Suppose we have a data that has so many series that it is hard to identify them by their colours as the differences are so subtle.
set.seed(2)
d <- purrr::map_dfr(
letters,
~ data.frame(
idx = 1:400,
value = cumsum(runif(400, -1, 1)),
type = .,
flag = sample(c(TRUE, FALSE), size = 400, replace = TRUE),
stringsAsFactors = FALSE
)
)
To filter the data to the reasonable number of lines, we can use dplyr’s filter()
here.
library(dplyr, warn.conflicts = FALSE)
d_filtered <- d %>%
group_by(type) %>%
filter(max(value) > 20) %>%
ungroup()
ggplot(d_filtered) +
geom_line(aes(idx, value, colour = type))
But, it seems not so handy. For example, what if we want to change the threshold in predicate (max(value) > 20
) and highlight other series as well? It’s a bit tiresome to type all the code above again every time we replace 20
with some other value.
Besides, considering one of the main purposes of visualization is to get the overview of a data, it may not be good to simply filter out the unmatched data because the plot loose its context then.
Here comes gghighlight package, dplyr::filter()
equivalent for ggplot2.
(If you are interested in the more details behind the idea of highlighting, please read this post: Anatomy of gghighlight.)
The main function of gghighlight package is gghighlight()
. For example, by using this function, we can highlight the lines whose max values are larger than 20 like below:
library(gghighlight)
ggplot(d) +
geom_line(aes(idx, value, colour = type)) +
gghighlight(max(value) > 20)
#> label_key: type
You can specify as many predicates as you like. For example, the following code highlights the data that satisfies both max(value) > 15
and mean(flag) > 0.55
.
ggplot(d) +
geom_line(aes(idx, value, colour = type)) +
gghighlight(max(value) > 15, mean(flag) > 0.55)
#> label_key: type
#> Warning in max(~idx): no non-missing arguments to max; returning -Inf
As adding gghighlight()
results in a ggplot object, it is fully customizable just as we usually do with ggplot2 like custom themes.
ggplot(d) +
geom_line(aes(idx, value, colour = type)) +
gghighlight(max(value) > 19) +
theme_minimal()
#> label_key: type
The plot also can be facetted:
ggplot(d) +
geom_line(aes(idx, value, colour = type)) +
gghighlight(max(value) > 19) +
theme_minimal() +
facet_wrap(~ type)
#> label_key: type
There are also some options to control the way of highlighting. See “Options” section below.
gghighlight()
can highlight almost every geoms. Here are some examples.
gghighlight()
can highlight bars.
p <- ggplot(iris, aes(Sepal.Length, fill = Species)) +
geom_histogram() +
gghighlight()
#> label_key: Species
p
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Are you wondering if this is really highlighted? Yes, it is. But, the unhighlighted bars are all overwritten by the highlighted bars. This seems not so useful, until you see the facetted version:
p + facet_wrap(~ Species)
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
As is explained in Anatomy of gghighlight, lines and points typically have different semantics (group-wise or not). But, in most cases, you don’t need to be careful about the difference with gghighlight()
because it automatically picks the right way of calculation.
set.seed(10)
d2 <- dplyr::sample_n(d, 20)
ggplot(d2, aes(idx, value)) +
geom_point() +
gghighlight(value > 0, label_key = type)
More precisely, gghighlight()
takes the following strategy:
group
exists, use it.Note that, in this case, label_key = type
is needed to show labels because gghighlight()
chooses a discrete variable from the mapping, but aes(idx, value)
consists of continuous variables only.
To construct a predicate expression like bellow, we need to determine a threshold (in this example, 20
). But it is difficult to choose a nice one before we draw plots.
So, gghighlight()
allows predicates that return non-logical (e.g. numeric and character) results. The values are used for sorting data and the top max_highlight
of rows/groups are highlighted:
ggplot(d, aes(idx, value, colour = type)) +
geom_line() +
gghighlight(max(value), max_highlight = 5L)
#> label_key: type
gghighlight()
adds the direct labels for some geoms. Currently, the following geoms are supported:
point
: add labels at each highlighted points.line
: add labels at the right ends of each highlighted lines.bar
: (do not add labels)If you don’t want them to be labelled automatically, you can specify use_direct_labels = FALSE
ggplot(d) +
geom_line(aes(idx, value, colour = type)) +
gghighlight(max(value) > 20, use_direct_label = FALSE)
Labels are drawn by geom_label_repel()
. If you want to customize the labels, you can pass parameters to it via label_params
.
ggplot(d) +
geom_line(aes(idx, value, colour = type)) +
gghighlight(max(value) > 20, label_params = list(size = 10))
#> label_key: type
You can also add labels by yourself. It is easy to add labels on only highlighted data because gghighlight()
replaces the plot’s data to the filtered one.
p <- ggplot(d2, aes(idx, value)) +
geom_point(size = 4) +
gghighlight(value > 0, use_direct_label = FALSE)
# the filtered data
p$data
#> idx value type flag
#> 3 380 6.6660069 n FALSE
#> 4 8 0.3777038 e TRUE
#> 5 262 13.5285254 d FALSE
#> 6 391 12.1243689 s TRUE
#> 7 339 16.0241787 y FALSE
#> 9 239 14.6301167 s FALSE
#> 12 202 3.7365540 i FALSE
#> 14 152 6.5393768 y FALSE
#> 16 319 19.2898939 s FALSE
#> 17 360 13.0007351 s FALSE
#> 20 214 4.1910452 z FALSE
p + geom_label(aes(label = type),
hjust = 1, vjust = 1, fill = "purple", colour = "white", alpha= 0.5)
unhighlighted_params
If you want to change the style of unhighlighted layers, use unhighlighted_params
.
ggplot(d) +
geom_line(aes(idx, value, colour = type), size = 5) +
gghighlight(max(value) > 19,
unhighlighted_params = list(size = 1, colour = alpha("pink", 0.4)))
#> label_key: type
keep_scales
If you want to keep the original scales, set keep_scales
to TRUE
.
p <- ggplot(mtcars, aes(wt, mpg, colour = factor(cyl))) +
geom_point()
p + gghighlight(cyl == 6)
#> Warning: Tried to calculate with group_by(), but the calculation failed.
#> Falling back to ungrouped filter operation...
p + gghighlight(cyl == 6, keep_scales = TRUE) + ggtitle("keep_scales = TRUE")
#> Warning: Tried to calculate with group_by(), but the calculation failed.
#> Falling back to ungrouped filter operation...
calculate_per_facet
If you want to highlight each facet individually, set calculate_per_facet
to TRUE
. Note that gghighlight()
affects the plot before gghighlight()
. If you add facet_*()
after adding gghighlight()
, this option doesn’t work.
d <- data.frame(
idx = c(1, 2, 3, 4, 1, 2, 3, 4),
value = c(10, 11, 12, 13, 4, 8, 16, 32),
cat1 = rep(c("a", "b"), each = 4),
cat2 = rep(rep(c("1-2", "3-4"), each = 2), 2),
stringsAsFactors = FALSE
)
p <- ggplot(d, aes(idx, value, colour = cat1)) +
geom_line() +
facet_wrap(vars(cat2))
p +
gghighlight(max(value) > 10)
#> label_key: cat1
p +
gghighlight(max(value) > 10, calculate_per_facet = TRUE) +
ggtitle("calculate_per_facet = TRUE")
#> label_key: cat1