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Abstract

ggmcmc is an R package for analyzing Markov chain Monte Carlo simulations from
Bayesian inference. By using a well known example of hierarchical/multilevel modeling,
the article reviews the potential uses and options of the package, ranging from classical
convergence tests to caterpillar plots or posterior predictive checks. This R vignette is
based on the article published at the Journal of Statistical Software (Fernández-i-Marín
2016).
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1. Introduction

This article presents ggmcmc, an R package with graphical tools for analyzing Markov chain
Monte Carlo (MCMC) simulations from Bayesian inference.

The article is organized as follows: Section 2 presents the motives for developing the package
and the basic logic of its design and implementation. In order to have some data to plot, a
dataset and sampled values from posterior distributions of a varying intercepts/varying slopes
model are presented in Section 3. The ggs() function used to prepare data for ggmcmc is
presented in Section 4. The ggmcmc() wrapper that writes all plots into a PDF (Portable
Document Format) or HTML (HyperText Markup Language) file is reviewed in Section 5.
Section 6 explains how to use the individual functions and what to expect from them in
terms of convergence. Brief explanations of the potential uses of the family argument for
selecting groups of parameters and the par_label argument for changing parameter names
are performed in Section 7. The capacities of the caterpillar plots facilities in ggmcmc are
reviewed in Section 8. Section 9 presents functions to perform model check and posterior
predictive comparisons. Section 10 shows several examples of the potential extensions of the
package, either alone or in combination with other packages and Section 11 concludes.

ggmcmc is available from the Comprehensive R Archive Network at https://CRAN.R-project.

org/package=ggmcmc while the latest version and the discussions about its future can be fol-
lowed at http://github.com/xfim/ggmcmc.

2. Why ggmcmc?

ggplot2, based on the grammar of graphics (Wilkinson 2005), empowers R users by allow-
ing them to flexibly create graphics (Wickham 2009). Based on this idea, ggmcmc brings

https://CRAN.R-project.org/package=ggmcmc
https://CRAN.R-project.org/package=ggmcmc
http://github.com/xfim/ggmcmc
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the design and implementation of ggplot2 to MCMC diagnostics, allowing users of Bayesian
inference to have better and more flexible visual diagnostic tools.

Markov chain Monte Carlo methods are used to generate samples from a probability dis-
tribution. They are widely used nowadays in many aspects of optimization and numerical
integration, and are specially suitable for being used in sampling from posterior distributions
in Bayesian inference. A key issue in MCMC is whether the chain has converged and is actu-
ally sampling from the target distribution. There is not a single infallible test of convergence,
but many formal and informal ways to assess non-convergence.

There are currently two general-purpose packages for convergence analysis and diagnostics
in R: coda (Plummer, Best, Cowles, and Vines 2006) and boa (Smith 2007). boa was last
updated in 2008 and is less complex than coda, which is still maintained and considered to
be the reference package. coda relies on the class mcmc to produce its results, which is the de
facto standard class for MCMC objects in R.

ggmcmc combines elements of those general-purpose MCMC analysis packages with ggplot2.
ggplot2 is based on the idea that the input of any graphic is a data frame mapped to aesthetic
attributes (color, size) of geometric objects (points, lines). Therefore, in order to create a
graphic the three components must be supplied: a data frame, at least one aesthetic attribute
and at least one geometric object. The flexibility comes from the fact that it is very easy to
extend basic graphics by including more aesthetic elements and geometric objects, and even
faceting the figure to generate the same plot for different subsets of the dataset (Wickham
2009, p. 3).

The implementation of ggmcmc follows this scheme and is based on a function (ggs()) that
transforms the original input (time series of sampled values for different parameters and
chains) into a data frame that is used for all graphing functions. The plotting functions
do any necessary transformation to the samples and return a ggplot object, which can be
plotted directly into the working device or simply stored as an object, as any other ggplot

object. Getting ggplot objects as the output of the plotting functions has a positive side
effect: while the defaults in ggmcmc have been carefully chosen, the user later can tweak any
graph by adding other geometric figures, layers of data, contextual information (titles, axes)
or applying themes.

To sum up, the implementation is driven by the following steps:

1. Convert any input into a data frame using ggs(), producing a tidy object (Wickham
2014).

2. Make all plotting functions (ggs_*()) work with the ggs object and produce a ggplot

object.

3. Let the user post-process the resulting default ggplot object.

Compared to coda, ggmcmc does not use a specific class for its objects, but instead relies on
a general-purpose object, the data frame, as the basis for all the operations. This approach
also allows ggmcmc to work well with other tools designed to work with data frames, such
as dplyr and tidyr (Wickham 2014) – which, in fact, are ggmcmc dependencies. Another
advantage of ggmcmc is that it is relatively easy to convert any output of a sampling software
into a data frame, which gives ggmcmc a lot of flexibility to be able to import samples from
different software.
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In addition to the need of good tools for convergence check, which is already covered by other
packages in R, MCMC is usually used in conjunction with hierarchical (multilevel) models
in Bayesian inference, and there is not a versatile tool to process such samples in an easy
and flexible way. ggmcmc aims also to provide functions to inspect batches of parameters in
hierarchical models, to do posterior predictive checks and other model fit figures.

3. Get samples from Gelman & Hill radon example

In order to show show the potential of ggmcmc with real data and a well-known dataset, this
section briefly presents Gelman and Hill (2006)’s example of radon and floor measurements
for 919 houses from 85 counties in Minnesota. The model is a varying intercepts and slopes
specification introduced in Section 13.1 (pages 280–283) and presented in BUGS/JAGS nota-
tion in Section 17.1 (page 401). Equation 1 presents the equation with the model definition.

yi ∼ N (ŷi, σ)

ŷi = αj + Xβj

αj ∼ N (θα, σα)

βj ∼ N (θβ, σβ)

θα ∼ N (0, 1000)

θβ ∼ N (0, 1000)

σα ∼ U(0, 100)

σβ ∼ U(0, 100)

(1)

The radon measurement (yi) is explained by varying intercepts (αj) and varying slopes (βj)
associated with a single covariate (soil uranium).

ggmcmc contains a list (radon) with several objects from this model sampled using JAGS:
s.radon is an mcmc object containing samples of 2 chains of length 1000 thinned by 50
(resulting in only 20 samples)) for all 175 parameters (batches of α and β, and θα and also
θβ, σα, σβ and σy). s.radon.short contains only 4 parameters for pedagogical purposes:
α[1 : 2] and β[1 : 2], but the chains have not been thinned. This is the object that will be
employed in the first part of the article.

R> library("ggmcmc")

R> data("radon")

R> s.radon.short <- radon$s.radon.short
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4. Importing MCMC samples into ggmcmc using ggs()

The s.radon.short object is right now a list of arrays of an mcmc class. Each element in
the list is a chain, and each matrix is defined by the number of iterations (rows) and the
number of parameters (columns). In order to work with ggplot2 and to follow the rules of
the grammar of graphics, data must be converted into a data frame. This is achieved with
ggs():

R> S <- ggs(s.radon.short)

ggs() produces a data frame object with four variables, namely:

• Iteration: Number of iteration.

• Chain: Number of the chain.

• Parameter: Name of the parameter.

• value: value sampled.

More specifically, ggs() produces a tbl_df, which is a data frame wrapper in dplyr that
improves printing data frames. In this case, calling the object produces a compact view of its
contents.

R> S

## # A tibble: 16,000 x 4

## Iteration Chain Parameter value

## <int> <int> <fct> <dbl>

## 1 1 1 alpha[1] 1.97

## 2 2 1 alpha[1] 1.06

## 3 3 1 alpha[1] 1.17

## 4 4 1 alpha[1] 1.26

## 5 5 1 alpha[1] 1.04

## 6 6 1 alpha[1] 1.71

## 7 7 1 alpha[1] 1.09

## 8 8 1 alpha[1] 0.804

## 9 9 1 alpha[1] 0.823

## 10 10 1 alpha[1] 1.13

## # ... with 15,990 more rows

A ggs object is generally around twice the size of a mcmc object (list of matrices), because
the iteration number, the number of the chain and the name of the parameter are stored in
the resulting object in a less compact way than in mcmc. But this duplication of information
gives much more flexibility to the package, in the sense that the transformation is done only
once and then the resulting object is suitable and ready for the rest of the plotting functions.
The resulting object is tidy (Wickham 2014).
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In addition to producing a data frame, ggs() also stores some attributes in the data frame,
which will be later used by the rest of the functions. This speeds up the package performing
expensive operations once and caching the results.

R> str(S)

## tibble [16,000 x 4] (S3: tbl_df/tbl/data.frame)

## $ Iteration: int [1:16000] 1 2 3 4 5 6 7 8 9 10 ...

## $ Chain : int [1:16000] 1 1 1 1 1 1 1 1 1 1 ...

## $ Parameter: Factor w/ 4 levels "alpha[1]","alpha[2]",..: 1 1 1 1 1..

## $ value : num [1:16000] 1.97 1.06 1.17 1.26 1.04 ...

## - attr(*, "nChains")= int 2

## - attr(*, "nParameters")= int 4

## - attr(*, "nIterations")= int 2000

## - attr(*, "nBurnin")= num 12000

## - attr(*, "nThin")= num 10

## - attr(*, "description")= chr "s.radon.short"

In addition to JAGS output mentioned above, ggs() can incorporate MCMC outputs from
several sources:

• JAGS which produces objects of class mcmc.list (Plummer 2013).

• MCMCpack which produces objects of class mcmc (Martin, Quinn, and Park 2011).

• rstan, rstanarm and brms which produce, respectively, objects of classes stanfit (Stan

Development Team 2013), stanreg (Gabry and Goodrich 2016) and brmsfit (Buerkner
2016).

• Stan running alone from the command which produces text files in comma-separated
value (CSV) format (Stan Development Team 2013).

5. Using ggmcmc()

ggmcmc() is a wrapper to several plotting functions that allows to create very easily a report
of the diagnostics in a single PDF or HTML file. This output can then be used to inspect
the results more comfortably than using the plots that appear in the screen.

R> ggmcmc(S)

By default, ggmcmc() produces a file called ggmcmc-output.pdf with 5 parameters in each
page, although those default values can be easily changed.

R> ggmcmc(S, file = "model_simple-diag.pdf", param_page = 2)
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It is also possible to specify NULL as a filename, and this allows the user to control the device.
It is possible to combine other plots by first opening a PDF device (pdf(file = "new.pdf")),
sending other plots, running and the ggmcmc(S, file = NULL) call, and finally closing the
device (dev.off()).

It is also possible to ask ggmcmc() to dump only one or some of the plots, using their names
as in the functions, without ggs_. This option can also be used to dump only one type of
plots and get the advantage of having multiple pages in the output.

R> ggmcmc(S, plot = c("density", "running", "caterpillar"))

The usual procedure with coda nowadays is that once the model has been running, the user
interactively does some convergence tests, mostly concentrating in the traceplots and density
plots in a sequential way. The idea of having a single file (PDF or HTML) with all the graphics
is that, in addition to running the MCMC simulations and waiting for the result, the user can
also run ggmcmc to produce all the convergence plots for review at a later stage, going back
and forward in the pages, comparing the behavior of traceplots with the autocorrelations or
crosscorrelations. All the material is in a single file and there is no need to go back and forth
interactively.

6. Using individual functions

We can also use the functions interactively. The parameter to be plotted is the data frame
that results from the application of the ggs() function to the original source object that JAGS
or other software produces.

6.1. Histograms, density plots and comparison of windows of the chain

Histograms with the posterior distributions can be obtained with ggs_histogram() (Figure 1,
left). The figure combines the values of all the chains. Although it is not specifically a
convergence plot, it is useful for providing a quick look on the distribution of the values and
the shape of the posterior.

R> ggs_histogram(S)

Similar to the histogram, the density plot (Figure 1, middle) also allows for a quick inspection
of the distribution of the posterior. However, ggs_density() produces overlapped density
plots with different colors by chain, which allows comparing the target distribution by chains
and whether each chain has converged in a similar space.

R> ggs_density(S)

Based on the idea of overlapping densities, ggs_compare_partial produces overlapped den-
sity plots that compare the last part of the chain (by default, the last 10% of the values, in
green) with the whole chain (black) (Figure 1, right). Ideally, the initial and final parts of the
chain have to be sampling in the same target distribution, so the overlapped densities should
be similar. Notice that the overlapping densities belong to the same chain, so each column of
the plot refers to one chain.
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R> ggs_compare_partial(S)

6.2. Traceplots, running means and autocorrelations

A classical traceplot with the time series of the chain is obtained by ggs_traceplot() (Fig-
ure 2, left). A traceplot is an essential plot for assessing convergence and diagnosing chain
problems. It shows the time series of the sampling process and the expected outcome is to
produce “white noise”. In other words, one of the signals of lack of convergence is to find
tendencies in the time series, so in this case the objective is to get a traceplot that looks
purely random. Besides being a good tool to assess within-chain convergence, the fact that
different colors are employed for each of the chains facilitates the comparison between chains.

R> ggs_traceplot(S)

In addition to the traceplots, a plot with the running mean of the chains is very useful to find
within-chain convergence issues. A time series of the running mean of the chain (Figure 2,
middle) is obtained by ggs_running(), and allows to check whether the chain is slowly or
quickly approaching its target distribution. A horizontal line with the mean of the chain
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Figure 1: left) Histogram with the distribution of the posterior values combining all chains
by parameter; middle) Density plots.; right) Density plots comparing the whole chain (black)
with only the last part (green).
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Figure 2: left) Traceplots with the time series of the chains; middle) Running means; right)
Autocorrelation plots.

facilitates the comparison. Using the same scale in the vertical axis also allows comparing
convergence between chains. The expected output is a line that quickly approaches the overall
mean, and all chains should have the same mean (easily assessed through the comparison of
the three horizontal lines).

R> ggs_running(S)

A more formal assessment of the quality of the chain can be obtained by inspecting the
autocorrelation plots of the chains (Figure 2, right) using ggs_autocorrelation()). The
expected outcome is a bar at one in the first lag, but no autocorrelation beyond the first
lag. While autocorrelation is not per se a signal of lack of convergence, it may indicate
some misbehavior in several chains or parameters, or indicate that a chain needs more time
to converge. The easiest way to solve issues with autocorrelation is by thinning the chain.
The thinning interval can be very easily extracted from the autocorrelation plot. By default,
the autocorrelation axis is bounded between −1 and 1, so all subplots are comparable. The
argument nLags allows to specify the number of lags to plot, which defaults to 50.

R> ggs_autocorrelation(S)

6.3. Crosscorrelation plot

In order to diagnose potential problems of convergence due to highly correlated parameters,
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Figure 3: Tile plots with the crosscorrelations of the parameters in a relative scale (left) or
absolute scale (right).

ggs_crosscorrelation() produces a tile plot (Figure 3, left) with the correlations between
all pairs of parameters.

R> ggs_crosscorrelation(S)

The argument absolute_scale allows to specify whether the scale should be between −1 and
+1 or the range of the parameter. The default is to use an absolute scale, which shows the
crosscorrelation problems in overall perspective. But with cases where there is not a severe
problem of crosscorrelation between parameters it may help to use relative scales in order to
see the most problematic parameters.

R> ggs_crosscorrelation(S, absolute_scale = FALSE)

6.4. Formal diagnostics: Potential scale reduction factor (R̂) and Geweke

Amongst the formal diagnostics of chain convergence, ggmcmc provides the Potential scale
reduction factor and the Geweke diagnostic.

The Potential scale reduction factor (R̂, Gelman, Carlin, Stern, and Rubin 2003, p. 296–297)
relies on different chains for the same parameter, by comparing the between-chain variation
with the within-chain variation. It is expected to be close to 1. A dotplot with its values
(Figure 4, left) is produced with the ggs_Rhat() function.

R> ggs_Rhat(S)

By default, the function scales the axis so that there is an upper limit at 1.5 (or higher, if
higher values are present), to contextualize the results. The argument scaling allows to
change or eliminate this default (by setting it to NA).

By contrast the Geweke z-score diagnostic (Geweke 1992) focuses on the comparison of the
first part of the chain with its last part. It is in fact a frequentist comparison of means, and
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Figure 4: left) Dotplot with the Potential Scale Reduction Factor; right) Dotplot with the
Geweke z-scores. For this model there is no evidence of non-convergence, as R̂ are very close
to 1 and z-scores are between -2 and 2.

the expected outcome is to have 95 percent of the values between −2 and 2 (Figure 4, right)
It can be by obtained with the ggs_geweke() function. By default, the area between −2 and
2 is shadowed for a quicker inspection of problematic chains.

R> ggs_geweke(S)

The overall idea is to provide multiple tools, so that a combination of them gives a precise
indication of lack of convergence and, more importantly, provides hints on how to fix it.

7. Beyond basic options

In order to illustrate more advanced features of ggmcmc, the object with the full posterior
densities of α and β will be used, instead of the short version used so far.

R> S.full <- ggs(radon$s.radon)

7.1. Select a family of parameters

Suppose that the object with the results of a model contains several families of parameters (say,
beta, theta, sigma) and that only one of the families you want to use the previous functions
but only with one of the families. The argument family can be used to tell ggmcmc to use
only certain parameters. Figure 5 (left) shows a density plot similar to Figure 1 (middle),
but with only the parameters that belong to the sigma family:

R> ggs_density(S.full, family = "sigma")

The character string provided to family can be any R regular expression. In cases of having
multidimensional arrays of parameters (say, theta[1,1] or theta[10, 5]), the elements in
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Figure 5: left) Density plot with a restricted number of parameters controlled by the ar-
gument family; right) Density plot with the parameters having different labels using the
argument par_labels. Notice that the first two parameters in each column show signals of
non-convergence.

the 4th row can be plotted using family = "theta\\[4,.\\]". Regular expressions are a
very powerful set of tools to manage the names of the parameters. Covering the full range
of options provided by regular expressions is out of the scope of this article. For most of the
cases in the context that ggmcmc is used the only issues to remind are the double-backslash
in front of the the square bracket that indicates the dimension of a family of parameters, and
the use of the hat (^) to distinguish between ^theta and sigma.theta.

7.2. Change parameter labels

By default, ggs objects use the parameter names provided by the MCMC software. But
it is possible to change it when treating the samples with the ggs() function using the
argument par_labels. par_labels requires a data frame with at least two columns. One
named Parameter with the corresponding names of the parameters that are to be changed
and another named Label with the new parameter labels (Figure 5, right).

R> P <- data.frame(

+ Parameter = c("sigma.alpha", "sigma.beta", "sigma.y"),

+ Label = c("Intercept (sd)", "Covariate (sd)", "Outcome (sd)"))

R> ggs_density(ggs(radon$s.radon, par_labels = P, family = "sigma"))

The combination of the arguments family and par_labels gives high control over the final
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Figure 6: Caterpillar plot for the varying intercepts. Dots represent medians, and thick and
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Plain caterpillar plot with labels of the parameters, showing Clay and Lake as the counties
with highest and lowest α intercept, respectively; right) Caterpillar plot against continuous
values (uranium levels) using the argument par_labels, suggesting a tendency of higher α

intercepts with increasing uranium levels.

plots, and substantially aid interpretation. However, it must be noticed that selecting a family
of parameters can be done either when converting the output of the MCMC software using
the ggs() function, or inside the ggs_*() individual functions. But using the par_labels

argument is only done through the ggs() call.

8. Caterpillar plots

Caterpillar plots provide a sense of the distribution of the parameters, using their name as a
label. ggs_caterpillar() produces caterpillar plots of the highest posterior densities (HPD)
of the parameters produces. By default thick lines represent 90% of the HPD and thin lines
represent 95% of the HPD.

The following code creates a data set with the matches between the parameter names for
the intercepts (alpha[1]:alpha[85]) and their substantial meaning (labels for counties) and
then it passes this data frame as an argument to the ggs() function that converts the original
samples in JAGS into a proper object ready for being used by all ggs_*() functions.
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R> L.radon.intercepts <- data.frame(

+ Parameter = paste("alpha[", radon$counties$id.county, "]", sep = ""),

+ Label = radon$counties$County)

R> head(L.radon.intercepts)

## Parameter Label

## 1 alpha[1] Aitkin

## 2 alpha[2] Anoka

## 3 alpha[3] Becker

## 4 alpha[4] Beltrami

## 5 alpha[5] Benton

## 6 alpha[6] Bigstone

R> S.full <- ggs(radon$s.radon,

+ par_labels = L.radon.intercepts, family = "^alpha")

Figure 6 (left) shows ggs_caterpillar() with the previously created ggs() object containing
the varying intercepts and labeled with parameter names, and is produced by:

R> ggs_caterpillar(S.full)

ggs_caterpillar() can also be used to plot continuous variables. This feature is very useful
when plotting the varying slopes or intercepts of several groups in multilevel modeling against
a continuous feature of such groups.

Plot continuous variables by passing a data frame (X) with two columns. One column with the
Parameter name and the other with its value. Notice that when used against a continuous
variable it is more convenient to use vertical lines instead of the default horizontal lines
(Figure 6, right).

R> Z <- data.frame(

+ Parameter = paste("alpha[", radon$counties$id.county, "]", sep = ""),

+ value = radon$counties$uranium)

R> ggs_caterpillar(ggs(radon$s.radon, family = "^alpha"),

+ X = Z, horizontal = FALSE)

Another feature of caterpillar plots is the possibility to plot two different models, and be able
to easily compare between them. A list of two ggs() objects must be provided.

It is also worth mentioning that ggs_caterpillar() uses the function ci() to calculate the
credible intervals (see a concrete example in Section 10.2).

9. Posterior predictive checks and model fit

ggmcmc includes several functions to check model fit and perform posterior predictive checks.
As to version 0.6, only outcomes in uni-dimensional vectors are allowed. The outcomes can
be continuous or binary, and different functions take care of them. The main input for the
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functions is also a ggs object, but in this case it must only contain the predicted values. ŷi

are the expected values in the context of the radon example. They can also be sampled and
converted into a ggs object using the argument family.

In order to illustrate posterior predictive checks, samples from a faked dataset will be used.
ggmcmc contains samples from a linear model with an intercept and a covariate (object s),
where s.y.rep are posterior predictive samples from a dataset replicated from the original,
but without the original outcome (y).

R> data("linear")

R> S.y.rep <- ggs(s.y.rep)

R> y.observed <- y

9.1. Continuous outcomes

For continuous outcomes, ggs_ppmean() (posterior predictive means) presents a histogram
with the means of the posterior predictive values at each iteration, and a vertical line showing
the location of the sample mean. This allows comparing the sample mean with the means of
the posterior and check if there are substantial deviances (Figure 7, right).

R> ggs_ppmean(S.y.rep, outcome = y.observed)

ggs_ppsd() (posterior predictive standard deviations) is the same idea as ggs_ppmean() but
with standard deviations (Figure 7, left).

R> ggs_ppsd(S.y.rep, outcome = y.observed)

9.2. Binary outcomes

In order to illustrate the functions suitable for binary outcomes a new dataset must be sim-
ulated, and samples of parameters from a simple logistic regression model must be obtained.
ggmcmc also contains samples from such a model, in the dataset data("binary"). Again,
arrange the samples as a ggs object

R> data("binary")

R> S.binary <- ggs(s.binary, family = "mu")

The ROC (receiver operating characteristic) curve is shown in Figure 8:

R> ggs_rocplot(S.binary, outcome = y.binary)

The ggs_rocplot() is not fully Bayesian by default. This means that the predicted probabil-
ities by observation are reduced to their median values across iterations from the beginning.
Only information relative to the chain is kept. If a fully Bayesian version is desired, the
argument fully_bayesian = TRUE has to be set up. Use it with care, because it is very
demanding in terms of CPU and memory.
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Figure 7: Histograms of the posterior predictive distributions of the mean (left) and standard
deviation (right) of the replicated datasets, against the vertical lines showing the mean and
standard deviations of the data, respectively.
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Figure 8: ROC (receiver operating characteristic) curve.

The separation plot (Greenhill, Ward, and Sacks 2011) is obtained by ggs_separation().
The separation plot (Figure 9) conveys information useful to assess goodness of fit of a model
with binary outcomes (and also with ordered categories). The horizontal axis orders the
values by increasing predicted probability. The observed successes (ones) have a darker color
than observed failures (or zeros). Therefore, a perfect model would have the lighter colors in
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Figure 9: Separation plot.

the right hand side, separated from darker colors. The black horizontal line represents the
predicted probabilities of success for each of the observations, which allows to easily evaluate
whether there is a strong or a weak separation between successes and failures predicted by
the model. Lastly, a triangle on the lower side marks the expected number of total successes
(events) predicted by the model.

R> ggs_separation(S.binary, outcome = y.binary)

A minimalist version of the separation plot to be used inline ( ) is also
available with:

R> ggs_separation(S.binary, outcome = y.binary, minimal = TRUE)

10. Using ggplot2 with ggmcmc

10.1. Aesthetic variations

The combination of ggmcmc with the package ggthemes allows using pre-specified ggplot2

themes, like theme_tufte (that is based on a minimal ink principle by Tufte and Graves-
Morris 1983), theme_economist (that replicates the aesthetic appearance of The Economist
magazine), or thema_stata (that produces Stata graph schemes), amongst others.

R> library("gridExtra")

R> library("ggthemes")

R> f1 <- ggs_traceplot(ggs(s, family = "^beta\\[[1234]\\]")) +

+ theme_tufte()

R> f2 <- ggs_density(ggs(s, family = "^beta\\[[1234]\\]")) +

+ theme_solarized(light = FALSE)

R> grid.arrange(f1, f2, ncol = 2, nrow = 1)

In addition to ggthemes, ggmcmc can also work well with gridExtra, a package that allows
combining several ggplot objects in a single layout.

10.2. Beyond default plots
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Once the sampled values are stored in a tidy way in the ggs() object, it is trivial to reshape
the object in order to extend the capabilities of the package. The following example shows how
to extract the medians of the posteriors of intercepts and slopes so that a simple scatterplot
to check their correlation can be produced using plain ggplot2 functions. First, extract the
credible intervals (including the median) of the parameters that start with alpha or beta,
and using the pipe operator, keep only the variables Parameter and median.

R> ci.median <- ci(ggs(radon$s.radon, family = "^alpha|^beta")) %>%

+ dplyr::select(Parameter, median)

Then, generate a data frame that maps the parameter names with their labels and also
specifies whether the parameter is an intercept or a slope.

R> L.radon <- data.frame(

+ Parameter = c(

+ paste("alpha[", radon$counties$id.county, "]", sep = ""),

+ paste("beta[", radon$counties$id.county, "]", sep = "")),

+ Label = rep(radon$counties$County, 2),

+ Uranium = rep(radon$counties$uranium, 2),
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Figure 10: Combination of the aestheticaly-driven options that complement ggplot2: ggth-

emes and gridExtra.
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+ Location = rep(radon$counties$ns.location, 2),

+ Coefficient = gl(2, length(radon$counties$id.county),

+ labels = c("Intercept", "Slope")))

Finally, merge the medians and the parameter names, reshaping the resulting object into a
wide format.

R> radon.median <- left_join(ci.median, L.radon) %>%

+ dplyr::select(Label, Coefficient, median) %>%

+ tidyr::spread(Coefficient, median)

R> head(radon.median)

## # A tibble: 6 x 3

## Label Intercept Slope

## <fct> <dbl> <dbl>

## 1 Aitkin 1.17 -0.647

## 2 Anoka 0.928 -0.785

## 3 Becker 1.51 -0.666

## 4 Beltrami 1.51 -0.689

## 5 Benton 1.41 -0.638

## 6 Bigstone 1.50 -0.708

The resulting object can be very easily passed to standard ggplot2 functions. In the following
case (Figure 11), a scatterplot with the medians of the posteriors of intercepts and slopes is
produced. A data frame (radon.median) is provided to the main ggplot2 function (ggplot)
along with a description of the aesthetic elements (x and y axis), with the geometrical element
desired (points) added later on (+ geom_point()).
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Figure 11: Scatterplot with the medians of the posteriors of intercepts and slopes for the
radon data example.
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Figure 12: Caterpillar plot of the varying intercepts faceted by North/South location and
using county’s uranium level as color indicator.

R> ggplot(radon.median, aes(x = Intercept, y = Slope)) + geom_point()

10.3. Beyond default options

R> ggs_caterpillar(ggs(radon$s.radon, par_labels = L.radon, family = "^alpha")) +

+ facet_wrap(~ Location, scales = "free") +

+ aes(color = Uranium)

Another option is to extend ggs_caterpillar() using facets with variables passed through
par_labels, or adding other variables to the aesthetics. Figure 12 shows a caterpillar plot of
the intercepts, with facets on the North/South location and using a color scale to emphasize
the uranium level by county.

11. Concluding remarks

The article has provided an introduction to the potential uses of ggmcmc for analyzing MCMC
samples from Bayesian inference. We have covered the basic principles of the package, based
on the transformation of samples into a tidy version, a data frame. We have also shown the
functions used for classical convergence tests, as well as the use of caterpillar plots for sub-
stantial interpretation of the results. Finally, we have briefly introduced potential extensions
to the package by combining it with other tools from the ggplot2 ecosystem.
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