
Package ‘geoTS’
March 6, 2020

Version 0.1.3

Date 2020-02-28

Title Methods for Handling and Analyzing Time Series of Satellite
Images

Author Inder Tecuapetla-Gómez [aut, cre]

Maintainer Inder Tecuapetla-Gómez

<itecuapetla@conabio.gob.mx>

Description Provides functions and methods for: splitting large raster objects
into smaller chunks, transferring images from a binary format into raster
layers, transferring raster layers into an 'RData' file, calculating the
maximum gap (amount of consecutive missing values) of a numeric vector,
and fitting harmonic regression to periodic time series. The methods
implemented for harmonic regression are based on G. Roerink, M. Menenti
and W. Verhoef (2000) <doi:10.1080/014311600209814>.

LazyData yes

License GPL (>= 2)

Encoding UTF-8

Depends ff (>= 2.2-14), raster (>= 2.9-5), foreach (>= 1.4.4),
parallel (>= 3.6.1), R (>= 2.15.3)

Imports methods, sp (>= 1.2-0), doParallel (>= 1.0.14), iterators (>=
1.0.10)

NeedsCompilation no

RoxygenNote 7.0.2

Repository CRAN

Date/Publication 2020-03-06 12:30:02 UTC

R topics documented:
geoTS-package . 2
haRmonics . 3
matrixToRaster . 5

1

2 geoTS-package

maxLagMissVal . 6
split_replace . 7
transfer_bin_raster . 8
transfer_raster_RData . 9

Index 11

geoTS-package Methods for Handling and Analyzing Time Series of Satellite Images

Description

We provide tools for handling time series of satellite images as well as some statistical methods for
spatio-temporal analysis

Tools for handling time series of satellite images

transfer_bin_raster transfers data from images originally recorded in a binary format to images
in any of the formats allowed by the raster package. Similarly, transfer_raster_RData extracts
the entries (numbers) of images originally recorded as a tiff file, virtually storages them in an
array object and, finally, this array is saved in an RData file. split_replace allows us to split
Raster* objects, which can be arguably large, into smaller chunks. These chunks can be saved in
any of the formats allowed by writeRaster. Often, satellite images come with missing values (or
fill values assigned by other computer programs), split_replace allows to replace these values by
values of users’ convenience; see also reclassify.

Methods for analyzing time series of satellite images

haRmonics allows us to fit classical harmonic regression to numeric vectors; the method hants is
based on Roerink et al. (2000) whereas the method haRm is based on Jakubauskas et al. (2001).

Author(s)

Tecuapetla-Gomez, I. <itecuapetla@conabio.gob.mx>

References

Roerink, G.J., Menenti, M., Verhoef, W. (2000). Reconstructing clodfree NDVI composites using
Fourier analysis of time series, Int. J. Remote Sensing, 21(9), 1911–1917.

Jakubauskas, M., Legates, D., Kastens, J. (2001). Harmonic analysis of time-series AVHRR NDVI
data, Photogrammetric Engineering and Remote Sensing, 67(4), 461–470.

The Matlab implementation of HANTS can be found here.

https://nl.mathworks.com/matlabcentral/fileexchange/38841-matlab-implementation-of-harmonic-analysis-of-time-series-hants

haRmonics 3

haRmonics Harmonic analysis for time series

Description

Fits harmonic regression (harmR) model, that is, computes amplitudes and phase angles in the typ-
ical harmonic regression framework. Based on these estimates a harmonic regression function is
fitted. Also fits hants, a popular iterative algorithm that computes amplitudes and phase angles
in the harmonic regression framework. As part of the iterative algorithm, observations are being
excluded from the design matrix of the regression model if the distance between them and the fitted
curve exceeds the value of the parameter fitErrorTol. hants is based on implementations with
the same name written in Fortran and Matlab computer languages.

Usage

haRmonics(y, method = c("harmR", "hants"), ts = 1:length(y),
lenBasePeriod = length(y), numFreq, HiLo = c("Hi", "Lo"), low, high,
fitErrorTol, degreeOverDeter, delta)

Arguments

y numeric vector containing time series on which harmonic regression will be
fitted. Missing values are not allowed.

method character specifying algorithm to apply: harmR (default) or hants.

ts numeric vector of length(y) with the sampling points for y. Default is ts[i] =
i, i = 1, . . . , length(y).

lenBasePeriod numeric giving the length of the base period, reported in samples, e.g. days,
dekads, months, years, etc.

numFreq numeric indicating the total number of frequencies to be used in harmonic re-
gression.

HiLo character indicating whether high or low outliers must be rejected when method=hants.

low numeric giving minimum valid value of fitted harmonic regression function
when method=hants.

high numeric giving maximum valid value of fitted harmonic regression function
when method=hants.

fitErrorTol numeric giving maximum allowed distance between observations and fitted curve;
if difference between a given observation and its fitted value exceeds fitErrorTol
then this observation will not be included in the fitting procedure in the next it-
eration of the algorithm.

degreeOverDeter

numeric; iteration stops when number of observations equals number of obser-
vations for curve fitting plus degreeOverDeter; the latter in turns is by defini-
tion length(y) minus min(2 ∗ numFreq+ 1, length(y)).

delta numeric (positive) giving a (small) regularization parameter to prevent non-
invertible hat matrix (see details), probably caused by high amplitudes.

4 haRmonics

Details

Method harmR does not allow missing values and utilizes parameters y, lanBasePeriod, numFreq
and delta only.

Method hants utilizes all the parameters presented above. This method does not allow missing
values. Missing values in y must be substituted by values considerably out of observations range.

Value

A list containing:

a.coef a numeric vector with estimates of cosine coefficients

b.coef a numeric vector with estimates of sine coefficients

amplitude a numeric vector with amplitude estimates.

phase a numeric vector with phase estimates.

fitted a numeric vector with fitted values via harmonic regression.

References

Roerink, G.J., Menenti, M., Verhoef, W. (2000). Reconstructing cloudfree NDVI composites using
Fourier analysis of time series, Int. J. Remote Sensing, 21(9), 1911–1917.

Jakubauskas, M., Legates, D., Kastens, J. (2001). Harmonic analysis of time-series AVHRR NDVI
data, Photogrammetric Engineering and Remote Sensing, 67(4), 461–470.

The Matlab implementation of HANTS can be found here.

Examples

y <- c(5, 2, 5, 10, 12, 18, 20, 23, 27, 30, 40, 60, 66,
70, 90, 120, 160, 190, 105, 210, 104, 200, 90, 170,
50, 120, 80, 60, 50, 40, 30, 28, 24, 20, 15, 10)
--
fit_harmR <- haRmonics(y = y, numFreq = 3, delta = 0.1)
fitLow_hants <- haRmonics(y = y, method = "hants", numFreq = 3, HiLo = "Lo",

low = 0, high = 255, fitErrorTol = 5, degreeOverDeter = 1,
delta = 0.1)

fitHigh_hants <- haRmonics(y = y, method = "hants", numFreq = 3, HiLo = "Hi",
low = 0, high = 255, fitErrorTol = 5, degreeOverDeter = 1,
delta = 0.1)

plot(y, pch = 16, main = "haRmonics fitting")
lines(fit_harmR$fitted ,lty = 4, col = "green")
lines(fitLow_hants$fitted, lty = 4, col = "red")
lines(fitHigh_hants$fitted, lty = 2, col = "blue")
--
Substituting missing value by a number outside observations range
--
y1 <- y
y1[20] <- -10

fitLow_hants_missing <- haRmonics(y = y1, method = "hants", numFreq = 3, HiLo = "Lo",
low = 0, high = 255, fitErrorTol = 5, degreeOverDeter = 1,

https://nl.mathworks.com/matlabcentral/fileexchange/38841-matlab-implementation-of-harmonic-analysis-of-time-series-hants

matrixToRaster 5

delta = 0.1)
fitHigh_hants_missing <- haRmonics(y = y1, method = "hants", numFreq = 3, HiLo = "Hi",

low = 0, high = 255, fitErrorTol = 5, degreeOverDeter = 1,
delta = 0.1)

fit_harmR_missing <- haRmonics(y = y1, numFreq = 3, delta = 0.1)

plot(y1, pch = 16, main = "haRmonics fitting (missing values)", ylim = c(-1,210))
lines(fitLow_hants_missing$fitted, lty = 4, col = "red")
lines(fitHigh_hants_missing$fitted, lty = 2, col = "blue")
lines(fit_harmR_missing$fitted, lty = 4, col = "green")

matrixToRaster Creates a RasterLayer object from a matrix

Description

Transforms a matrix into a RasterLayer object.

Usage

matrixToRaster(matrix, RASTER)

Arguments

matrix a matrix object.

RASTER a RasterLayer object whose extent and projection will be used to create a raster
from matrix.

Details

The coordinates and projection of the argument RASTER are used to create a raster from the
argument matrix.

Value

A RasterLayer

6 maxLagMissVal

maxLagMissVal Get maximum lag of missing values

Description

This function computes the maximum amount of consecutive missing values in a vector. This
quantity is also known as maximum lag, run, or record, and can be used as a rough estimate of the
quality of a dataset.

Usage

maxLagMissVal(x, type = c("NA", "numeric"), value)

Arguments

x numeric vector.

type character specifying the type of missing value to consider. Default is type =
"NA"; when type == "numeric", value must be provided.

value numeric giving a figure to be used to fill missing values; often as part of a pre-
processing, missing values in a dataset (vector, time series, etc.) are fill in with
pre-established values.

Value

A list containing:

maxLag numeric giving the maximum lag of missing values in x

x numeric vector with the original data

value a numeric when type == numeric, NA otherwise

See Also

rle

Examples

v <- c(NA, 0.12, 0.58, 0.75, NA, NA, NA, 0.46, 0.97, 0.39,
NA, 0.13, 0.46, 0.95, 0.30, 0.98, 0.23, 0.98,
0.68, NA, NA, NA, NA, NA, 0.11, 0.10, 0.79, 0.46, 0.27,
0.44, 0.93, 0.20, 0.44, 0.66, 0.11, 0.88)

maxLagMissVal(x=v, type="NA")

w <- c(23,3,14,3,8,3,3,3,3,3,3,3,10,14,15,3,10,3,3,6)
maxLagMissVal(x = w, type = "numeric", value = 3)

split_replace 7

split_replace Splits a Raster* object into smaller chunks and allows to replace cell
values

Description

This function will split a Raster* object into smaller chunks. The size of these chunks (num-
ber of cells) is controlled by partPerSide, h or v. Additionally, it allows to replace cell values
(valToReplace) within Raster* object by another value of user’s choice (replacedBy). When
save = TRUE, the resulting cellsToProcess Raster* objects are saved in directory outputPath.

Usage

split_replace(raster, partPerSide, h, v, outputPath, name, save = TRUE,
replace = FALSE, valToReplace, replacedBy, dataType,
format = "GTiff", parallelProcessing = FALSE, numCores = 20,
cellsToProcess, ...)

Arguments

raster Raster* object.

partPerSide integer indicating number of cells in which raster will be split in each direction
(horizontally and vertically). Use when nrow(raster) and ncol(raster) are
multiples of partPerSide.

h integer indicating number of horizontal cells in which raster will be split.

v integer indicating number of vertical cells in which raster will be split.

outputPath character with full path name where the resulting Raster* objects will be saved.

name character with the name to assign to final products.

save logical, should the output be saved, default is TRUE.

replace logical, default FALSE, when TRUE, valToReplace and replacedBy must by
specified.

valToReplace indicates a value to be replaced across raster cells.

replacedBy indicates the value by which valToReplace is replaced.

dataType character, output data type. See dataType.

format character, output file type, default "GTiff". See writeFormats.
parallelProcessing

logical, default FALSE, when TRUE raster splitting is done in parallel. See details.

numCores numeric indicating the number of cores used in parallel processing.

cellsToProcess numeric vector indicating which smaller cells should be processed/saved. See
details.

... additional arguments used by writeRaster.

8 transfer_bin_raster

Details

Before processing any of the cellsToProcess the temporary raster directory is re-directed. Basi-
cally, prior to process the i-th cell, at outputPath a new subdirectory is created, which, in turn, is
erased automatically once the i-th cell has been processed. As a result of several tests we found that
this measure avoids memory overflow.

When partPerSide is used, cellsToProcess = 1:(partPerSide^2). When h and v are used,
cellsToProcess = 1:(ncells(raster)/(h*v)). Since the code assumes that nrow(raster) and
ncol(raster) are multiples of partPerSide or h and v, respectively, the user must be careful
when selecting these parameters.

For parallelProcessing the backend doParallel is employed.

Value

At outputPath the user will find length(cellsToProcess) Raster* files

See Also

writeRaster, aggregate, rasterOptions

transfer_bin_raster Transfer values from a binary image file to a raster file

Description

Get the values of a binary file (in integer format) and transfer them to a raster file. All formats
considered in writeRaster are allowed.

Usage

transfer_bin_raster(inputPath, outputPath, master, what = integer(),
signed = TRUE, endian = "little", size = 2, format = "GTiff",
dataType = "INT2S", overwrite = TRUE)

Arguments

inputPath character with full path name of input file(s).
outputPath character with full path name (where the raster files will be saved).
master character with full path name of a raster file; extent and projection of this file

are applied to this function output.
what See readBin. Default integer().
signed See readBin. Default TRUE.
endian See readBin. Default "little".
size integer, number of bytes per element in the byte stream, default 2. See readBin.
format character, output file type. See writeFormats.
dataType character, output data type. See dataType.
overwrite logical, default TRUE, should the resulting raster be overwritten.

transfer_raster_RData 9

Value

At the designated path (outputPath) the user will find TIF file(s).

Examples

inputPath = system.file("extdata", package = "geoTS")
masterFile = system.file("extdata", "master.tif", package = "geoTS")
transfer_bin_raster(inputPath = inputPath, outputPath = inputPath,

master = masterFile, what = integer(),
signed = TRUE, endian = "little", size = 2,
format = "GTiff", dataType = "INT2S", overwrite = TRUE)

transfer_raster_RData Transfer values from a Raster* object to an RData file

Description

Get the values of a Raster*, storage them into an array and finally save the array in an RData which
allows for compatibility with multiple R functions as well as great portability.

Usage

transfer_raster_RData(inputFile, outputPath, vmode = c("integer",
"single", "double"))

Arguments

inputFile character with full path name of input file.

outputPath character with full path name (where the RData file will be saved). Do not
include the extension .RData.

vmode a character specifying the type of virtual storage mode vmode needed. Only
integer, single and double are allowed.

Details

Prior to embark the user in a transfer that may not be successful due to the lack of RAM, this
function provides an estimate of the amount of bytes to be used in the transfer process. The estimate
is obtained by multiplying the number of rows by the number of columns by the number of layers
of the Raster* object to transfer by the amount of bites used by vmode (32-bit float for integer or
single and 64-bit float for double). Should the user decide not to continue with the importation
transfer_raster_RData returns the message "Did not transfer anything".

Value

At the designated path (outputPath) the user will find an RData file.

10 transfer_raster_RData

See Also

vmode

Examples

inputFile = system.file("extdata", "master.tif", package = "geoTS")
outputPath = paste0(system.file("extdata", package = "geoTS"), "/test")
transfer_raster_RData(inputFile = inputFile, outputPath = outputPath,
vmode = "single")

Index

∗Topic package
geoTS-package, 2

aggregate, 8
array, 2, 9

coordinates, 5

dataType, 7, 8
doParallel, 8

geoTS-package, 2

haRmonics, 2, 3

matrixToRaster, 5
maxLagMissVal, 6

projection, 5

raster, 2
rasterOptions, 8
readBin, 8
reclassify, 2
rle, 6

split_replace, 2, 7

tiff, 2
transfer_bin_raster, 2, 8
transfer_raster_RData, 2, 9

vmode, 9, 10

writeFormats, 7, 8
writeRaster, 2, 7, 8

11

	geoTS-package
	haRmonics
	matrixToRaster
	maxLagMissVal
	split_replace
	transfer_bin_raster
	transfer_raster_RData
	Index

