
Zoning simulated data
B. Charnomordic

2018-02-06

Contents

Generate a map 1

Generate zoning from map for a given probability vector 3

Generate tree of possible corrections for small zones 9

Session informations 11

library(geozoning)
library(sp)
library(fields)

This vignette illustrates the zoning with corrections procedure on simulated data.

Generate a map

A map object is simulated with an exponential field and a variogram model. 450 points (default) are randomly
allocated on a square field of size 1. Then 1936 points are kriged on a regular grid using inverse distance
weighted interpolation. A Delaunay tesselation yields point neighborhood in the sense of Voronoi. For this
purpose, we use the genMap function which is a wrapper of the randKmap function (see the documentation).

seed=80
map=genMap(DataObj=NULL,seed=seed,disp=FALSE,krig=2,Vmean=15,typeMod="Exp")

[1] "DataObj=NULL, generating DataObj-seed= 80"
[inverse distance weighted interpolation]

Display 2D map with three different views: first one=kriged data, second one=contour lines, third one=raw
data.

plotMap(map)

1

0.2 0.4 0.6 0.8

0.
2

0.
4

0.
6

0.
8

14

16

18

20

Kriged data

 1
4

 14

 1
4

 1
5

 15

 15

 15

 15

 15

 15

 1
5 15

 16

 16

 16

 16

 16

 16

 16

 17

 1
7

 17

 17

 17

 17

 17

 17

 17

 17

 18

 18

 18

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Contour lines on kriged data

 1
4

 14

 1
4

 1
5

 15

 15

 15

 15

 15

 15

 1
5 15

 16

 16

 16

 16

 16

 16

 16

 17

 1
7

 17

 17

 17

 17

 17

 17

 17

 17

 18

 18

 18

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Contour lines on kriged data
plus raw data points

The map object contains all components required for zoning generation, evaluation and visualization. The
data-related components include the kriged data, grid resolution, size in each dimension and map boundary.
Kriged data are available as a SpatialPointsDataFrame object, as well as a matrix object directly usable by
image functions. rawData are stored as well in the map object, for traceability purposes. The neighborhood-
related components include the list of neighbor point indices for each kriged data point, as well as the areas
of Voronoi polygons associated to all points. Finally the variogram-related components include the VGM
model used to simulate the field, as well as the equivalent RandomFields model.

Check the mean and standard deviation of generated data
meanvarSimu(map)

raw mean kriged mean raw sd kriged sd
16.2167192 16.2537869 1.6219676 0.9622766

2

Generate zoning from map for a given probability vector

Given a probability vector, a vector of values is obtained using the quantile function. Display map image
with contour levels corresponding to qq values

qq=quantile(map$krigGrid,na.rm=TRUE,prob=c(0.5,0.7))
dispZ(map$step,map$krigGrid,valQ=qq)

0.2 0.4 0.6 0.8

0.
2

0.
6

X

Y

14

16

18

20

 16.292

 16.292

 16.292

 16.292

 16.74714

 16.74714

NULL

A zoning is done on the kriged data, by computing the contour lines corresponding to the vector of values
given by the probability vector, trimming them to the map boundary and defining zones corresponding to the
closed contour lines. A zoning is a list of SpatialPolygons objects. It does not contain data, only polygon
geometry.

names(ZK): "resCrit" "resDist" "resZ" "cL" "qProb"
ZK=initialZoning(qProb=c(0.5,0.7),map=map)

Plot zoning (14 zones in this case)

K=ZK$resZ
Z=K$zonePolygone
plotZ(Z)

3

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0

0

1
2

3

4

5

6

7

8

910

11
12
13

14

NULL

Or a more detailed plot with data underneath - compare it to previous plot of contour lines. We see that
contour lines are now extended to the map boundary in order to close zones and that contour lines impossible
to close or zones with 0 or 1 point are removed.

Outline boundaries of zone 12 with different colors
dispZ(map$step,map$krigGrid,zonePolygone=Z,iZ=12)

NULL

Outline all polygons of zone 13 with a different color
linesSp(Z[[13]],col="blue") # first one in blue
linesSp(Z[[2]],k=2,col="green") # second one in red, and so on

4

0.2 0.4 0.6 0.8

0.
2

0.
6

X

Y

14

16

18

201

2
3

4

5

6

7

8

910

11
12

13

14

A zone can have one or several holes
and each hole is an independent zone. zone 2 has 3 holes (zones 3,8,4).
Due to its shape and to the common borders with the map boundary,
zone 7 is not a hole in zone 2.
holeSp(Z[[2]])

[1] 3

Junction of 2 zones: Join zone 12 with another zone near by (zone 13). Both zones have the same label

kmi=optiRG(K,map,12,13,disp=1)
plotZ(kmi$zonePolygone)

5

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0

0

1
2

3

4

5

6

7

8

910

11
12

13

NULL

A more detailed plot: each zone is labelled with its number and its mean value

dispZ(map$step,map$krigGrid,zonePolygone=Z,K=K,boundary=map$boundary,nbLvl=0,id=FALSE,mu=2,cex=0.7)

NULL

add quantile values and criterion value for Z
title(paste(" q=[",toString(round(qq,2)),"] crit=",round(ZK$resCrit,2),sep=""))

6

0.2 0.4 0.6 0.8

0.
2

0.
6

X

Y

14

16

18

201(15.5)

2(16.5)

3(17.1)

4(16.9)

5(17.3)

6(16.5)

7(15.8)

8(16.1)

9(16.6)10(17.2)

11(16.5)

12(17.3)

13(17.1)

14(16.4)

 q=[16.29, 16.75] crit=2.42

print zone labels
printLabZ(list(K))

[1] "2q zone labels= c(1, 2, 3, 3, 3, 2, 1, 1, 2, 3, 2, 3, 3, 2)"

[[1]]
[1] 1 2 3 3 3 2 1 1 2 3 2 3 3 2

print zone areas
printZsurf(K$zonePolygone)

[1] "iZ= 1 area= 0.42236"
[1] "iZ= 2 area= 0.13187"
[1] "iZ=3 area=0.00403 < minSize(0.012)"
[1] "iZ=4 area=0.00194 < minSize(0.012)"
[1] "iZ= 5 area= 0.26953"
[1] "iZ=6 area=0.00756 < minSize(0.012)"
[1] "iZ= 7 area= 0.08913"
[1] "iZ=8 area=0.00172 < minSize(0.012)"
[1] "iZ=9 area=0.01112 < minSize(0.012)"
[1] "iZ=10 area=0.00521 < minSize(0.012)"
[1] "iZ= 11 area= 0.04538"
[1] "iZ=12 area=0.00282 < minSize(0.012)"
[1] "iZ=13 area=0.00631 < minSize(0.012)"
[1] "iZ=14 area=0.00119 < minSize(0.012)"

[1] 14 8 4 12 3 10 13 6 9

7

print zone ids
printZid(Z)

[1] "ii= 1 ID= 1"
[1] "ii= 2 ID= 2"
[1] "ii= 3 ID= 3"
[1] "ii= 4 ID= 4"
[1] "ii= 5 ID= 5"
[1] "ii= 6 ID= 6"
[1] "ii= 7 ID= 7"
[1] "ii= 8 ID= 8"
[1] "ii= 9 ID= 9"
[1] "ii= 10 ID= 10"
[1] "ii= 11 ID= 11"
[1] "ii= 12 ID= 12"
[1] "ii= 13 ID= 13"
[1] "ii= 14 ID= 14"

remove zones with less than 10 data points
K=calNei(Z,map$krigData,map$krigSurfVoronoi,map$krigN,nmin=10)
plotZ(K$zonePolygone)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0

0

1

2

3

4

5

NULL

val=valZ(map,K)$val
boxplot(val,col=topo.colors(length(val)))

8

1 2 3 4 5

14
16

18
20

Generate tree of possible corrections for small zones

2 operations are done for each small zone :

• 1- remove zone, i.e. merge into englobing zone
• 2- grow zone

Growing is done in 2 different ways depending on zone proximity to other ones. If zone is isolated (distance to
other zones controlled by distIsoZ parameter), it grows bigger but remains isolated from others. Zone growing
in that case is performed by finding the contour line close to the current zone contour, that maximizes the
zoning quality criterion. A small value of distIsoZ ensures that a small zone have enough space to grow. If
zone is non isolated, it is joined to the closest zone with the same label.

#save all branches resulting from correction steps
criti<-correctionTree(c(0.4,0.7),map,SAVE=TRUE,ALL=TRUE,LASTPASS=FALSE,distIsoZ=0.01)
zk=criti$zk

In that case we have for example #4 small zone, hence 3 levels (level 1 is initial zoning, level 2 has 2 branches,
level 3 has 4 branches). For each correction step-first branch=zone removal, second-branch=zone junction.
The procedure starts with the smallest zone, here zone #4.

Z21=zk[[2]][[1]]$zonePolygone
Z22=zk[[2]][[2]]$zonePolygone
plotZ(Z21,id=TRUE) # result of removal of zone #4

9

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0

0

1

2

3

5

6

7
8

9

10

11

12

1314

15

NULL

plotZ(Z22,id=TRUE) # result of growing of zone #4

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0

0

1

2

3

5

6

7
8

9

10

11

12

1314

15

4

NULL

successively: removal of zone#4 in Z21, growing of zone#4 in Z21
removal of zone#4 in Z22, growing of zone#4 in Z22
other try with LASTPASS=TRUE removes at last step the zones that are still too small

10

after all successive corrections
criti<-correctionTree(c(0.4,0.7),map,SAVE=TRUE,ALL=TRUE,LASTPASS=TRUE,distIsoZ=0.001)

other run with ALL=FALSE saves memory by keeping only the first and the last levels
criti<-correctionTree(c(0.4,0.7),map,SAVE=TRUE,ALL=FALSE,LASTPASS=FALSE,distIsoZ=0.001)

Session informations

R version 3.3.2 (2016-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 14.04.5 LTS
##
locale:
[1] LC_CTYPE=fr_FR.UTF-8 LC_NUMERIC=C
[3] LC_TIME=fr_FR.UTF-8 LC_COLLATE=fr_FR.UTF-8
[5] LC_MONETARY=fr_FR.UTF-8 LC_MESSAGES=fr_FR.UTF-8
[7] LC_PAPER=fr_FR.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=fr_FR.UTF-8 LC_IDENTIFICATION=C
##
attached base packages:
[1] grid stats graphics grDevices utils datasets methods
[8] base
##
other attached packages:
[1] ggplot2_2.2.1 rgeos_0.3-26
[3] raster_2.6-7 fields_9.0
[5] maps_3.2.0 spam_2.1-1
[7] dotCall64_0.9-04 deldir_0.1-14
[9] maptools_0.9-2 RandomFields_3.1.50
[11] RandomFieldsUtils_0.3.25 sp_1.2-5
[13] gstat_1.1-5 geozoning_1.0.0
##
loaded via a namespace (and not attached):
[1] Rcpp_0.12.14 pillar_1.0.1 plyr_1.8.4 xts_0.10-0
[5] tools_3.3.2 digest_0.6.12 evaluate_0.10.1 memoise_1.1.0
[9] tibble_1.4.1 gtable_0.2.0 lattice_0.20-34 rlang_0.1.6
[13] rstudioapi_0.7 commonmark_1.4 yaml_2.1.14 knitr_1.17
[17] withr_2.1.0 stringr_1.2.0 roxygen2_6.0.1 xml2_1.1.1
[21] devtools_1.13.4 desc_1.1.1 rprojroot_1.2 spacetime_1.2-1
[25] R6_2.2.2 rmarkdown_1.8 foreign_0.8-67 magrittr_1.5
[29] htmltools_0.3.6 backports_1.1.1 scales_0.5.0 intervals_0.15.1
[33] assertthat_0.2.0 colorspace_1.3-2 stringi_1.1.6 lazyeval_0.2.1
[37] munsell_0.4.3 crayon_1.3.4 FNN_1.1 zoo_1.8-0

11

	Generate a map
	Generate zoning from map for a given probability vector
	Generate tree of possible corrections for small zones
	Session informations

