
Qhull examples

David C. Sterratt

3rd December 2019

This document presents examples of the geometry package functions which
implement functions using the Qhull library.

1 Convex hulls in 2D

1.1 Calling convhulln with one argument

With one argument, convhulln returns the indices of the points of the convex
hull.

> library(geometry)

> ps <-matrix(rnorm(30), , 2)

> ch <- convhulln(ps)

> head(ch)

[,1] [,2]

[1,] 10 13

[2,] 15 6

[3,] 15 10

[4,] 11 6

[5,] 11 4

[6,] 1 13

1.2 Calling convhulln with options

We can supply Qhull options to convhulln; in this case it returns an object
of class convhulln which is also a list. For example FA returns the generalised
area and

volume. Confusingly in 2D the generalised area is the length of the perime-
ter, and the generalised volume is the area.

> ps <-matrix(rnorm(30), , 2)

> ch <- convhulln(ps, options="FA")

> print(ch$area)

[1] 8.728395

1

http://www.qhull.org

> print(ch$vol)

[1] 4.679497

A convhulln object can also be plotted.

> plot(ch)

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x$p[, 1]

x$
p[

, 2
]

We can also find the normals to the “facets” of the convex hull:

> ch <- convhulln(ps, options="n")

> head(ch$normals)

[,1] [,2] [,3]

[1,] -0.8817106 -0.4717907 -1.6108794

[2,] 0.9626036 -0.2709140 -0.9695298

[3,] 0.6256402 -0.7801118 -1.0263535

[4,] -0.7696230 0.6384986 -1.0070657

[5,] -0.4341306 0.9008499 -0.6879394

[6,] 0.3146140 0.9492197 -1.1737152

Here the first two columns and the x and y direction of the normal, and the
third column defines the position at which the face intersects that normal.

2

1.3 Testing if points are inside a convex hull with inhulln

The function inhulln can be used to test if points are inside a convex hull.
Here the function rbox is a handy way to create points at random locations.

> tp <- rbox(n=200, D=2, B=4)

> in_ch <- inhulln(ch, tp)

> plot(tp[!in_ch,], col="gray")

> points(tp[in_ch,], col="red")

> plot(ch, add=TRUE)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

−4 −2 0 2 4

−
4

−
2

0
2

4

tp[!in_ch,][,1]

tp
[!i

n_
ch

,]
[,2

]

●●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

2 Delaunay triangulation in 2D

2.1 Calling delaunayn with one argument

With one argument, a set of points, delaunayn returns the indices of the points
at each vertex of each triangle in the triangulation.

> ps <- rbox(n=10, D=2)

> dt <- delaunayn(ps)

> head(dt)

[,1] [,2] [,3]

[1,] 10 1 2

3

[2,] 10 1 7

[3,] 5 8 9

[4,] 5 7 9

[5,] 5 1 7

[6,] 6 1 2

> trimesh(dt, ps)

> points(ps)

●

●●●

●

●

●

●

●

●

2.2 Calling delaunayn with options

We can supply Qhull options to delaunayn; in this case it returns an object
of class delaunayn which is also a list. For example Fa returns the generalised
area of each triangle. In 2D the generalised area is the actual area; in 3D it
would be the volume.

> dt2 <- delaunayn(ps, options="Fa")

> print(dt2$areas)

[1] 0.0444646876 0.0621703536 0.0560487301 0.0366148609 0.0172143239

[6] 0.0529475921 0.0362908235 0.0755227712 0.0442629053 0.0001979219

[11] 0.0351576549 0.0021084158

4

> dt2 <- delaunayn(ps, options="Fn")

> print(dt2$neighbours)

[[1]]

[1] -1 5 2

[[2]]

[1] 1 4 8

[[3]]

[1] 7 -12 4

[[4]]

[1] 2 -12 3

[[5]]

[1] 1 -16 9

[[6]]

[1] -16 12 9

[[7]]

[1] 3 11 8

[[8]]

[1] 2 9 7

[[9]]

[1] 5 8 6

[[10]]

[1] -8 11 12

[[11]]

[1] 7 10 12

[[12]]

[1] 6 10 11

5

	Convex hulls in 2D
	Calling convhulln with one argument
	Calling convhulln with options
	Testing if points are inside a convex hull with inhulln

	Delaunay triangulation in 2D
	Calling delaunayn with one argument
	Calling delaunayn with options

