \"*b[3]~`=`~%.3g"
ggplot(my.data, aes(x, y)) +

geom_point() +
geom_smooth(method = "lm", formula = formula) +
stat_poly_eq(formula = formula,

70 stat_quadrant_counts

output.type = "numeric",
parse = TRUE,
mapping =
aes(label = sprintf(my.format,

stat(coef.ls)[[1]][[1, "Estimate"]],
stat(coef.ls)[[1]][[2, "Estimate"]],
stat(coef.ls)[[1]][[3, "Estimate"]],
stat(coef.ls)[[1]][[4, "Estimate"]])
)

)

Examples using geom_debug() to show computed values
#
This provides a quick way of finding out which variables are available for
use in mapping of aesthetics when using other geoms as in the examples
above.

library(gginnards)

ggplot(my.data, aes(x, y)) +
geom_point() +
geom_smooth(method = "lm", formula = formula) +
stat_poly_eq(formula = formula, geom = "debug")

ggplot(my.data, aes(x, y)) +
geom_point() +
geom_smooth(method = "lm", formula = formula) +
stat_poly_eq(formula = formula, geom = "debug", output.type = "text")

ggplot(my.data, aes(x, y)) +
geom_point() +
geom_smooth(method = "lm", formula = formula) +
stat_poly_eq(formula = formula, geom = "debug", output.type = "numeric")

show the content of a list column
ggplot(my.data, aes(x, y)) +

geom_point() +
geom_smooth(method = "lm", formula = formula) +
stat_poly_eq(formula = formula, geom = "debug", output.type = "numeric",

summary.fun = function(x) {x[["coef.ls"]][[1]]})

stat_quadrant_counts Number of observations in quadrants

Description

stat_quadrant_counts() counts the number of observations in each quadrant of a plot panel. By
default it adds a text label to the far corner of each quadrant. It can also be used to obtain the
total number of observations in each of two pairs of quadrants or in the whole panel. Grouping is
ignored, so en every case a single count is computed for each quadrant in a plot panel.

stat_quadrant_counts 71

Usage

stat_quadrant_counts(
mapping = NULL,
data = NULL,
geom = "text_npc",
position = "identity",
quadrants = NULL,
pool.along = "none",
xintercept = 0,
yintercept = 0,
label.x = NULL,
label.y = NULL,
na.rm = FALSE,
show.legend = FALSE,
inherit.aes = TRUE,
...

)

Arguments

mapping The aesthetic mapping, usually constructed with aes or aes_. Only needs to be
set at the layer level if you are overriding the plot defaults.

data A layer specific dataset - only needed if you want to override the plot defaults.

geom The geometric object to use display the data

position The position adjustment to use for overlapping points on this layer

quadrants integer vector indicating which quadrants are of interest, with a OL indicating
the whole plot.

pool.along character, one of "none", "x" or "y", indicating which quadrants to pool to cal-
culate counts by pair of quadrants.

xintercept, yintercept

numeric the coordinates of the origin of the quadrants.

label.x, label.y

numeric Coordinates (in npc units) to be used for absolute positioning of the
labels.

na.rm a logical indicating whether NA values should be stripped before the computa-
tion proceeds.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them. This
is most useful for helper functions that define both data and aesthetics and should
not inherit behaviour from the default plot specification, e.g. borders.

... other arguments passed on to layer. This can include aesthetics whose values
you want to set, not map. See layer for more details.

72 stat_quadrant_counts

Details

This stat can be used to automatically count observations in each of the four quadrants of a plot,
and by default add these counts as text labels. Values exactly equal to zero are counted as belonging
to the positve quadrant. An argument value of zero, passed to formal parameter quadrants is
interpreted as a request for the count of all observations in each plot panel.

The default origin of quadrants is at xintercept = 0, yintercept = 0. Alsoby default, counts are
computed for all quadrants within the x and y scale limits, but ignoring any marginal scale
expansion. The default positions of the labels is in the farthest corner or edge of each quadrant
using npc coordinates. Consequently, when using facets even with free limits for x and y axes,
the location of the labels is consistent across panels. This is achieved by use of geom = "text_npc"
or geom = "label_npc". To pass the positions in native data units, pass geom = "text" explicitly
as argument.

Computed variables

Data frame with one to four rows, one for each quadrant for which counts are counted in data.

quadrant integer, one of 0:4

x x value of label position in data units

y y value of label position in data units

npcx x value of label position in npc units

npcy y value of label position in npc units

count number of observations

.

As shown in one example below geom_debug can be used to print the computed values returned
by any statistic. The output shown includes also values mapped to aesthetics, like label in the
example.

See Also

Other Functions for quadrant and volcano plots: FC_format(), geom_quadrant_lines(), outcome2factor(),
scale_colour_outcome(), scale_shape_outcome(), scale_y_Pvalue(), xy_outcomes2factor()

Examples

library(gginnards)
generate artificial data
set.seed(4321)
x <- 1:100
y <- rnorm(length(x), mean = 10)
my.data <- data.frame(x, y)

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_quadrant_counts()

We use geom_debug() to see the computed values

symmetric_limits 73

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_quadrant_counts(geom = "debug")

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_quadrant_counts(aes(label = sprintf("%i observations", stat(count)))) +
expand_limits(y = 12.7)

ggplot(my.data, aes(x, y)) +
geom_quadrant_lines(colour = "blue", xintercept = 50, yintercept = 10) +
stat_quadrant_counts(colour = "blue", xintercept = 50, yintercept = 10) +
geom_point() +
scale_y_continuous(expand = expansion(mult = 0.15, add = 0))

ggplot(my.data, aes(x, y)) +
geom_quadrant_lines(colour = "blue",

pool.along = "x", yintercept = 10) +
stat_quadrant_counts(colour = "blue", label.x = "right",

pool.along = "x", yintercept = 10) +
geom_point() +
expand_limits(y = c(7, 13))

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_quadrant_counts(quadrants = 0, label.x = "left", label.y = "bottom")

ggplot(my.data, aes(x, y)) +
geom_point() +
stat_quadrant_counts(geom = "text") # use "tex" instead

symmetric_limits Expand limits to be symetric

Description

A simple function to expand scale limits to be symetric around zero. Can be passed as argument to
parameter limits of continuous scales from packages ’ggplot2’ or ’scales’.

Usage

symmetric_limits(x)

Arguments

x numeric The automatic limits

Value

A numeric vector of length two with the new limits.

74 try_data_frame

Examples

symmetric_limits(c(-1, 1.8))

try_data_frame Convert an R object into a tibble

Description

This functions tries to convert any R object into a data.frame object. If x is already a data.frame,
it is returned as is. If it is a list or a vector it is converted by means of as.data.frame(). If of
any other type, a conversion into an object of class xts is attempted by means of try.xts() and
if successful the xts object is converted into a data frame with a variable time containing times as
POSIXct and the remaining data columns with the time series data. In this conversion row names
are stripped.

Usage

try_data_frame(
x,
time.resolution = "month",
as.numeric = FALSE,
col.names = NULL

)

try_tibble(x, time.resolution = "month", as.numeric = FALSE, col.names = NULL)

Arguments

x An R object
time.resolution

character The time unit to which the returned time values will be rounded.

as.numeric logical If TRUE convert time to numeric, expressed as fractional calendar years.

col.names character vector

Value

A tibble::tibble object, derived from data.frame.

Warning!

The time zone was set to "UTC" by try.xts() in the test cases I used. Setting TZ to "UTC" can
cause some trouble as several frequently used functions have as default the local or system TZ and
will apply a conversion before printing or plotting time data, which in addition is affected by sum-
mer/winter time transitions. This should be taken into account as even for yearly data when conver-
sion is to POSIXct a day (1st of January) will be set, but then shifted some hours if printed on a TZ

ttheme_gtdefault 75

different from "UTC". I recommend reading the documentation of package lubridate-package
where the irregularities of time data and the difficulties they cause are very well described. In many
cases when working with time series with yearly observations it is best to work with numeric values
for years.

Note

This function can be used to easily convert time series data into a format that can be easily plot-
ted with package ggplot2. try_tibble is another name for try_data_frame which tracks the
separation and re-naming of data_frame into tibble::tibble in the imported packages.

Examples

library(xts)
class(lynx)
try_data_frame(lynx)
try_data_frame(lynx, "year")
class(austres)
try_data_frame(austres)
try_data_frame(austres, "quarter")
class(cars)
try_data_frame(cars)

ttheme_gtdefault Table themes

Description

Additional theme constructors for use with geom_table.

Usage

ttheme_gtdefault(
base_size = 10,
base_colour = "black",
base_family = "",
parse = FALSE,
padding = unit(c(0.8, 0.6), "char"),
...

)

ttheme_gtminimal(
base_size = 10,
base_colour = "black",
base_family = "",
parse = FALSE,
padding = unit(c(0.5, 0.4), "char"),

76 ttheme_gtdefault

...
)

ttheme_gtbw(
base_size = 10,
base_colour = "black",
base_family = "",
parse = FALSE,
padding = unit(c(0.8, 0.6), "char"),
...

)

ttheme_gtplain(
base_size = 10,
base_colour = "black",
base_family = "",
parse = FALSE,
padding = unit(c(0.8, 0.6), "char"),
...

)

ttheme_gtdark(
base_size = 10,
base_colour = "grey90",
base_family = "",
parse = FALSE,
padding = unit(c(0.8, 0.6), "char"),
...

)

ttheme_gtlight(
base_size = 10,
base_colour = "grey10",
base_family = "",
parse = FALSE,
padding = unit(c(0.8, 0.6), "char"),
...

)

ttheme_gtsimple(
base_size = 10,
base_colour = "grey10",
base_family = "",
parse = FALSE,
padding = unit(c(0.5, 0.4), "char"),
...

)

ttheme_gtdefault 77

ttheme_gtstripes(
base_size = 10,
base_colour = "grey10",
base_family = "",
parse = FALSE,
padding = unit(c(0.8, 0.6), "char"),
...

)

Arguments

base_size numeric, default font size.

base_colour default font colour.

base_family default font family.

parse logical, default behaviour for parsing text as plotmath.

padding length-2 unit vector specifying the horizontal and vertical padding of text within
each cell.

... further arguments to control the gtable.

Details

Depending on the theme, the base_colour, which is mapped to the colour aesthetic if present, is
applied to only the text elements, or to the text elements and rules. The difference is exemplified
below.

Value

A list object that can be used as ttheme in the construction of tables with functions from package
’gridExtra’.

Note

These theme constructors are wrappers on gridExtra::ttheme_default() and gridExtra::ttheme_minimal().
They can also be used with grid.table if desired.

See Also

Other geometries for adding insets to ggplots: geom_grob(), geom_plot(), geom_table()

Examples

library(dplyr)
library(tibble)

mtcars %>%
group_by(cyl) %>%
summarize(wt = mean(wt), mpg = mean(mpg)) %>%
ungroup() %>%
mutate(wt = sprintf("%.2f", wt),

78 ttheme_gtdefault

mpg = sprintf("%.1f", mpg)) -> tb

df <- tibble(x = 5.45, y = 34, tb = list(tb))

Same as the default theme constructor
ggplot(mtcars, aes(wt, mpg, colour = factor(cyl))) +

geom_point() +
geom_table(data = df, aes(x = x, y = y, label = tb),

table.theme = ttheme_gtdefault) +
theme_classic()

Minimal theme constructor
ggplot(mtcars, aes(wt, mpg, colour = factor(cyl))) +

geom_point() +
geom_table(data = df, aes(x = x, y = y, label = tb),

table.theme = ttheme_gtminimal) +
theme_classic()

A theme with white background
ggplot(mtcars, aes(wt, mpg, colour = factor(cyl))) +

geom_point() +
geom_table(data = df, aes(x = x, y = y, label = tb),

table.theme = ttheme_gtbw) +
theme_bw()

Default colour of theme superceded by aesthetic constant
ggplot(mtcars, aes(wt, mpg, colour = factor(cyl))) +

geom_point() +
geom_table(data = df, aes(x = x, y = y, label = tb),

table.theme = ttheme_gtbw, colour = "darkblue") +
theme_bw()

A theme with dark background
ggplot(mtcars, aes(wt, mpg, colour = factor(cyl))) +

geom_point() +
geom_table(data = df, aes(x = x, y = y, label = tb),

table.theme = ttheme_gtdark) +
theme_dark()

Default colour of theme superceded by aesthetic constant
ggplot(mtcars, aes(wt, mpg, colour = factor(cyl))) +

geom_point() +
geom_table(data = df, aes(x = x, y = y, label = tb),

table.theme = ttheme_gtdark, colour = "yellow") +
theme_dark()

A theme with light background
ggplot(mtcars, aes(wt, mpg, colour = factor(cyl))) +

geom_point() +
geom_table(data = df, aes(x = x, y = y, label = tb),

table.theme = ttheme_gtlight)

Default colour of theme superceded by aesthetic constant

ttheme_set 79

ggplot(mtcars, aes(wt, mpg, colour = factor(cyl))) +
geom_point() +
geom_table(data = df, aes(x = x, y = y, label = tb),

table.theme = ttheme_gtlight, colour = "darkred")

Default colour of theme superceded by aesthetic constant
ggplot(mtcars, aes(wt, mpg, colour = factor(cyl))) +

geom_point() +
geom_table(data = df, aes(x = x, y = y, label = tb),

table.theme = ttheme_gtsimple)

Default colour of theme superceded by aesthetic constant
ggplot(mtcars, aes(wt, mpg, colour = factor(cyl))) +

geom_point() +
geom_table(data = df, aes(x = x, y = y, label = tb),

table.theme = ttheme_gtstripes) +
theme_dark()

ttheme_set Set default table theme

Description

Set R option to the theme to use as current default. This function is implemented differently but is
used in the same way as ggplot2::theme_set() but affects the default table-theme instead of the
plot theme.

Usage

ttheme_set(table.theme = NULL)

Arguments

table.theme NULL, list or function A gridExtra ttheme defintion, or a constructor for a
ttheme or NULL for default.

Value

A named list with the previous value of the option.

Note

The ttheme is set when a plot object is constructed, and consequently the option setting does not
affect rendering of ready built plot objects.

80 volcano_example.df

Examples

library(dplyr)
library(tibble)

mtcars %>%
group_by(cyl) %>%
summarize(wt = mean(wt), mpg = mean(mpg)) %>%
ungroup() %>%
mutate(wt = sprintf("%.2f", wt),

mpg = sprintf("%.1f", mpg)) -> tb

df <- tibble(x = 5.45, y = 34, tb = list(tb))

Same as the default theme constructor
ggplot(mtcars, aes(wt, mpg, colour = factor(cyl))) +

geom_point() +
geom_table(data = df, aes(x = x, y = y, label = tb))

set a new default
old_ttheme <- ttheme_set(ttheme_gtstripes)

ggplot(mtcars, aes(wt, mpg, colour = factor(cyl))) +
geom_point() +
geom_table(data = df, aes(x = x, y = y, label = tb))

restore previous setting
ttheme_set(old_ttheme)

volcano_example.df Example gene expression data

Description

A dataset containing reshaped and simplified output from an analysis of data from RNAseq done
with package edgeR. Original data from gene expression in the plant species Arabidopsis thaliana.

Usage

volcano_example.df

Format

A data.frame object with 1218 rows and 5 variables

See Also

Other Transcriptomics data examples: quadrant_example.df

xy_outcomes2factor 81

Examples

colnames(volcano_example.df)
head(volcano_example.df)

xy_outcomes2factor Convert two numeric ternary outcomes into a factor

Description

Convert two numeric ternary outcomes into a factor

Usage

xy_outcomes2factor(x, y)

xy_thresholds2factor(x, y, x_threshold = 0, y_threshold = 0)

Arguments

x, y numeric vectors of -1, 0, and +1 values, indicating down regulation, uncertain
response or up-regulation, or numeric vectors that can be converted into such
values using a pair of thresholds.

x_threshold, y_threshold

numeric vector Ranges enclosing the values to be considered uncertain for each
of the two vectors..

Details

This function converts the numerically encoded values into a factor with the four levels "xy", "x",
"y" and "none". The factor created can be used for faceting or can be mapped to aesthetics.

Note

This is an utility function that only saves some typing. The same result can be achieved by a direct
call to factor. This function aims at making it easier to draw quadrant plots with facets based on
the combined outcomes.

See Also

Other Functions for quadrant and volcano plots: FC_format(), geom_quadrant_lines(), outcome2factor(),
scale_colour_outcome(), scale_shape_outcome(), scale_y_Pvalue(), stat_quadrant_counts()

Other scales for omics data: outcome2factor(), scale_shape_outcome(), scale_x_logFC()

82 xy_outcomes2factor

Examples

xy_outcomes2factor(c(-1, 0, 0, 1, -1), c(0, 1, 0, 1, -1))
xy_thresholds2factor(c(-1, 0, 0, 1, -1), c(0, 1, 0, 1, -1))
xy_thresholds2factor(c(-1, 0, 0, 0.1, -5), c(0, 2, 0, 1, -1))

Index

∗Topic datasets
quadrant_example.df, 27
volcano_example.df, 80

aes, 6, 8, 11, 13, 15, 19, 21, 23, 37, 40, 42, 45,
47, 50, 53, 55, 58, 61, 63, 66, 71

aes_, 6, 8, 11, 13, 15, 19, 21, 23, 40, 42, 45,
47, 50, 53, 55, 58, 61, 63, 66, 71

annotation_custom, 7, 12, 17
append_layers (Moved), 25

borders, 6, 8, 11, 13, 16, 20, 22, 23, 38, 40,
43, 45, 48, 50, 53, 55, 58, 61, 64, 66,
71

bottom_layer (Moved), 25
broom, 46, 51, 56, 59

delete_layers, 26
delete_layers (Moved), 25

extract_layers (Moved), 25

factor, 26, 81
FC_format, 14, 26, 29, 30, 36, 72, 81
find_peaks, 64

geom_abline, 14
geom_debug, 26, 46, 48, 51, 56, 59, 67, 72
geom_debug (Moved), 25
geom_grob, 5, 12, 17, 77
geom_grob_npc (geom_grob), 5
geom_label, 5, 10, 15
geom_label_npc, 7
geom_label_repel, 64
geom_null, 26
geom_null (Moved), 25
geom_plot, 7, 10, 17, 77
geom_plot_npc (geom_plot), 10
geom_quadrant_lines, 12, 26, 29, 30, 36, 72,

81
geom_smooth, 37

geom_table, 7, 12, 15, 56, 62, 75, 77
geom_table_npc (geom_table), 15
geom_text, 9
geom_text_npc (geom_label_npc), 7
geom_text_repel, 64
geom_vhlines (geom_quadrant_lines), 12
geom_x_margin_arrow, 18, 22, 23
geom_x_margin_grob, 20, 20, 23
geom_x_margin_point, 20, 22, 22
geom_y_margin_arrow

(geom_x_margin_arrow), 18
geom_y_margin_grob

(geom_x_margin_grob), 20
geom_y_margin_point

(geom_x_margin_point), 22
ggplot, 24, 24
ggpmisc (ggpmisc-package), 3
ggpmisc-package, 3
ggrepel, 64
grid.table, 77

kde2d, 41, 43

layer, 6, 8, 11, 14, 16, 19, 21, 23, 38, 40, 43,
45, 48, 50, 53, 55, 58, 61, 64, 66, 71

move_layers (Moved), 25
Moved, 25

num_layers (Moved), 25

outcome2factor, 14, 26, 29, 30, 33, 36, 72, 81

quadrant_example.df, 27, 80

scale_color_outcome
(scale_colour_outcome), 27

scale_colour_outcome, 14, 26, 27, 30, 36,
72, 81

scale_continuous, 33, 36
scale_continuous_npc, 29

83

84 INDEX

scale_fill_outcome, 26
scale_fill_outcome

(scale_colour_outcome), 27
scale_manual, 29, 30
scale_npcx_continuous

(scale_continuous_npc), 29
scale_npcy_continuous

(scale_continuous_npc), 29
scale_shape_outcome, 14, 26, 29, 30, 33, 36,

72, 81
scale_x_FDR (scale_y_Pvalue), 34
scale_x_logFC, 26, 30, 31, 81
scale_x_Pvalue (scale_y_Pvalue), 34
scale_y_FDR (scale_y_Pvalue), 34
scale_y_logFC (scale_x_logFC), 31
scale_y_Pvalue, 14, 26, 29, 30, 34, 72, 81
select, 62
shift_layers (Moved), 25
slice, 62
sprintf, 64
stat_apply_group, 36
stat_apply_panel (stat_apply_group), 36
stat_debug_group, 26
stat_debug_group (Moved), 25
stat_debug_panel, 26
stat_debug_panel (Moved), 25
stat_dens2d_filter, 39, 43
stat_dens2d_filter_g

(stat_dens2d_filter), 39
stat_dens2d_labels, 41, 42
stat_fit_augment, 44, 50, 51, 56, 59
stat_fit_deviations, 47, 53, 68
stat_fit_glance, 45, 46, 49, 56, 59, 68
stat_fit_residuals, 49, 52, 68
stat_fit_tb, 46, 51, 54, 57, 59
stat_fit_tidy, 45, 46, 50, 51, 56, 57, 68
stat_fmt_tb, 60
stat_peaks, 62
stat_poly_eq, 45, 49, 50, 53, 59, 65
stat_quadrant_counts, 14, 26, 29, 30, 36,

70, 81
stat_valleys (stat_peaks), 62
strftime, 64
strptime, 64
symmetric_limits, 73

tableGrob, 17
threshold2factor (outcome2factor), 26
top_layer (Moved), 25

try_data_frame, 74
try_tibble (try_data_frame), 74
ttheme_gtbw (ttheme_gtdefault), 75
ttheme_gtdark (ttheme_gtdefault), 75
ttheme_gtdefault, 7, 12, 17, 56, 62, 75
ttheme_gtlight (ttheme_gtdefault), 75
ttheme_gtminimal (ttheme_gtdefault), 75
ttheme_gtplain (ttheme_gtdefault), 75
ttheme_gtsimple (ttheme_gtdefault), 75
ttheme_gtstripes (ttheme_gtdefault), 75
ttheme_set, 79

volcano_example.df, 27, 80

which_layers (Moved), 25

xy_outcomes2factor, 14, 26, 29, 30, 33, 36,
72, 81

xy_thresholds2factor
(xy_outcomes2factor), 81

	ggpmisc-package
	geom_grob
	geom_label_npc
	geom_plot
	geom_quadrant_lines
	geom_table
	geom_x_margin_arrow
	geom_x_margin_grob
	geom_x_margin_point
	ggplot
	Moved
	outcome2factor
	quadrant_example.df
	scale_colour_outcome
	scale_continuous_npc
	scale_shape_outcome
	scale_x_logFC
	scale_y_Pvalue
	stat_apply_group
	stat_dens2d_filter
	stat_dens2d_labels
	stat_fit_augment
	stat_fit_deviations
	stat_fit_glance
	stat_fit_residuals
	stat_fit_tb
	stat_fit_tidy
	stat_fmt_tb
	stat_peaks
	stat_poly_eq
	stat_quadrant_counts
	symmetric_limits
	try_data_frame
	ttheme_gtdefault
	ttheme_set
	volcano_example.df
	xy_outcomes2factor
	Index

