Package 'generalCorr'

October 30, 2019

Type Package
Title Generalized Correlations and Plausible Causal Paths

Version 1.1.5

Date 2019-10-30
Author Prof. H. D. Vinod, Fordham University, NY.
Maintainer H. D. Vinod vinod@fordham.edu

Encoding UTF-8

Depends R (>= 3.0.0), np ($>=0.60$), xtable ($>=1.8$), meboot ($>=1.4$), psych, lattice

Suggests R.rsp
VignetteBuilder R.rsp
Description Since causal paths from data are important for all sciences, the package provides many sophisticated functions. causeSummBlk() gives easy-to-interpret causal paths. Let Z denote control variables and compare two flipped kernel regressions: $\mathrm{X}=\mathrm{f}(\mathrm{Y}, \mathrm{Z})+\mathrm{e} 1$ and $\mathrm{Y}=\mathrm{g}(\mathrm{X}, \mathrm{Z})+\mathrm{e} 2$. Our criterion Cr 1 says that if le $1 * \mathrm{Y}|>|\mathrm{e} 2 * \mathrm{X}|$ then variation in X is more "exogenous or independent" than in Y and causal path is X to Y . Criterion Cr 2 requires le $2|<l e 1|$. These inequalities between many absolute value are quantified by four orders of stochastic dominance. Our third criterion Cr 3 for the causal path X to Y requires new generalized partial correlations to satisfy $\left|r^{*}(x \mid y, z)\right|<\left|r^{*}(y \mid x, z)\right|$. The function parcorBMany () reports generalized partials between the first variable and all others. The package provides additional R tools for causal assessment, "outlier detection," and for numerical integration by the trapezoidal rule, stochastic dominance, pillar 3D charts, etc. We also provide functions for bootstrap-based statistical inference for causal paths. causeSummary() and causeSummBlk() are easiest to use functions.
License GPL (>=2)
LazyData true
RoxygenNote 6.1.1
NeedsCompilation no

Repository CRAN

Date/Publication 2019-10-30 20:50:02 UTC

R topics documented:

absBstdres 4
absBstdresC 5
absBstdrhserC 6
abs_res 8
abs_stdapd 9
abs_stdapdC 10
abs_stdres 11
abs_stdresC 12
abs_stdrhserC 13
abs_stdrhserr 14
allPairs 15
badCol 17
bigfp 17
bootPairs 18
bootPairs0 20
bootQuantile 21
bootSign 23
bootSignPcent 24
bootSummary 25
causeSummary 27
causeSummary0 29
causeSummBlk 31
cofactor 33
comp_portfo2 34
da 35
da2Lag 36
depMeas 36
diff.e0 37
dig 37
e0 38
EuroCrime 38
generalCorrInfo 39
get0outliers 40
getSeq 41
gmc0 42
gmc1 42
gmemtx0 42
gmemtxBlk 44
gmemtxZ 45
gmcxy_np 46
goodCol 47
heurist 48
i 49
ibad 49
ii 49
j 49
R topics documented: 3
kern 50
kern_ctrl 51
mag 52
mag_ctrl 53
min.e0 55
minor 55
mtx 56
mtx0 56
mtx2 56
n 57
nall 57
nam.badCol 57
nam.goodCol 58
nam.mtx0 58
napair 58
naTriplet 59
NLhat 60
out1 61
p1 61
Panel2Lag 61
PanelLag 62
parcorBijk 63
parcorBMany 64
parcorMany 66
parcorMtx 67
parcorSilent 68
parcor_ijk 70
parcor_ijkOLD 71
parcor_linear 72
parcor_ridg 73
pcause 75
pillar3D 76
prelec2 77
probSign 78
rhs.lag2 79
rhs1 80
ridgek 80
rij 80
rijMrji 80
rji 81
rrij 81
rrji 81
rstar 82
sales2Lag 83
salesLag 83
seed 83
sgn.e0 84
silentMtx 84
silentMtx0 86
silentPairs 88
silentPairs0 90
siPairsBlk 92
some0Pairs 94
someCPairs 96
someCPairs2 98
someMagPairs 100
somePairs 102
somePairs2 103
sort.abse0 105
sort.e0 105
sort_matrix 105
stdres 106
stdz_xy 107
stochdom2 108
wtdpapb 109
Index 111

absBstdres

Block version of abs-stdres Absolute values of residuals of kernel re
gressions of standardized x on standardized y, no control variables.

Description

1) Standardize the data to force mean zero and variance unity, 2) kernel regress x on y, with the option 'residuals $=$ TRUE' and finally 3) compute the absolute values of residuals.

Usage

absBstdres(x, y, blksiz = 10)

Arguments

x	vector of data on the dependent variable
y	data on the regressors which can be a matrix
blksiz	block size, default=10, if chosen blksiz $>n$, where $n=$ rows in matrix then blk- siz=n. That is, no blocking is done

Details

The first argument is assumed to be the dependent variable. If abs_stdres (x, y) is used, you are regressing x on y ($n o t$ the usual y on x). The regressors can be a matrix with 2 or more columns. The missing values are suitably ignored by the standardization.

Value

Absolute values of kernel regression residuals are returned after standardizing the data on both sides so that the magnitudes of residuals are comparable between regression of x on y on the one hand and regression of y on x on the other.

Author(s)

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

References

Vinod, H. D. 'Generalized Correlation and Kernel Causality with Applications in Development Economics' in Communications in Statistics -Simulation and Computation, 2015, http://dx.doi . org/10.1080/03610918.2015.1122048

Examples

```
## Not run:
set.seed(330)
x=sample(20:50)
y=sample(20:50)
abs_stdres(x,y)
## End(Not run)
```

```
absBstdresC
```

Block version of Absolute values of residuals of kernel regressions of standardized x on standardized y and control variables.

Description

1) standardize the data to force mean zero and variance unity, 2) kernel regress x on y and a matrix of control variables, with the option 'residuals $=$ TRUE' and finally 3) compute the absolute values of residuals.

Usage

absBstdresC(x, y, ctrl, blksiz = 10)

Arguments

$x \quad$ vector of data on the dependent variable
$y \quad$ data on the regressors which can be a matrix
ctrl Data matrix on the control variable(s) beyond causal path issues
blksiz block size, default=10, if chosen blksiz $>\mathrm{n}$, where $\mathrm{n}=$ rows in matrix then blk$\operatorname{siz}=\mathrm{n}$. That is, no blocking is done

Details

The first argument is assumed to be the dependent variable. If abs_stdres (x, y) is used, you are regressing x on y (not the usual y on x). The regressors can be a matrix with two or more columns. The missing values are suitably ignored by the standardization.

Value

Absolute values of kernel regression residuals are returned after standardizing the data on both sides so that the magnitudes of residuals are comparable between regression of x on y on the one hand and regression of y on x on the other.

Author(s)

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

References

Vinod, H. D.'Generalized Correlation and Kernel Causality with Applications in Development Economics' in Communications in Statistics -Simulation and Computation, 2015, http://dx.doi. org/10.1080/03610918.2015.1122048

See Also

See abs_stdres.

Examples

```
## Not run:
set.seed(330)
x=sample(20:50)
y=sample(20:50)
z=sample(21:51)
absBstdresC(x,y,ctrl=z)
## End(Not run)
```

absBstdrhserC Block version abs_stdrhser Absolute residuals kernel regressions of standardized x on y and control variables, Crl has abs(Resid*RHS).

Description

1) standardize the data to force mean zero and variance unity, 2) kernel regress x on y and a matrix of control variables, with the option 'residuals = TRUE' and finally 3) compute the absolute values of residuals.

Usage

absBstdrhserC(x, y, ctrl, ycolumn = 1, blksiz = 10)

Arguments

X
$y \quad$ data on the regressors which can be a matrix
ctrl Data matrix on the control variable(s) beyond causal path issues
ycolumn if y has more than one column, the column number used when multiplying residuals times this column of y, default=1 or first column of y matrix is used
blksiz block size, default=10, if chosen blksiz $>\mathrm{n}$, where $\mathrm{n}=$ rows in matrix then blk$\operatorname{siz}=\mathrm{n}$. That is, no blocking is done

Details

The first argument is assumed to be the dependent variable. If absBstdrhserC(x, y) is used, you are regressing x on y (not the usual y on x). The regressors can be a matrix with 2 or more columns. The missing values are suitably ignored by the standardization.

Value

Absolute values of kernel regression residuals are returned after standardizing the data on both sides so that the magnitudes of residuals are comparable between regression of x on y on the one hand and regression of y on x on the other.

Author(s)

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

References

Vinod, H. D. 'Generalized Correlation and Kernel Causality with Applications in Development Economics' in Communications in Statistics -Simulation and Computation, 2015, http://dx.doi . org/10.1080/03610918.2015.1122048

See Also

See abs_stdres.

Examples

```
## Not run:
set.seed(330)
x=sample(20:50)
y=sample(20:50)
z=sample(21:51)
absBstdrhserC(x,y,ctrl=z)
```


Description

This internal function calls the kern function to implement kernel regression with the option residuals=TRUE and returns absolute residuals.

Usage

abs_res(x, y)

Arguments

$x \quad$ vector of data on the dependent variable
$y \quad$ vector of data on the regressor

Details

The first argument is assumed to be the dependent variable. If abs_res (x, y) is used, you are regressing x on y (not the usual y on x)

Value

absolute values of kernel regression residuals are returned.

Note

This function is intended for internal use.

Author(s)

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

Examples

```
## Not run:
set.seed(330)
x=sample(20:50)
y=sample(20:50)
abs_res(x,y)
## End(Not run)
```

```
abs_stdapd Absolute values of gradients (apd's) of kernel regressions of x on y when both \(x\) and \(y\) are standardized.
```


Description

1) standardize the data to force mean zero and variance unity, 2) kernel regress x on y, with the option 'gradients $=$ TRUE' and finally 3) compute the absolute values of gradients

Usage

```
abs_stdapd(x, y)
```


Arguments

$$
\begin{array}{ll}
x & \text { vector of data on the dependent variable } \\
y & \text { data on the regressors which can be a matrix }
\end{array}
$$

Details

The first argument is assumed to be the dependent variable. If abs_stdapd (x, y) is used, you are regressing x on y (not the usual y on x). The regressors can be a matrix with 2 or more columns. The missing values are suitably ignored by the standardization.

Value

Absolute values of kernel regression gradients are returned after standardizing the data on both sides so that the magnitudes of amorphous partial derivatives (apd's) are comparable between regression of x on y on the one hand and regression of y on x on the other.

Author(s)

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

Examples

```
## Not run:
set.seed(330)
x=sample(20:50)
y=sample(20:50)
abs_stdapd(x,y)
## End(Not run)
```

```
abs_stdapdC
```

Absolute values of gradients (apd's) of kernel regressions of x on y when both x and y are standardized and control variables are present.

Description

1) standardize the data to force mean zero and variance unity, 2) kernel regress x on y and a matrix of control variables, with the option 'gradients = TRUE' and finally 3) compute the absolute values of gradients

Usage

abs_stdapdC(x, y, ctrl)

Arguments

x	vector of data on the dependent variable
y	data on the regressors which can be a matrix
ctrl	Data matrix on the control variable(s) beyond causal path issues

Details

The first argument is assumed to be the dependent variable. If abs_stdapdC (x, y) is used, you are regressing x on y (not the usual y on x). The regressors can be a matrix with 2 or more columns. The missing values are suitably ignored by the standardization.

Value

Absolute values of kernel regression gradients are returned after standardizing the data on both sides so that the magnitudes of amorphous partial derivatives (apd's) are comparable between regression of x on y on the one hand and regression of y on x on the other.

Author(s)

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

See Also

See abs_stdapd.

Examples

```
## Not run:
set.seed(330)
x=sample(20:50)
y=sample(20:50)
z=sample(20:50)
abs_stdapdC(x,y,ctrl=z)
```

```
## End(Not run)
```

abs_stdres

Absolute values of residuals of kernel regressions of x on y when both x and y are standardized.

Description

1) Standardize the data to force mean zero and variance unity, 2) kernel regress x on y, with the option 'residuals $=$ TRUE' and finally 3) compute the absolute values of residuals.

Usage

abs_stdres(x, y)

Arguments

$x \quad$ vector of data on the dependent variable
$y \quad$ data on the regressors which can be a matrix

Details

The first argument is assumed to be the dependent variable. If abs_stdres (x, y) is used, you are regressing x on y (not the usual y on x). The regressors can be a matrix with 2 or more columns. The missing values are suitably ignored by the standardization.

Value

Absolute values of kernel regression residuals are returned after standardizing the data on both sides so that the magnitudes of residuals are comparable between regression of x on y on the one hand and regression of y on x on the other.

Author(s)

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

References

Vinod, H. D. 'Generalized Correlation and Kernel Causality with Applications in Development Economics' in Communications in Statistics -Simulation and Computation, 2015, http://dx. doi . org/10.1080/03610918.2015.1122048

Examples

```
## Not run:
set.seed(330)
x=sample(20:50)
y=sample(20:50)
abs_stdres(x,y)
## End(Not run)
```

```
abs_stdresC
```

Absolute values of residuals of kernel regressions of x on y when both x and y are standardized and control variables are present.

Description

1) standardize the data to force mean zero and variance unity, 2) kernel regress x on y and a matrix of control variables, with the option 'residuals $=$ TRUE' and finally 3) compute the absolute values of residuals.

Usage

```
abs_stdresC(x, y, ctrl)
```


Arguments

x	vector of data on the dependent variable
y	data on the regressors which can be a matrix
ctrl	Data matrix on the control variable(s) beyond causal path issues

Details

The first argument is assumed to be the dependent variable. If abs_stdres (x, y) is used, you are regressing x on y (not the usual y on x). The regressors can be a matrix with two or more columns. The missing values are suitably ignored by the standardization.

Value

Absolute values of kernel regression residuals are returned after standardizing the data on both sides so that the magnitudes of residuals are comparable between regression of x on y on the one hand and regression of y on x on the other.

Author(s)

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

References

Vinod, H. D.'Generalized Correlation and Kernel Causality with Applications in Development Economics' in Communications in Statistics -Simulation and Computation, 2015, http://dx.doi. org/10.1080/03610918.2015.1122048

See Also

See abs_stdres.

Examples

```
## Not run:
set.seed(330)
x=sample(20:50)
y=sample(20:50)
z=sample(21:51)
abs_stdresC(x,y,ctrl=z)
## End(Not run)
```

abs_stdrhserC Absolute residuals kernel regressions of standardized x on y and control variables, Crl has abs(RHS*y) not gradients.

Description

1) standardize the data to force mean zero and variance unity, 2) kernel regress x on y and a matrix of control variables, with the option 'residuals = TRUE' and finally 3) compute the absolute values of residuals.

Usage

abs_stdrhserC(x, y, ctrl, ycolumn = 1)

Arguments

x
$y \quad$ data on the regressors which can be a matrix
ctrl Data matrix on the control variable(s) beyond causal path issues
ycolumn if y has more than one column, the column number used when multiplying residuals times this column of y, default $=1$ or first column of y matrix is used

Details

The first argument is assumed to be the dependent variable. If abs_stdrhserC (x, y) is used, you are regressing x on y (not the usual y on x). The regressors can be a matrix with 2 or more columns. The missing values are suitably ignored by the standardization.

Value

Absolute values of kernel regression residuals are returned after standardizing the data on both sides so that the magnitudes of residuals are comparable between regression of x on y on the one hand and regression of y on x on the other.

Author(s)

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

References

Vinod, H. D. 'Generalized Correlation and Kernel Causality with Applications in Development Economics' in Communications in Statistics -Simulation and Computation, 2015, http://dx. doi . org/10.1080/03610918.2015.1122048

See Also

See abs_stdres.

Examples

```
## Not run:
set.seed(330)
x=sample(20:50)
y=sample(20:50)
z=sample(21:51)
abs_stdrhserC(x,y,ctrl=z)
## End(Not run)
```

abs_stdrhserr \quad| Absolute values of Hausman-Wu null in kernel regressions of x on y |
| :--- |
| when both x and y are standardized. |

Description

1) standardize the data to force mean zero and variance unity, 2) kernel regress x on y, with the option 'gradients = TRUE' and finally 3) compute the absolute values of Hausman-Wu null hypothesis for testing exogeneity, or E (RHS.regressor*error) $=0$ where error is approximated by kernel regression residuals

Usage

abs_stdrhserr(x, y)

Arguments

$x \quad$ vector of data on the dependent variable
$y \quad$ data on the regressors which can be a matrix

Details

The first argument is assumed to be the dependent variable. If abs_stdrhserr (x, y) is used, you are regressing x on y (not the usual y on x). The regressors can be a matrix with 2 or more columns. The missing values are suitably ignored by the standardization.

Value

Absolute values of kernel regression RHS*residuals are returned after standardizing the data on both sides so that the magnitudes of Hausman-Wu null values are comparable between regression of x on y on the one hand and flipped regression of y on x on the other.

Author(s)

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

Examples

```
## Not run:
set.seed(330)
x=sample(20:50)
y=sample(20:50)
abs_stdrhserr(x,y)
## End(Not run)
```


allPairs

Report causal identification for all pairs of variables in a matrix (deprecated function). It is better to choose a target variable and pair it with all others, instead of considering all possible targets.

Description

This studies all possible (perhaps too many) causal directions in a matrix. It is deprecated because it uses older criterion 1 by caling abs_stdapd I recommend using causeSummary or its block version cuseSummBlk. This uses abs_stdres, comp_portfo2, etc. and returns a matrix with 7 columns having detailed output. Criterion 1 has been revised as described in Vinod (2019) and is known to work better.

Usage

allPairs(mtx, dig $=6$, verbo $=$ FALSE, typ $=1$, rnam $=$ FALSE)

Arguments

mtx	Input matrix with variable names
dig	Digits of accuracy in reporting (=6, default)
verbo	Logical variable, set to 'TRUE' if printing is desired
typ	Causal direction criterion number (typ=1 is default) Criterion $1(\mathrm{Cr} 1)$ compares kernel regression absolute values of gradients. Criterion $2(\mathrm{Cr} 2)$ compares ker- nel regression absolute values of residuals. Criterion $3(\mathrm{Cr} 3)$ compares kernel regression based $\mathrm{r}^{*}(\mathrm{xly})$ with $\mathrm{r}^{*}(\mathrm{ylx})$.
rnam	Logical variable, default rnam=FALSE means the user does not want the row \quadnames to be (somewhat too cleverly) assigned by the function.

Value

A 7-column matrix called 'outcause' with names of variables X and Y in the first two columns and the name of the 'causal' variable in 3rd col. Remaining four columns report numerical computations of SD1 to SD4, $r^{*}(x \mid y), r^{*}(y \mid x)$. Pearson r and p-values for its traditional significance testing.

Note

The cause reported in the third column is identified from the sign of the first SD1 only, ignoring SD2, SD3 and SD4 under both Cr1 and Cr2. It is a good idea to loop a call to this function with $\operatorname{typ}=1: 3$. One can print the resulting 'outcause' matrix with the xtable (outcause) for the Latex output. A similar deprecated function included in this package, called some0Pairs, incorporates all SD1 to SD4 and all three criteria Cr1 rto Cr3 to report a 'sum' of indexes representing the signed number whose sign can more comprehensively help determine the causal direction(s). Since the Cr 1 here is revised in later work, this is deprecated.

Author(s)

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

References

Vinod, H. D.'Generalized Correlation and Kernel Causality with Applications in Development Economics' in Communications in Statistics -Simulation and Computation, 2015, http://dx.doi. org/10.1080/03610918.2015.1122048

Vinod, H. D. 'New exogeneity tests and causal paths,' Chapter 2 in 'Handbook of Statistics: Conceptual Econometrics Using R', Vol.32, co-editors: H. D. Vinod and C.R. Rao. New York: North Holland, Elsevier Science Publishers, 2019, pp. 33-64.

See Also

See Also somePairs, some0Pairs causeSummary

Examples

```
data(mtcars)
options(np.messages=FALSE)
for(j in 1:3){
a1=allPairs(mtcars[,1:3], typ=j)
print(a1)}
```

badCol internal badCol

Description

intended for internal use

Usage

data(badCol)

Format

The format is: int 4
bigfp Compute the numerical integration by the trapezoidal rule.

Description

See page 220 of Vinod (2008) "Hands-on Intermediate Econometrics Using R," for the trapezoidal integration formula needed for stochastic dominance. The book explains pre-multiplication by two large sparse matrices denoted by I_{F}, I_{f}. Here we accomplish the same computation without actually creating the large sparse matrices. For example, the I_{f} is replaced by cumsum in this code (unlike the R code in my textbook).

Usage

$\operatorname{bigfp}(d, p)$

Arguments

d A vector of consecutive interval lengths, upon combining both data vectors
$\mathrm{p} \quad$ Vector of probabilities of the type $1 / 2 \mathrm{~T}, 2 / 2 \mathrm{~T}, 3 / 2 \mathrm{~T}$, etc. to 1.

Value

Returns a result after pre-multiplication by I_{F}, I_{f} matrices, without actually creating the large sparse matrices. This is an internal function.

Note

This is an internal function, called by the function stochdom2, for comparison of two portfolios in terms of stochastic dominance (SD) of orders 1 to 4. Typical usage is: $s d 1 b=b i g f p(d=d j, p=r h s)$ $s d 2 b=b i g f p(d=d j, p=s d 1 b) s d 3 b=b i g f p(d=d j, p=s d 2 b) s d 4 b=b i g f p(d=d j, p=s d 3 b)$. This produces numerical evaluation vectors for the four orders, SD1 to SD4.

Author(s)

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

References

Vinod, H. D.', 'Hands-On Intermediate Econometrics Using R' (2008) World Scientific Publishers: Hackensack, NJ. https://www.worldscientific.com/worldscibooks/10.1142/6895

```
bootPairs
Compute matrix of n999 rows and p-1 columns of bootstrap 'sum'
``` (strength from Crl to Cr 3 ).

\section*{Description}

Maximum entropy bootstrap (meboot) package is used for statistical inference using the sum of three signs \(\operatorname{sg} 1\) to \(\operatorname{sg} 3\) from the three criteria Cr 1 to Cr 3 to assess preponderance of evidence in favor of a sign. \((+1,0,-1)\). The bootstrap output can be analyzed to assess approximate preponderance of a particular sign which determines the causal direction.

\section*{Usage}
bootPairs(mtx, ctrl = 0, n999 = 9)

\section*{Arguments}
\begin{tabular}{ll}
\(m t x\) & data matrix with two or more columns \\
ctrl & data matrix having control variable(s) if any \\
n 999 & Number of bootstrap replications (default=9)
\end{tabular}

\section*{Value}
out When mtx has p columns, out of bootPairs(mtx) is a matrix of \(n 999\) rows and \(p-1\) columns each containing resampled 'sum' values summarizing the weighted sums associated with all three criteria from the function silentPairs(mtx) applied to each bootstrap sample separately.

\section*{Note}

This computation is computer intensive and generally very slow. It may be better to use it at a later stage in the investigation when a preliminary causal determination is already made. A positive sign for \(j\)-th weighted sum reported in the column 'sum' means that the first variable listed in the argument matrix mtx is the 'kernel cause' of the variable in the \((\mathrm{j}+1)\)-th column of mtx .

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

\section*{References}

Vinod, H. D. 'Generalized Correlation and Kernel Causality with Applications in Development Economics' in Communications in Statistics -Simulation and Computation, 2015, http://dx.doi . org/10.1080/03610918.2015.1122048
Zheng, S., Shi, N.-Z., and Zhang, Z. (2012). Generalized measures of correlation for asymmetry, nonlinearity, and beyond. Journal of the American Statistical Association, vol. 107, pp. 1239-1252.

Vinod, H. D. and Lopez-de-Lacalle, J. (2009). 'Maximum entropy bootstrap for time series: The meboot R package.' Journal of Statistical Software, Vol. 29(5), pp. 1-19.

Vinod, H. D. Causal Paths and Exogeneity Tests in Generalcorr Package for Air Pollution and Monetary Policy (June 6, 2017). Available at SSRN: https://ssrn.com/abstract=2982128

\section*{See Also}

See Also silentPairs.

\section*{Examples}
```


## Not run:

options(np.messages = FALSE)
set.seed(34);x=sample(1:10);y=sample(2:11)
bb=bootPairs(cbind(x,y),n999=29)
apply(bb,2,summary) \#gives summary stats for n999 bootstrap sum computations
bb=bootPairs(airquality,n999=999);options(np.messages=FALSE)
apply(bb,2,summary) \#gives summary stats for n999 bootstrap sum computations
data('EuroCrime')
attach(EuroCrime)
bootPairs(cbind(crim,off),n999=29)\#First col. crim causes officer deployment,
\#hence positives signs are most sensible for such call to bootPairs
\#note that n999=29 is too small for real problems, chosen for quickness here.

## End(Not run)

```
```

bootPairs0 Compute matrix of n999 rows and p-1 columns of bootstrap 'sum'
index (strength from older criterion Cr1, with newer Cr2 and Cr3).

```

\section*{Description}

Maximum entropy bootstrap (meboot) package is used for statistical inference using the sum of three signs sg 1 to sg 3 from the three criteria Cr 1 to Cr 3 to assess preponderance of evidence in favor of a sign. \((+1,0,-1)\). The bootstrap output can be analyzed to assess approximate preponderance of a particular sign which determines the causal direction.

\section*{Usage}
bootPairs0(mtx, ctrl \(=0, \mathrm{n} 999=9)\)

\section*{Arguments}
\begin{tabular}{ll}
\(m t x\) & data matrix with two or more columns \\
ctrl & data matrix having control variable(s) if any \\
\(n 999\) & Number of bootstrap replications (default=9)
\end{tabular}

\section*{Value}
out When \(m t x\) has \(p\) columns, out of bootPairs (\(m t x\)) is a matrix of \(n 999\) rows and \(p-1\) columns each containing resampled 'sum' values summarizing the weighted sums associated with all three criteria from the function silentPairs(mtx) applied to each bootstrap sample separately.

\section*{Note}

This computation is computer intensive and generally very slow. It may be better to use it at a later stage in the investigation when a preliminary causal determination is already made. A positive sign for \(j\)-th weighted sum reported in the column 'sum' means that the first variable listed in the argument matrix \(m t x\) is the 'kernel cause' of the variable in the \((j+1)\)-th column of \(m t x\).

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

\section*{References}

Vinod, H. D. 'Generalized Correlation and Kernel Causality with Applications in Development Economics' in Communications in Statistics -Simulation and Computation, 2015, http://dx.doi. org/10.1080/03610918.2015.1122048
Zheng, S., Shi, N.-Z., and Zhang, Z. (2012). Generalized measures of correlation for asymmetry, nonlinearity, and beyond. Journal of the American Statistical Association, vol. 107, pp. 1239-1252.
Vinod, H. D. and Lopez-de-Lacalle, J. (2009). 'Maximum entropy bootstrap for time series: The meboot R package.' Journal of Statistical Software, Vol. 29(5), pp. 1-19.

Vinod, H. D. Causal Paths and Exogeneity Tests in Generalcorr Package for Air Pollution and Monetary Policy (June 6, 2017). Available at SSRN: https://ssrn.com/abstract=2982128

\section*{See Also}

See Also silentPairs0, bootPairs has the version with later version of Cr 1 .

\section*{Examples}
```


## Not run:

options(np.messages = FALSE)
set.seed(34);x=sample(1:10);y=sample(2:11)
bb=bootPairs0(cbind(x,y),n999=29)
apply(bb,2,summary) \#gives summary stats for n999 bootstrap sum computations
bb=bootPairs0(airquality,n999=999);options(np.messages=FALSE)
apply(bb,2,summary) \#gives summary stats for n999 bootstrap sum computations
data('EuroCrime')
attach(EuroCrime)
bootPairs0(cbind(crim,off),n999=29)\#First col. crim causes officer deployment,
\#hence positives signs are most sensible for such call to bootPairs
\#note that n999=29 is too small for real problems, chosen for quickness here.

## End(Not run)

```
bootQuantile \begin{tabular}{l}
Compute confidence intervals [quantile(s)] of indexes from bootPairs \\
output
\end{tabular} output

\section*{Description}

Begin with the output of bootPairs function, a (n 999 by \(\mathrm{p}-1\)) matrix when there are p columns of data, bootQuantile produces a (k by p-1) mtx of quantile(s) of bootstrap ouput assuming that there are k quantiles needed.

\section*{Usage}
bootQuantile(out, probs \(=c(0.025,0.975)\), per100 \(=\) TRUE)

\section*{Arguments}
out output from bootPairs with p-1 columns and n999 rows
probs quantile evaluation probabilities. The default is \(\mathrm{k}=2\), \(\operatorname{probs}=\mathrm{c}(.025,0.975)\) for a 95 percent confidence interval. Note that there are \(\mathrm{k}=2\) quantiles desired for each column with this specification
per100 logical (default per100=TRUE) to change the range of 'sum' to \([-100,100]\) values which are easier to interpret

\section*{Value}

CI k quantiles evaluated at probs as a matrix with k rows and quantile of pairwise \(\mathrm{p}-1\) indexes representing \(\mathrm{p}-1\) column pairs (fixing the first column in each pair) This function summarizes the output of of bootPairs (mtx) (a n999 by p-1 matrix) each containing resampled 'sum' values summarizing the weighted sums associated with all three criteria from the function silentPairs(mtx) applied to each bootstrap sample separately. \#'

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

\section*{References}

Vinod, H. D. 'Generalized Correlation and Kernel Causality with Applications in Development Economics' in Communications in Statistics -Simulation and Computation, 2015, http://dx. doi . org/10.1080/03610918.2015.1122048

Vinod, H. D. and Lopez-de-Lacalle, J. (2009). 'Maximum entropy bootstrap for time series: The meboot R package.' Journal of Statistical Software, Vol. 29(5), pp. 1-19.
Vinod, H. D. Causal Paths and Exogeneity Tests in Generalcorr Package for Air Pollution and Monetary Policy (June 6, 2017). Available at SSRN: https://ssrn.com/abstract=2982128

\section*{See Also}

See Also silentPairs.

\section*{Examples}
```


## Not run:

options(np.messages = FALSE)
set.seed(34);x=sample(1:10);y=sample(2:11)
bb=bootPairs(cbind(x,y),n999=29)
bootQuantile(bb) \#gives summary stats for n999 bootstrap sum computations
bb=bootPairs(airquality,n999=999);options(np.messages=FALSE)
bootQuantile(bb,tau=0.476)\#signs for n999 bootstrap sum computations
data('EuroCrime')
attach(EuroCrime)
bb=bootPairs(cbind(crim,off),n999=29) \#col.1= crim causes off
\#hence positive signs are more intuitively meaningful.
\#note that n999=29 is too small for real problems, chosen for quickness here.
bootQuantile(bb)\# quantile matrix for n999 bootstrap sum computations

## End(Not run)

```
```

bootSign

```

Probability of unambiguously correct (+ or -) sign from bootPairs output

\section*{Description}

If there are p columns of data, bootSign produces a p-1 by 1 vector of probabilities of correct signs assuming that the mean of \(n 999\) values has the correct sign and assuming that \(m\) of the 'sum' index values inside the range [-tau, tau] are neither positive nor negative but indeterminate or ambiguous (being too close to zero). That is, the denominator of \(\mathrm{P}(+1)\) or \(\mathrm{P}(-1)\) is (\(\mathrm{n} 999-\mathrm{m}\)) if m signs are too close to zero. Thus it measures the bootstrap success rate in identifying the correct sign, when the sign of the average of \(n 999\) bootstraps is assumed to be correct.

\section*{Usage}
bootSign(out, tau \(=0.476\))

\section*{Arguments}
out output from bootPairs with p-1 columns and n999 rows
tau threshold to determine what value is too close to zero, default tau \(=0.476\) is equivalent to 15 percent threshold for the unanimity index ui

\section*{Value}
sgn When mtx has p columns, sgn reports pairwise p-1 signs representing (fixing the first column in each pair) the average sign after averaging the output of of bootPairs (mtx) (a n999 by p-1 matrix) each containing resampled 'sum' values summarizing the weighted sums associated with all three criteria from the function silentPairs(mtx) applied to each bootstrap sample separately. \#'

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

\section*{References}

Vinod, H. D. 'Generalized Correlation and Kernel Causality with Applications in Development Economics' in Communications in Statistics -Simulation and Computation, 2015, http://dx. doi . org/10.1080/03610918.2015.1122048

Vinod, H. D. and Lopez-de-Lacalle, J. (2009). 'Maximum entropy bootstrap for time series: The meboot R package.' Journal of Statistical Software, Vol. 29(5), pp. 1-19.
Vinod, H. D. Causal Paths and Exogeneity Tests in Generalcorr Package for Air Pollution and Monetary Policy (June 6, 2017). Available at SSRN: https://ssrn.com/abstract=2982128

\section*{See Also}

See Also silentPairs, bootQuantile, bootSignPcent.

\section*{Examples}
```


## Not run:

options(np.messages = FALSE)
set.seed(34); x=sample(1:10); y=sample(2:11)
bb=bootPairs(cbind(x,y),n999=29)
bootSign(bb,tau=0.476) \#gives success rate in n999 bootstrap sum computations
bb=bootPairs(airquality,n999=999);options(np.messages=FALSE)
bootSign(bb,tau=0.476)\#signs for n999 bootstrap sum computations
data('EuroCrime');options(np.messages=FALSE)
attach(EuroCrime)
bb=bootPairs(cbind(crim,off),n999=29) \#col.1= crim causes off
\#hence positive signs are more intuitively meaningful.
\#note that n999=29 is too small for real problems, chosen for quickness here.
bootSign(bb,tau=0.476)\#gives success rate in n999 bootstrap sum computations

## End(Not run)

```
bootSignPcent Probability of unambiguously correct (+ or -) sign from bootPairs output transformed to percentages.

\section*{Description}

If there are p columns of data, bootSignPcent produces a \(\mathrm{p}-1\) by 1 vector of probabilities of correct signs assuming that the mean of \(n 999\) values has the correct sign and assuming that \(m\) of the 'ui' index values inside the range [-tau, tau] are neither positive nor negative but indeterminate or ambiguous (being too close to zero). That is, the denominator of \(\mathrm{P}(+1)\) or \(\mathrm{P}(-1)\) is (\(\mathrm{n} 999-\mathrm{m}\)) if m signs are too close to zero. Thus it measures the bootstrap success rate in identifying the correct sign, when the sign of the average of n 999 bootstraps is assumed to be correct.

\section*{Usage}
bootSignPcent(out, tau = 5)

\section*{Arguments}
out
output from bootPairs with p-1 columns and n999 rows
tau threshold to determine what value is too close to zero, default tau=5 is 5 percent threshold for the unanimity index ui

\section*{Value}
sgn When \(m t x\) has \(p\) columns, sgn reports pairwise \(p-1\) signs representing (fixing the first column in each pair) the average sign after averaging the output of of bootPairs (mtx) (a n999 by p-1 matrix) each containing resampled 'sum' values summarizing the weighted sums associated with all three criteria from the function silentPairs(mtx) applied to each bootstrap sample separately. \#'

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

\section*{References}

Vinod, H. D. 'Generalized Correlation and Kernel Causality with Applications in Development Economics' in Communications in Statistics -Simulation and Computation, 2015, http://dx. doi. org/10.1080/03610918.2015.1122048
Vinod, H. D. and Lopez-de-Lacalle, J. (2009). 'Maximum entropy bootstrap for time series: The meboot R package.' Journal of Statistical Software, Vol. 29(5), pp. 1-19.
Vinod, H. D. Causal Paths and Exogeneity Tests in Generalcorr Package for Air Pollution and Monetary Policy (June 6, 2017). Available at SSRN: https://ssrn.com/abstract=2982128

\section*{See Also}

See Also silentPairs, bootQuantile, bootSign.

\section*{Examples}
```


## Not run:

options(np.messages = FALSE)
set.seed(34);x=sample(1:10);y=sample(2:11)
bb=bootPairs(cbind(x,y),n999=29)
bootSignPcent(bb,tau=5) \#gives success rate in n999 bootstrap sum computations
bb=bootPairs(airquality,n999=999);options(np.messages=FALSE)
bootSignPcent(bb,tau=5)\#success rate for signs from n999 bootstraps
data('EuroCrime');options(np.messages=FALSE)
attach(EuroCrime)
bb=bootPairs(cbind(crim,off),n999=29) \#col.1= crim causes off
\#hence positive signs are more intuitively meaningful.
\#note that n999=29 is too small for real problems, chosen for quickness here.
bootSignPcent(bb,tau=5)\#successful signs from n999 bootstraps

## End(Not run)

```
bootSummary Compute usual summary stats of 'sum' indexes from bootPairs output

\section*{Description}

Begin with the output of bootPairs function, a (n 999 by \(\mathrm{p}-1\)) matrix when there are p columns of data, bootSummary produces a (6 by p-1) mtx of summary of bootstrap ouput (Min, 1st Qu,Median, Mean, 3rd Qi.,Max)

\section*{Usage}
bootSummary (out, per100 = TRUE)

\section*{Arguments}
out
output from bootPairs with p-1 columns and n999 rows in input here
per100
logical (default per100=TRUE) to change the range of 'sum' to \([-100,100]\) values which are easier to interpret

\section*{Value}
summ summary output from the (n 999 by \(\mathrm{p}-1\)) matrix output of bootPairs (\(m t x\)) each containing resampled 'sum' values summarizing the weighted sums associated with all three criteria from the function silentPairs(mtx) applied to each bootstrap sample separately.

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

\section*{References}

Vinod, H. D. 'Generalized Correlation and Kernel Causality with Applications in Development Economics' in Communications in Statistics -Simulation and Computation, 2015, http://dx. doi . org/10.1080/03610918.2015.1122048

Vinod, H. D. and Lopez-de-Lacalle, J. (2009). 'Maximum entropy bootstrap for time series: The meboot R package.' Journal of Statistical Software, Vol. 29(5), pp. 1-19.
Vinod, H. D. Causal Paths and Exogeneity Tests in Generalcorr Package for Air Pollution and Monetary Policy (June 6, 2017). Available at SSRN: https://ssrn.com/abstract=2982128

\section*{See Also}

See Also silentPairs.

\section*{Examples}
```


## Not run:

options(np.messages = FALSE)
set.seed(34);x=sample(1:10);y=sample(2:11)
bb=bootPairs(cbind(x,y),n999=29)
bootSummary(bb) \#gives summary stats for n999 bootstrap sum computations
bb=bootPairs(airquality,n999=999);options(np.messages=FALSE)
bootSummary(bb)\#signs for n999 bootstrap sum computations
data('EuroCrime')
attach(EuroCrime)
bb=bootPairs(cbind(crim,off),n999=29) \#col.1= crim causes off
\#hence positive signs are more intuitively meaningful.
\#note that n999=29 is too small for real problems, chosen for quickness here.
bootSummary(bb)\#signs for n999 bootstrap sum computations

## End(Not run)

```

\section*{Description}

Allowing input matrix of control variables, this function produces a 5 column matrix summarizing the results where the estimated signs of stochastic dominance order values, \((+1,0,-1)\), are weighted by \(w t=c(1.2,1.1,1.05,1)\) to compute an overall result for all orders of stochastic dominance by a weighted sum for the criteria Cr 1 and Cr 2 and added to the Cr 3 estimate as: \((+1,0,-1)\). The final range for the unanimity of sign index is \([-100,100]\).

\section*{Usage}
causeSummary (mtx, nam \(=\operatorname{colnames(mtx),~ctrl}=0, \operatorname{dig}=6\), wt \(=c(1.2,1.1,1.05,1)\), sumwt \(=4)\)

\section*{Arguments}
mtx The data matrix with many columns, \(y\) the first column is fixed and then paired with all columns, one by one, and still called x for the purpose of flipping.
nam vector of column names for mtx. Default: colnames(mtx)
ctrl data matrix for designated control variable(s) outside causal paths
dig Number of digits for reporting (default dig=6).
wt Allows user to choose a vector of four alternative weights for SD1 to SD4.
sumwt \(\quad\) Sum of weights can be changed here \(=4\) (default).

\section*{Details}

The reason for slightly declining weights on the signs from SD1 to SD4 is simply that the local mean comparisons implicit in SD1 are known to be more reliable than local variance implicit in SD2, local skewness implicit in SD3 and local kurtosis implicit in SD4. The reason for slightly declining sampling unreliability of higher moments is simply that SD4 involves fourth power of the deviations from the mean and SD3 involves 3rd power, etc. The summary results for all three criteria are reported in one matrix called out:

\section*{Value}

If there are p columns in the input matrix, \(\mathrm{x} 1, \mathrm{x} 2, . ., \mathrm{xp}\), say, and if we keep x 1 as a common member of all causal direction pairs \((\mathrm{x} 1, \mathrm{x}(1+\mathrm{j}))\) for \((\mathrm{j}=1,2, . ., \mathrm{p}-1)\) which can be flipped. That is, either x 1 is the cause or \(\mathrm{x}(1+\mathrm{j})\) is the cause in a chosen pair. The control variables are not flipped. The printed output of this function reports the results for \(\mathrm{p}-1\) pairs indicating which variable (by name) causes which other variable (also by name). It also prints strength or signed summary strength index in range \([-100,100]\). A positive sign of the strength index means \(x 1\) kernel causes \(x(1+j)\), whereas negative strength index means \(\mathrm{x}(1+\mathrm{j})\) kernel causes x 1 . The function also prints Pearson correlation and its p-value. This function also returns a matrix of p-1 rows and 5 columns entitled: "cause",
"response", "strength", "corr." and "p-value", respectively with self-explanatory titles. The first two columns have names of variables x 1 or \(\mathrm{x}(1+\mathrm{j})\), depending on which is the cause. The 'strength' column has absolute value of summary index in range [0,100] providing summary of causal results based on preponderance of evidence from Cr 1 to Cr 3 from four orders of stochastic dominance, etc. The order of input columns matters. The fourth column 'corr.' reports the Pearson correlation coefficient while the fifth column has the p-value for testing the null of zero Pearson coeff. This function calls silentPairs allowing for control variables. The output of this function can be sent to 'xtable' for a nice Latex table.

\section*{Note}

The European Crime data has all three criteria correctly suggesting that high crime rate kernel causes the deployment of a large number of police officers. Since Cr 1 to Cr 3 near unanimously suggest 'crim' as the cause of 'off', strength index 100 suggests unanimity. attach(EuroCrime); causeSummary (cbind(crim,off))

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY.

\section*{References}

Vinod, H. D. 'Generalized Correlation and Kernel Causality with Applications in Development Economics' in Communications in Statistics -Simulation and Computation, 2015, http://dx. doi . org/10.1080/03610918.2015.1122048
Vinod, H. D. 'New exogeneity tests and causal paths,' Chapter 2 in 'Handbook of Statistics: Conceptual Econometrics Using R', Vol.32, co-editors: H. D. Vinod and C.R. Rao. New York: North Holland, Elsevier Science Publishers, 2019, pp. 33-64.
Vinod, H. D. Causal Paths and Exogeneity Tests in Generalcorr Package for Air Pollution and Monetary Policy (June 6, 2017). Available at SSRN: https://ssrn.com/abstract=2982128

\section*{See Also}

See bootPairs, causeSummary 0 has an older version of this function.
See someCPairs
silentPairs

\section*{Examples}
```


## Not run:

mtx=as.matrix(mtcars[,1:3])
ctrl=as.matrix(mtcars[,4:5])
causeSummary(mtx, ctrl, nam=colnames(mtx))

## End(Not run)

options(np.messages=FALSE)

```
```

set.seed(234)
z=runif(10,2,11)\# z is independently created
x=sample(1:10)+z/10 \#x is somewhat indep and affected by z
y=1+2*x+3*z+rnorm(10)
w=runif(10)
x2=x;x2[4]=NA;y2=y;y2[8]=NA;w2=w;w2[4]=NA
causeSummary(mtx=cbind(x2,y2), ctrl=cbind(z,w2))

```
causeSummary0 Older Kernel causality summary of evidence for causal paths from
three criteria

\section*{Description}

Allowing input matrix of control variables, this function produces a 5 column matrix summarizing the results where the estimated signs of stochastic dominance order values, \((+1,0,-1)\), are weighted by \(w t=c(1.2,1.1,1.05,1)\) to compute an overall result for all orders of stochastic dominance by a weighted sum for the criteria Cr 1 and Cr 2 and added to the Cr 3 estimate as: \((+1,0,-1)\). The final range for the unanimity of sign index is \([-100,100]\).

\section*{Usage}
causeSummary0(mtx, nam \(=\) colnames \((m t x), \operatorname{ctrl}=0, \operatorname{dig}=6\), \(w t=c(1.2,1.1,1.05,1)\), sumwt \(=4)\)

\section*{Arguments}
mtx The data matrix with many columns, \(y\) the first column is fixed and then paired with all columns, one by one, and still called \(x\) for the purpose of flipping.
nam vector of column names for mtx. Default: colnames (mtx)
ctrl data matrix for designated control variable(s) outside causal paths
dig Number of digits for reporting (default dig=6).
wt Allows user to choose a vector of four alternative weights for SD1 to SD4.
sumwt \(\quad\) Sum of weights can be changed here \(=4\) (default).

\section*{Details}

The reason for slightly declining weights on the signs from SD1 to SD4 is simply that the local mean comparisons implicit in SD1 are known to be more reliable than local variance implicit in SD2, local skewness implicit in SD3 and local kurtosis implicit in SD4. The reason for slightly declining sampling unreliability of higher moments is simply that SD4 involves fourth power of the deviations from the mean and SD3 involves 3rd power, etc. The summary results for all three criteria are reported in one matrix called out:

\section*{Value}

If there are \(p\) columns in the input matrix, \(x 1, x 2, . ., x p\), say, and if we keep \(x 1\) as a common member of all causal direction pairs \((\mathrm{x} 1, \mathrm{x}(1+\mathrm{j}))\) for \((\mathrm{j}=1,2, \ldots, \mathrm{p}-1)\) which can be flipped. That is, either x 1 is the cause or \(\mathrm{x}(1+\mathrm{j})\) is the cause in a chosen pair. The control variables are not flipped. The printed output of this function reports the results for \(\mathrm{p}-1\) pairs indicating which variable (by name) causes which other variable (also by name). It also prints strength or signed summary strength index in range \([-100,100]\). A positive sign of the strength index means \(x 1\) kernel causes \(x(1+j)\), whereas negative strength index means \(x(1+j)\) kernel causes \(x 1\). The function also prints Pearson correlation and its p-value. This function also returns a matrix of p-1 rows and 5 columns entitled: "cause", "response", "strength", "corr." and " \(p\)-value", respectively with self-explanatory titles. The first two columns have names of variables x 1 or \(\mathrm{x}(1+\mathrm{j})\), depending on which is the cause. The 'strength' column has absolute value of summary index in range [0,100] providing summary of causal results based on preponderance of evidence from Cr 1 to Cr 3 from four orders of stochastic dominance, etc. The order of input columns matters. The fourth column 'corr.' reports the Pearson correlation coefficient while the fifth column has the p-value for testing the null of zero Pearson coeff. This function calls silentPairs0 (the older version) allowing for control variables. The output of this function can be sent to 'xtable' for a nice Latex table.

\section*{Note}

The European Crime data has all three criteria correctly suggesting that high crime rate kernel causes the deployment of a large number of police officers. Since Cr 1 to Cr 3 near unanimously suggest 'crim' as the cause of 'off', strength index 100 suggests unanimity. attach(EuroCrime); causeSummary0 (cbind(crim,off)). Both versions give identical result for this example. Old version of Cr 1 using gradients was also motivated by the same Hausman-Wu test statistic.

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY.

\section*{References}

Vinod, H. D. 'Generalized Correlation and Kernel Causality with Applications in Development Economics' in Communications in Statistics -Simulation and Computation, 2015, http://dx.doi. org/10.1080/03610918.2015.1122048
Vinod, H. D. Causal Paths and Exogeneity Tests in Generalcorr Package for Air Pollution and Monetary Policy (June 6, 2017). Available at SSRN: https://ssrn.com/abstract=2982128

\section*{See Also}

See bootPairs
See someCPairs
silentPairs

\section*{Examples}
```


## Not run:

mtx=as.matrix(mtcars[,1:3])
ctrl=as.matrix(mtcars[,4:5])
causeSummary0(mtx,ctrl, nam=colnames(mtx))

## End(Not run)

options(np.messages=FALSE)
set.seed(234)
z=runif(10,2,11)\# z is independently created
x=sample(1:10)+z/10 \#x is somewhat indep and affected by z
y=1+2*x+3*z+rnorm(10)
w=runif(10)
x2=x;x2[4]=NA;y2=y;y2[8]=NA;w2=w;w2[4]=NA
causeSummary0(mtx=cbind(x2,y2), ctrl=cbind(z,w2))

```
causeSummBlk \begin{tabular}{l}
Block Version Kernel causality summary causal paths from three cri- \\
teria
\end{tabular}

\section*{Description}

Allowing input matrix of control variables, this function produces a 5 column matrix summarizing the results where the estimated signs of stochastic dominance order values, \((+1,0,-1)\), are weighted by \(w t=c(1.2,1.1,1.05,1)\) to compute an overall result for all orders of stochastic dominance by a weighted sum for the criteria Cr 1 and Cr 2 and added to the Cr 3 estimate as: \((+1,0,-1)\). The final range for the unanimity of sign index is \([-100,100]\).

\section*{Usage}
causeSummBlk(mtx, nam = colnames(mtx), blksiz = 10, ctrl = 0, \(\operatorname{dig}=6\), wt \(=c(1.2,1.1,1.05,1)\), sumwt \(=4)\)

\section*{Arguments}
\(\mathrm{mtx} \quad\) The data matrix with many columns, y the first column is a fixed target and then it is paired with all other columns, one by one, and still called \(x\) for the purpose of flipping.
nam vector of column names for mtx. Default: colnames(mtx)
blksiz block size, default \(=10\), if chosen blksiz \(>n\), where \(n=\) rows in matrix then blk\(\operatorname{siz}=\mathrm{n}\). That is, no blocking is done
ctrl data matrix for designated control variable(s) outside causal paths
dig Number of digits for reporting (default dig=6).
wt Allows user to choose a vector of four alternative weights for SD1 to SD4.
sumwt \(\quad\) Sum of weights can be changed here \(=4\) (default).

\section*{Details}

The reason for slightly declining weights on the signs from SD1 to SD4 is simply that the local mean comparisons implicit in SD1 are known to be more reliable than local variance implicit in SD2, local skewness implicit in SD3 and local kurtosis implicit in SD4. The reason for slightly declining sampling unreliability of higher moments is simply that SD4 involves fourth power of the deviations from the mean and SD3 involves 3rd power, etc. The summary results for all three criteria are reported in one matrix called out:

\section*{Value}

If there are p columns in the input matrix, \(\mathrm{x} 1, \mathrm{x} 2, . ., \mathrm{xp}\), say, and if we keep x 1 as a common member of all causal-direction-pairs \((\mathrm{x} 1, \mathrm{x}(1+\mathrm{j}))\) for \((\mathrm{j}=1,2, . ., \mathrm{p}-1)\) which can be flipped. That is, either x 1 is the cause or \(\mathrm{x}(1+\mathrm{j})\) is the cause in a chosen pair. The control variables are not flipped. The printed output of this function reports the results for \(\mathrm{p}-1\) pairs indicating which variable (by name) causes which other variable (also by name). It also prints strength or signed summary strength index in range \([-100,100]\). A positive sign of the strength index means \(x 1\) kernel causes \(x(1+j)\), whereas negative strength index means \(x(1+j)\) kernel causes \(x 1\). The function also prints Pearson correlation and its p -value. This function also returns a matrix of \(\mathrm{p}-1\) rows and 5 columns entitled: "cause", "response", "strength", "corr." and " \(p\)-value", respectively with self-explanatory titles. The first two columns have names of variables x 1 or \(\mathrm{x}(1+\mathrm{j})\), depending on which is the cause. The 'strength' column has absolute value of summary index in range [0,100] providing summary of causal results based on preponderance of evidence from Cr 1 to Cr 3 from four orders of stochastic dominance, etc. The order of input columns matters. The fourth column 'corr.' reports the Pearson correlation coefficient while the fifth column has the p-value for testing the null of zero Pearson coeff. This function calls siPairsBlk allowing for control variables. The output of this function can be sent to 'xtable' for a nice Latex table.

\section*{Note}

The European Crime data has all three criteria correctly suggesting that high crime rate kernel causes the deployment of a large number of police officers. Since Cr 1 to Cr 3 near unanimously suggest 'crim' as the cause of 'off', strength index 100 suggests unanimity. attach(EuroCrime); causeSummary(cbind(crim,off))

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY.

\section*{References}

Vinod, H. D. 'Generalized Correlation and Kernel Causality with Applications in Development Economics' in Communications in Statistics -Simulation and Computation, 2015, http://dx. doi . org/10.1080/03610918.2015.1122048
Vinod, H. D. 'New exogeneity tests and causal paths,' Chapter 2 in 'Handbook of Statistics: Conceptual Econometrics Using R', Vol.32, co-editors: H. D. Vinod and C.R. Rao. New York: North Holland, Elsevier Science Publishers, 2019, pp. 33-64.

Vinod, H. D. Causal Paths and Exogeneity Tests in Generalcorr Package for Air Pollution and Monetary Policy (June 6, 2017). Available at SSRN: https://ssrn.com/abstract=2982128

\section*{See Also}
```

See bootPairs, causeSummary0 has an older version of this function.
See someCPairs
siPairsBlk, causeSummary

```

\section*{Examples}
```


## Not run:

mtx=as.matrix(mtcars[,1:3])
ctrl=as.matrix(mtcars[,4:5])
causeSummBlk(mtx,ctrl,nam=colnames(mtx))

## End(Not run)

options(np.messages=FALSE)
set.seed(234)
z=runif(10,2,11)\# z is independently created
x=sample(1:10)+z/10 \#x is somewhat indep and affected by z
y=1+2*x+3*z+rnorm(10)
w=runif(10)
x2=x;x2[4]=NA;y2=y;y2[8]=NA;w2=w;w2[4]=NA
causeSummBlk(mtx=cbind(x2,y2), ctrl=cbind(z,w2))

```
cofactor
Compute cofactor of a matrix based on row \(r\) and column \(c\).

\section*{Description}

Compute cofactor of a matrix based on row r and column c .

\section*{Usage}
cofactor (x, r, c)

\section*{Arguments}
x
\(r\) row number
c
column number
matrix whose cofactor is desired to be computed

\section*{Value}
cofactor of x , w.r.t. row r and column c .

\section*{Note}
needs the function 'minor" in memory. attaches sign \((-1)^{\wedge}(\mathrm{r}+\mathrm{c})\) to the minor.

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

\section*{See Also}
```

minor(x,r,c)

```

\section*{Examples}
```


## The function is currently defined as

function (x, r, c)
{
out = minor(x, r, c) * ((-1)^(r + c))
return(out)
}

```
comp_portfo2

Compares two vectors (portfolios) using stochastic dominance of orders 1 to 4.

\section*{Description}

Given two vectors of portfolio returns this function calls the internal function wtdpapb to report the simple means of four sophisticated measures of stochastic dominance. as explained in Vinod (2008).

\section*{Usage}
comp_portfo2(xa, xb)

\section*{Arguments}
\(x a \quad\) Data on returns for portfolio \(A\) in the form of a \(T\) by 1 vector
\(\mathrm{xb} \quad\) Data on returns for portfolio B in the form of a T by 1 vector

\section*{Value}

Returns four numbers which are averages of four sophisticated measures of stochastic dominance measurements called SD1 to SD4.

\section*{Note}

It is possible to modify this function to report the median or standard deviation or any other descriptive statistic by changing the line in the code 'oumean \(=\) apply (outb, 2 , mean)' toward the end of this function. A trimmed mean may be of interest when outliers are suspected.

\section*{require(np)}

Make sure that functions wtdpapb, bigfp, stochdom2 are in the memory. and options(np.messages=FALSE)

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

\section*{References}

Vinod, H. D.", "Hands-On Intermediate Econometrics Using R" (2008) World Scientific Publishers: Hackensack, NJ. (Chapter 4) https://www.worldscientific.com/worldscibooks/10.1142/ 6895

\section*{See Also}
stochdom2

\section*{Examples}
```

set.seed(30)
xa=sample(20:30)\#generally lower returns
xb=sample(32:40)\# higher returns in xb
gp = comp_portfo2(xa, xb)\#all Av(sdi) positive means xb dominates
\#\#positive SD1 to SD4 means xb dominates xa as it should

```
```

da internal da

```

\section*{Description}
intended for internal use only

\section*{Usage}
da
da2Lag internal da2Lag

\section*{Description}
intended for internal use

\section*{Usage}
data(da2Lag)

\section*{Format}

The format is: int 4
depMeas depMeas Measure dependence between two vectors.

\section*{Description}

An infant may depend on the mother for survival, but not vice versa. Dependence relations need not be symmetric, yet correlation coefficients are symmetric. One way to measure the extent of dependence is to find the max of the absolute values of the two asymmetric correlations using Vinod (2015) definition of generalized (asymmetric) correlation coefficients. It requires a kernel regression of x on y obtained by using the ' \(n \mathrm{n}\) ' package and its flipped version. We use a block version of 'gmemtx0' called 'gmemtxBlk' to admit several bandwidths.

\section*{Usage}
depMeas(x, y, blksiz = length(x))

\section*{Arguments}
\begin{tabular}{ll}
\(x\) & Vector of data on first variable \\
\(y\) & Vector of data on second variable \\
blksiz & \begin{tabular}{l}
block size, default=10, if chosen blksiz \(>n\), where \(n=\) rows in matrix then blk- \\
siz=n. That is, no blocking is done
\end{tabular}
\end{tabular}

\section*{Value}

A measure of dependence.

\section*{Note}

This function needs the gmemtxBlk function which in turn needs the np package.

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

\section*{References}

Vinod, H. D. 'Generalized Correlation and Kernel Causality with Applications in Development Economics' in Communications in Statistics -Simulation and Computation, 2015, http://dx. doi . org/10.1080/03610918.2015.1122048
Vinod, H. D. 'Matrix Algebra Topics in Statistics and Economics Using R', Chapter 4 in Handbook of Statistics: Computational Statistics with R, Vol.32, co-editors: M. B. Rao and C.R. Rao. New York: North Holland, Elsevier Science Publishers, 2014, pp. 143-176.

\section*{See Also}

See Also gmcmtx0 and gmemtxBlk

\section*{Examples}
```

library(generalCorr)
options(np.messages = FALSE)
x=1:20;y=sin(x)
depMeas(x,y,blksiz=20)

```
diff.e0 Internal diff.e0

\section*{Description}

Internal diff.e0
```

Usage
data(diff.e0)

```
 dig Internal dig

\section*{Description}

Intended for internal use

\section*{Usage}
data(dig)

\section*{Format}

The format digs: int 78
```

    e0 internal e0
    ```

\section*{Description}
intended for internal use only

\section*{Usage}
e0

\section*{Description}

This data set refers to crime in European countries during 2008. The sources are World Bank and Eurostat. The crime statistics refers to homicides. It avoids possible reporting bias from the presence of police officers, because homicide reporting in most countries is standardized. Typical usage is: data(EuroCrime); attach(EuroCrime). The secondary source 'quandl.com' was used for collecting these data.

\section*{Details}

The variables included in the dataset are:
- Country Name of the European country
- crim Per capita crime rate
- off Per capita deployment of police officers
generalCorrInfo generalCorr package description:

\section*{Description}

This package provides convenient software tools for causal path determinations using Vinod (2014, 2015) and extends them. A matrix of asymmetric generalized correlations \(r^{*}(x \mid y)\) is reported by the functions rstar and gmamtx0. The \(r^{*}(x \mid y)\) measures the strength of the dependence of \(x\) on \(y\). If \(\left|r^{*}(\mathrm{x} \mid \mathrm{y})\right|>\left|\mathrm{r}^{*}(\mathrm{y} \mid \mathrm{x})\right|\) it suggests that y is more likely the "kernel cause" of x . This package refers to the \(\mathrm{r}^{*}\) based criterion as criterion \(3(\mathrm{Cr} 3)\) and further adds two additional ways of comparing two kernel regressions helping identify the 'cause' called criterion 1 and \(2(\mathrm{Cr} 1\) and Cr 2\()\) using absolute values of gradients and residuals, respectively. See references below. The package has one-line commands summarizing all three criteria leading to high (over \(70 \%\)) success rates in causal path identifications.

\section*{Details}

The usual partial correlations are generalized for the asymmetric matrix of r *'s. Partial correlations help asses the effect of \(x\) on \(y\) after removing the effect of a set of (control) variables. See parcor_ijk and parcor_ridg. Another way of generalizing partial correlations by using incremental R-square values in kernel regressions are provided in functions mag_ctrl and someMagPairs.
The package provides additional tools for causal assessment, for printing the causal detections in a clear, comprehensive compact summary form, such as somePairs, some0Pairs, someCPairs for matrix algebra, such as cofactor, for outlier detection get0outlier, for numerical integration by the trapezoidal rule, stochastic dominance stochdom2 and comp_portfo2, etc. The function causeSummary gives an overall summary of causal path results. The compact function silentPairs gives one-line summary of causal path strengths, where negative strength means that variable 'causes' the variable in the first column.
The package has a function pcause for bootstrap-based statistical inference and another one for a heuristic t-test called heurist. Pairwise deletion of missing data is done in napair, while tripletwise deletion is in naTriplet intended for use when control variable(s) are also present. If one has panel data, functions PanelLag and Panel2Lag are relevant. pillar3D provides 3-dimensional plots of data which look more like surfaces, than usual plots with vertical pins.

In simultaneous equation models where endogeneity of regressors is feared, we suggest using Prof. Koopmans' method which suggests ignoring endogeneity issues for all variables "causing" the dependent variable assessed by our three criteria. Weighted summary of all three criteria is in someCPairs.

\section*{Note}

A vignette 1 provided with this package generalCorr at CRAN describes the usage of the package with examples. Type the following command: vignette("generalCorr-vignette", package="generalCorr") to read the vignette. See also additional citations in the vignette, the references here and their citations for further details.

\section*{References}

Vinod, H. D.'Generalized Correlation and Kernel Causality with Applications in Development Economics' in Communications in Statistics -Simulation and Computation, 2015, http://dx.doi. org/10.1080/03610918.2015.1122048
Vinod, H. D. 'Matrix Algebra Topics in Statistics and Economics Using R', Chapter 4 in 'Handbook of Statistics: Computational Statistics with R', Vol.32, co-editors: M. B. Rao and C.R. Rao. New York: North Holland, Elsevier Science Publishers, 2014, pp. 143-176.

Zheng, S., Shi, N.-Z., and Zhang, Z. (2012). 'Generalized measures of correlation for asymmetry, nonlinearity, and beyond,' Journal of the American Statistical Association, vol. 107, pp. 1239-1252.
Vinod, H. D. Causal Paths and Exogeneity Tests in Generalcorr Package for Air Pollution and Monetary Policy (June 6, 2017). Available at SSRN: https://ssrn.com/abstract=2982128
Vinod, H. D. 'New exogeneity tests and causal paths,' Chapter 2 in 'Handbook of Statistics: Conceptual Econometrics Using R', Vol.32, co-editors: H. D. Vinod and C.R. Rao. New York: North Holland, Elsevier Science Publishers, 2019, pp. 33-64.
get0outliers Function to compute outliers and their count using Tukey method using 1.5 times interquartile range (IQR) to define boundaries.

\section*{Description}

Function to compute outliers and their count using Tukey method using 1.5 times interquartile range (IQR) to define boundaries.

\section*{Usage}
get0outliers(x , verbo \(=\) TRUE, mult \(=1.5\))

\section*{Arguments}

X
verbo set to TRUE(default) assuming printed details are desired.
mult \(\quad=1.5\) (default), the number of times IQR is used in defining outlier boundaries.

\section*{Value}
below which items are lower than the lower limit
above which items are larger than the upper limit
low.lim the lower boundary for outlier detection
up.lim the upper boundary for outlier detection
nUP count of number of data points above upper boundary
nLO count of number of data points below lower boundary

\section*{Note}

The function removes the missing data before checking for outliers.

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

\section*{Examples}
```

set.seed(101);x=sample(1:100)[1:15];x[16]=150;x[17]=NA
get0outliers(x)\#correctly identifies outlier=150

```
```

getSeq Two sequences: starting+ending values from n and blocksize (internal
use)

```

\section*{Description}

This is an auxiliary function for gmcmtxBlk. It gives sequences of starting and ending values

\section*{Usage}
getSeq(n, blksiz)

\section*{Arguments}
\begin{tabular}{ll}
n & length of the range \\
blksiz & blocksize
\end{tabular}

\section*{Value}
two vectors sqLO and sqUP

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

\section*{See Also}
gmcmtxBlk

\section*{Examples}
```

getSeq(n=99, blksiz=10)

```
```

    gmc0 internal gmc0
    ```

\section*{Description}
intended for internal use only
\begin{tabular}{l}
Usage \\
gmc 0 \\
gmc1 \\
\hline internal gmcl
\end{tabular}

\section*{Description}
intended for internal use only
\begin{tabular}{l}
Usage \\
gmc1 \\
\hline gmcmtx0 \begin{tabular}{l}
Matrix \(R^{*}\) of generalized correlation coefficients captures nonlineari- \\
ties.
\end{tabular}
\end{tabular}

\section*{Description}

This function checks for missing data for each pair individually. It then uses the kern function to kernel regress \(x\) on \(y\), and conversely \(y\) on \(x\). It needs the library ' \(n p\) ' which reports R-squares of each regression. This function reports their square roots after assigning them the observed sign of the Pearson correlation coefficient. Its advantages are: (i) It is asymmetric yielding causal direction information, by relaxing the assumption of linearity implicit in usual correlation coefficients. (ii) The \(r^{*}\) correlation coefficients are generally larger upon admitting arbitrary nonlinearities. (iii) \(\max (|\mathrm{R} * \mathrm{ij}|, \mid \mathrm{R} * \mathrm{jil})\) measures (nonlinear) dependence. For example, let \(\mathrm{x}=1: 20\) and \(\mathrm{y}=\sin (\mathrm{x})\). This \(y\) has a perfect (100 percent) nonlinear dependence on \(x\) and yet Pearson correlation coefficient \(r(x y)-0.0948372\) is near zero and usual confidence interval (\(-0.516,0.363\)) includes zero, implying that it is not different from zero. This shows a miserable failure of traditional \(\mathrm{r}(\mathrm{x}, \mathrm{y})\) to measure dependence when nonlinearities are present.

\section*{Usage}
gmcmtx0(mym, nam \(=\) colnames(mym))

\section*{Arguments}
\begin{tabular}{ll}
mym & A matrix of data on variables in columns \\
nam & Column names of the variables in the data matrix
\end{tabular}

\section*{Value}

A non-symmetric R* matrix of generalized correlation coefficients

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

\section*{References}

Vinod, H. D.'Generalized Correlation and Kernel Causality with Applications in Development Economics' in Communications in Statistics -Simulation and Computation, 2015, http://dx.doi. org/10.1080/03610918.2015.1122048
Vinod, H. D. 'Matrix Algebra Topics in Statistics and Economics Using R', Chapter 4 in 'Handbook of Statistics: Computational Statistics with R', Vol.32, co-editors: M. B. Rao and C.R. Rao. New York: North Holland, Elsevier Science Publishers, 2014, pp. 143-176.

Vinod, H. D. 'New exogeneity tests and causal paths,' Chapter 2 in 'Handbook of Statistics: Conceptual Econometrics Using R', Vol.32, co-editors: H. D. Vinod and C.R. Rao. New York: North Holland, Elsevier Science Publishers, 2019, pp. 33-64.

Zheng, S., Shi, N.-Z., and Zhang, Z. (2012). 'Generalized measures of correlation for asymmetry, nonlinearity, and beyond,' Journal of the American Statistical Association, vol. 107, pp. 1239-1252.

\section*{See Also}

See Also as gmcmtxBlk for a more general version using blocking.

\section*{Examples}
```

gmcmtx0(mtcars[,1:3])

## Not run:

set.seed(34);x=matrix(sample(1:600)[1:99],ncol=3)
colnames(x)=c('V1', 'v2', 'V3')
gmcmtx0(x)

## End(Not run)

```

Matrix \(R^{*}\) of generalized correlation coefficients captures nonlinearities using blocks.

\section*{Description}

The algorithm uses two auxiliary functions, getSeq and NLhat. The latter uses the kern function to kernel regress \(x\) on \(y\), and conversely \(y\) on \(x\). It needs the package ' \(n\),' which reports residuals and allows one to compute fitted values (xhat, yhat). Unlike gmcmtx0, this function considers blocks of blksiz=10 (default) pairs of data points separately with distinct bandwidths for each block, usually creating superior local fits.

\section*{Usage}
gmcmtxBlk(mym, nam = colnames(mym), blksiz = 10)

\section*{Arguments}
mym A matrix of data on selected variables arranged in columns
nam Column names of the variables in the data matrix
blksiz block size, default=10, if chosen blksiz \(>\mathrm{n}\), where \(\mathrm{n}=\) rows in matrix then blk\(\operatorname{siz}=\mathrm{n}\). That is, no blocking is done

\section*{Details}

This function does pairwise checks of missing data for all pairs. Assume that there are n rows in the input matrix 'mym' with some missing rows. If the columns of mym are denoted (\(\mathrm{X} 1, \mathrm{X} 2, \ldots \mathrm{Xp}\)), we are considering all pairs (\(\mathrm{Xi}, \mathrm{Xj}\)), treated as (\(\mathrm{x}, \mathrm{y}\)), with 'nv' number of valid (non-missing) rows Note that each x and y is an (nv by 1) vector. This function further splits these (\(\mathrm{x}, \mathrm{y}\)) vectors into as many subgroups or blocks as are needed for the nv paired valid data points for the chosen block length (blksiz)
Next, the algorithm strings together various blocks of fitted value vectors (xhat, yhat) also of dimension nv by 1 . Now for each pair of Xi Xj (column \(\mathrm{Xj}=\) cause, row \(\mathrm{Xi}=\) response, treated as x and \(y\)), the algorithm computes \(\mathrm{R} *_{\mathrm{ij}}\) the simple Pearson correlation coefficient between (x , xhat) and as \(\mathrm{R} * \mathrm{ji}\) the correlation coeff. between (y , yhat). Next, it assigns \(|\mathrm{R} * \mathrm{ij}|\) and \(\mid \mathrm{R} * \mathrm{jil}\) the observed sign of the Pearson correlation coefficient between \(x\) and \(y\).
Its advantages discussed in Vinod \((2015,2019)\) are: (i) It is asymmetric yielding causal direction information, by relaxing the assumption of linearity implicit in usual correlation coefficients. (ii) The \(\mathrm{R}^{*}\) correlation coefficients are generally larger upon admitting arbitrary nonlinearities. (iii) \(\max (|\mathrm{R} * \mathrm{ij}|, \mid \mathrm{R} * \mathrm{jil})\) measures (nonlinear) dependence. For example, let \(\mathrm{x}=1: 20\) and \(\mathrm{y}=\sin (\mathrm{x})\). This y has a perfect (100 percent) nonlinear dependence on \(x\) and yet Pearson correlation coefficient \(r(x\) \(y)=-0.0948372\) is near zero, and its \(95 \%\) confidence interval \((-0.516,0.363)\) includes zero, implying that the population \(r(x, y)\) is not significantly different from zero. This example highlights a serious failure of the traditional \(\mathrm{r}(\mathrm{x}, \mathrm{y})\) in measuring dependence between x and y when nonlinearities are present. gmcmtx0 without blocking does work if \(\mathrm{x}=1: \mathrm{n}\), and \(\mathrm{y}=\mathrm{f}(\mathrm{x})=\sin (\mathrm{x})\) is used with \(\mathrm{n}<20\). But for larger n , the fixed bandwidth used by the kern function becomes a problem. The block version
has additional bandwidths for each block, and hence it correctly quantifies the presence of high dependence even when \(\mathrm{x}=1: \mathrm{n}\), and \(\mathrm{y}=\mathrm{f}(\mathrm{x})\) are defined for large n and complicated nonlinear functional forms for \(f(x)\).

\section*{Value}

A non-symmetric R* matrix of generalized correlation coefficients

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

\section*{References}

Vinod, H. D.'Generalized Correlation and Kernel Causality with Applications in Development Economics' in Communications in Statistics -Simulation and Computation, 2015, http://dx.doi. org/10.1080/03610918.2015.1122048
Vinod, H. D. 'Matrix Algebra Topics in Statistics and Economics Using R', Chapter 4 in 'Handbook of Statistics: Computational Statistics with R', Vol.32, co-editors: M. B. Rao and C.R. Rao. New York: North Holland, Elsevier Science Publishers, 2014, pp. 143-176.

Vinod, H. D. 'New exogeneity tests and causal paths,' Chapter 2 in 'Handbook of Statistics: Conceptual Econometrics Using R', Vol.32, co-editors: H. D. Vinod and C.R. Rao. New York: North Holland, Elsevier Science Publishers, 2019, pp. 33-64.
Zheng, S., Shi, N.-Z., and Zhang, Z. (2012). 'Generalized measures of correlation for asymmetry, nonlinearity, and beyond,' Journal of the American Statistical Association, vol. 107, pp. 1239-1252.

\section*{Examples}
```


## Not run:

x=1:20; y=sin(x)
gmcmtxBlk(cbind(x,y),blksiz=10)

## End(Not run)

```
```

gmcmtxZ compute the matrix R* of generalized correlation coefficients.

```

\section*{Description}

This function checks for missing data separately for each pair using kern function to kernel regress \(x\) on \(y\), and conversely y on \(x\). It needs the library ' \(n p\) ' which reports R-squares of each regression. This function reports their square roots with the sign of the Pearson correlation coefficients. Its appeal is that it is asymmetric yielding causal direction information. It avoids the assumption of linearity implicit in the usual correlation coefficients.

\section*{Usage}
gmcmtxZ(mym, nam = colnames(mym))

\section*{Arguments}
mym A matrix of data on variables in columns
nam Column names of the variables in the data matrix

\section*{Value}

A non-symmetric R* matrix of generalized correlation coefficients

\section*{Note}

This allows the user to change gmcmtx0 and further experiment with my code.

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

\section*{References}

Vinod, H. D. 'Generalized Correlation and Kernel Causality with Applications in Development Economics' in Communications in Statistics -Simulation and Computation, 2015, http://dx.doi . org/10.1080/03610918.2015.1122048

\section*{Examples}
```


## Not run:

set.seed(34);x=matrix(sample(1:600)[1:99],ncol=3)
colnames(x)=c('V1', 'v2', 'V3')
gmcmtxZ(x)

## End(Not run)

```
gmcxy_np Function to compute generalized correlation coefficients \(r^{*}(x \mid y)\) and \(r^{*}(y \mid x)\) from two vectors (not matrices)

\section*{Description}

This function uses the 'np' package and assumes that there are no missing data.

\section*{Usage}
gmcxy_np(x, y)

\section*{Arguments}
\begin{tabular}{ll}
\(x\) & vector of \(x\) data \\
\(y\) & vector of \(y\) data
\end{tabular}

\section*{Value}
corxy \(\quad r^{*}(x \mid y)\) from regressing \(x\) on \(y\), where \(y\) is the kernel cause.
coryx \(\quad r^{*}(y \mid x)\) from regressing \(y\) on \(x\), where \(x\) is the cause.

\section*{Note}

This is provided if the user want to avoid calling kern.

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

\section*{References}

Vinod, H. D. 'Generalized Correlation and Kernel Causality with Applications in Development Economics' in Communications in Statistics -Simulation and Computation, 2015, http://dx. doi. org/10.1080/03610918.2015.1122048
Vinod, H. D. 'Matrix Algebra Topics in Statistics and Economics Using R,' Chapter 4 in 'Handbook of Statistics: Computational Statistics with R,' Vol.32, co-editors: M. B. Rao and C.R. Rao. New York: North Holland, Elsevier Science Publishers, 2014, pp. 143-176.

\section*{Examples}
```


## Not run:

set.seed(34);x=sample(1:10);y=sample(2:11)
gmcxy_np(x,y)

## End(Not run)

```
goodCol internal goodCol

\section*{Description}
intended for internal use only

\section*{Usage}
goodCol

\section*{Description}

Function to run a heuristic \(t\) test of the difference between two generalized correlations.

\section*{Usage}
heurist(rxy, ryx, n)

\section*{Arguments}
rxy generalized correlation \(r^{*}(x \mid y)\) where \(y\) is the kernel cause.
ryx generalized correlation \(r^{*}(y \mid x)\) where \(x\) is the kernel cause.
\(\mathrm{n} \quad\) Sample size needed to determine the degrees of freedom for the t test.

\section*{Value}

Prints the t statistics and p -values.

\section*{Note}

This function requires Revele's R package called 'psych' in memory. This test is known to be conservative (i.e., often fails to reject the null hypothesis of zero difference between the two generalized correlation coefficients.)

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

\section*{Examples}
```

set.seed(34); x=sample(1:10);y=sample(2:11)
g1=gmcxy_np(x,y)
n=length(x)
h1=heurist(g1$corxy,g1$coryx,n)
print(h1)
print(h1$t) #t statistic
print(h1$p) \#p-value

```
i internal \(i\)

\section*{Description}
intended for internal use

\section*{Usage}
data(i)

\section*{Format}

The format is: int 78
\begin{tabular}{ll}
\hline ibad \(\quad\) internal object \\
\hline
\end{tabular}

\section*{Description}
intended for internal use
ii internal ii

\section*{Description}
intended for internal use
j internal \(j\)

\section*{Description}
intended for internal use

\section*{Usage}
data(j)

\section*{Format}

The format is: int 4
kern
Kernel regression with options for residuals and gradients.

\section*{Description}

Function to run kernel regression with options for residuals and gradients asssuming no missing data.

\section*{Usage}
kern(dep.y, reg.x, tol \(=0.1\), ftol \(=0.1\), gradients \(=\) FALSE, residuals = FALSE)

\section*{Arguments}
\begin{tabular}{ll}
dep.y & Data on the dependent (response) variable \\
reg. x & Data on the regressor (stimulus) variables \\
tol & \begin{tabular}{l}
Tolerance on the position of located minima of the cross-validation function \\
(default \(=0.1\))
\end{tabular} \\
ftol & \begin{tabular}{l}
Fractional tolerance on the value of cross validation function evaluated at local \\
minima (default \(=0.1\))
\end{tabular} \\
gradients & \begin{tabular}{l}
Make this TRUE if gradients computations are desired \\
residuals
\end{tabular} \\
\hline
\end{tabular}

\section*{Value}

Creates a model object 'mod' containing the entire kernel regression output. Type names(mod) to reveal the variety of outputs produced by 'npreg' of the 'np' package. The user can access all of them at will by using the dollar notation of R .

\section*{Note}

This is a work horse for causal identification.

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

\section*{References}

Vinod, H. D.'Generalized Correlation and Kernel Causality with Applications in Development Economics' in Communications in Statistics -Simulation and Computation, 2015, http://dx.doi. org/10.1080/03610918.2015.1122048

\section*{See Also}

See kern_ctrl.

\section*{Examples}
```


## Not run:

set.seed(34);x=matrix(sample(1:600)[1:50],ncol=2)
require(np); options(np.messages=FALSE)
k1=kern(x[,1],x[,2])
print(k1\$R2) \#prints the R square of the kernel regression

## End(Not run)

```
kern_ctrl Kernel regression with control variables and optional residuals and gradients.

\section*{Description}

Allowing matrix input of control variables, this function runs kernel regression with options for residuals and gradients.

\section*{Usage}
kern_ctrl(dep.y, reg.x, ctrl, tol = 0.1, ftol = 0.1, gradients = FALSE, residuals = FALSE)

\section*{Arguments}
\begin{tabular}{ll}
dep.y & Data on the dependent (response) variable \\
reg.x & Data on the regressor (stimulus) variable \\
ctrl & \begin{tabular}{l}
Data matrix on the control variable(s) kept outside the causal paths. A constant \\
vector is not allowed as a control variable.
\end{tabular} \\
tol & \begin{tabular}{l}
Tolerance on the position of located minima of the cross-validation function \\
(default=0.1)
\end{tabular} \\
ftol & \begin{tabular}{l}
Fractional tolerance on the value of cross validation function evaluated at local \\
minima (default=0.1)
\end{tabular} \\
gradients & \begin{tabular}{l}
Set to TRUE if gradients computations are desired
\end{tabular} \\
residuals & Set to TRUE if residuals are desired
\end{tabular}

\section*{Value}

Creates a model object 'mod' containing the entire kernel regression output. If this function is called as mod=kern_ctrl (\(x, y, \operatorname{ctrl}=\mathrm{z}\)), the researcher can simply type names(mod) to reveal the large variety of outputs produced by 'npreg' of the 'np' package. The user can access all of them at will using the dollar notation of \(R\).

Note
This is a work horse for causal identification.

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

\section*{References}

Vinod, H. D. 'Generalized Correlation and Kernel Causality with Applications in Development Economics' in Communications in Statistics -Simulation and Computation, 2015, http://dx. doi . org/10.1080/03610918.2015.1122048

\section*{See Also}

See kern.

\section*{Examples}
```


## Not run:

set.seed(34);x=matrix(sample(1:600)[1:50],ncol=5)
require(np)
k1=kern_ctrl(x[,1],x[,2],ctrl=x[,4:5])
print(k1\$R2) \#prints the R square of the kernel regression

## End(Not run)

```

Approximate overall magnitudes of kernel regression partials \(d x / d y\) and \(d y / d x\).

\section*{Description}

Uses Vinod (2015) and runs kernel regression of \(x\) on \(y\), and also of \(y\) on \(x\) by using the ' \(n p\) ' package. The function goes on to compute a summary magnitude of the overall approximate partial derivative dx/dy (and dy/dx), after adjusting for units by using an appropriate ratio of standard deviations. Of course, the real partial derivatives of nonlinear functions are generally distinct for each observation.

\section*{Usage}
mag(x, y)

\section*{Arguments}
x
y

Vector of data on the dependent variable
Vector of data on the regressor

\section*{Value}
vector of two magnitudes of kernel regression partials \(d x / d y\) and \(d y / d x\).

\section*{Note}

This function is intended for use only after the direction of causal path is already determined by various functions in this package (e.g. somePairs). For example, if the researcher knows that \(x\) causes \(y\), then only dy/dx denoted by dydx is relevant. The other output of the function dxdy is to be ignored. Similarly, only 'dxdy' is relevant if \(y\) is known to be the cause of \(x\).

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

\section*{References}

Vinod, H. D. 'Generalized Correlation and Kernel Causality with Applications in Development Economics' in Communications in Statistics -Simulation and Computation, 2015, http://dx. doi . org/10.1080/03610918.2015.1122048
Vinod, H. D. 'Matrix Algebra Topics in Statistics and Economics Using R', Chapter 4 in Handbook of Statistics: Computational Statistics with R, Vol.32, co-editors: M. B. Rao and C.R. Rao. New York: North Holland, Elsevier Science Publishers, 2014, pp. 143-176.

\section*{See Also}

See mag_ctrl.

\section*{Examples}
```

set.seed(123); x=sample(1:10); y=1+2*x+rnorm(10)
mag(x,y)\#dxdy approx=.5 and dydx approx=2 will be nice.

```
\begin{tabular}{ll}
mag_ctrl & \begin{tabular}{l}
After removing control variables, magnitude of effect of \(x\) on \(y\), and of \\
\(y\) on \(x\).
\end{tabular}
\end{tabular}

\section*{Description}

Uses Vinod (2015) and runs kernel regressions: \(x \sim y+c t r l\) and \(x \sim\) ctrl to evaluate the 'incremental change' in R-squares. Let (rxy;ctrl) denote the square root of that 'incremental change' after its sign is made the same as that of the Pearson correlation coefficient from \(\operatorname{cor}(x, y))\). One can interpret (rxy;ctrl) as a generalized partial correlation coefficient when \(x\) is regressed on \(y\) after removing the effect of control variable(s) in ctrl. It is more general than the usual partial correlation coefficient, since this one allows for nonlinear relations among variables. Next, the function computes 'dxdy' obtained by multiplying (rxy;ctrl) by the ratio of standard deviations, sd(x)/sd(y). Now
our 'dxdy' approximates the magnitude of the partial derivative (\(\mathrm{dx} / \mathrm{dy}\)) in a causal model where \(y\) is the cause and \(x\) is the effect. The function also reports entirely analogous 'dydx' obtained by interchanging x and y .

\section*{Usage}
mag_ctrl(x, y, ctrl)

\section*{Arguments}
\begin{tabular}{ll}
\(x\) & Vector of data on the dependent variable. \\
\(y\) & Vector of data on the regressor. \\
ctrl & \begin{tabular}{l}
data matrix for designated control variable(s) outside causal paths. A constant \\
vector is not allowed as a control variable.
\end{tabular}
\end{tabular}

\section*{Value}
vector of two magnitudes 'dxdy' (effect when \(x\) is regressed on \(y\)) and 'dydx' for reverse regression. Both regressions remove the effect of control variable(s).

\section*{Note}

This function is intended for use only after the causal path direction is already determined by various functions in this package (e.g. someCPairs). That is, after the researcher knows whether x causes \(y\) or vice versa. The output of this function is a vector of two numbers: (dxdy, dydx), in that order, representing the magnitude of effect of one variable on the other. We expect the researcher to use only 'dxdy' if \(y\) is the known cause, or 'dydx' if \(x\) is the cause. These approximate overall measures may not be well-defined in some applications, because the real partial derivatives of nonlinear functions are generally distinct for each evaluation point.

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

\section*{References}

Vinod, H. D. 'Generalized Correlation and Kernel Causality with Applications in Development Economics' in Communications in Statistics -Simulation and Computation, 2015, http://dx.doi . org/10.1080/03610918.2015.1122048
Vinod, H. D. 'Matrix Algebra Topics in Statistics and Economics Using R', Chapter 4 in Handbook of Statistics: Computational Statistics with R, Vol.32, co-editors: M. B. Rao and C. R. Rao. New York: North Holland, Elsevier Science Publishers, 2014, pp. 143-176.

\section*{See Also}

See mag

\section*{Examples}
```

set.seed(123);x=sample(1:10); z=runif(10); y=1+2*x+3*z+rnorm(10)
options(np.messages=FALSE)
mag_ctrl(x,y,z)\#dx/dy=0.47 is approximately 0.5, but dy/dx=1.41 is not approx=2,

```
\begin{tabular}{ll}
\hline min.e0 internal min.e0 \\
\hline
\end{tabular}

\section*{Description}
intended for internal use only

\section*{Usage}
min.e0
minor
Function to do compute the minor of a matrix defined by row \(r\) and column \(c\).

\section*{Description}

Function to do compute the minor of a matrix defined by row \(r\) and column c .

\section*{Usage}
minor (x, r, c)

\section*{Arguments}
\begin{tabular}{ll}
\(x\) & The input matrix \\
\(r\) & The row number \\
\(c\) & The column number
\end{tabular}

\section*{Value}

The appropriate 'minor' matrix defined from the input matrix.

\section*{Note}

This function is needed by the cofactor function.

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

\section*{Examples}
```


## Not run:

    x=matrix(1:20,ncol=4)
    minor(x,1,2)
    ## End(Not run)
    ```
 mtx internal mtx

\section*{Description}
intended for internal use only
\begin{tabular}{ll}
\begin{tabular}{l}
Usage \\
\(m t x\) \\
\(m t x 0\) \\
internal mtx 0 \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}
intended for internal use only
Usage
mtx0
\begin{tabular}{ll}
\hline mtx2 \(\quad\) internal mtx2 \\
\hline
\end{tabular}

\section*{Description}
intended for internal use only

\section*{Usage}
\(m t x 2\)

\section*{Description}
intended for internal use

\section*{Usage}
n

\section*{Format}

The format is: int 78
nall internal nall

\section*{Description}
intended for internal use only

\section*{Usage}
nall
internal nam.badCol

\section*{Description}
intended for internal use only

\section*{Usage}
nam.badCol
```

nam.goodCol internal nam.goodCol

```

\section*{Description}
intended for internal use only

\section*{Usage}
nam.goodCol
```

nam.mtx0 internal nam.mtx0

```

\section*{Description}
intended for internal use only

\section*{Usage}
nam.mtx0
napair
Function to do pairwise deletion of missing rows.

\section*{Description}

The aim in pair-wise deletions is to retain the largest number of available data pairs with all nonmissing data.

\section*{Usage}
napair (x, y)

\section*{Arguments}
x
\(y \quad\) Vector of y data

\section*{Value}
newx A new vector x after removing pairwise missing data
newy A new vector \(y\) after removing pairwise missing data

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

\section*{Examples}
\#\# Not run:
\(x=\operatorname{sample}(1: 10) ; y=\operatorname{sample}(1: 10) ; x[2]=N A ; y[3]=N A\)
napair \((x, y)\)
\#\# End(Not run)
```

naTriplet

```

Function to do matched deletion of missing rows from \(x, y\) and control variable(s).

\section*{Description}

The aim in three-way deletions is to retain only the largest number of available data triplets with all non-missing data.

\section*{Usage}
naTriplet(x, y, ctrl)

\section*{Arguments}
\begin{tabular}{ll}
\(x\) & Vector of \(x\) data \\
\(y\) & Vector of \(y\) data \\
ctrl & Data matrix on the control variable(s) kept beyond causal path determinations
\end{tabular}

\section*{Value}
\begin{tabular}{ll}
newx & A new vector \(x\) after removing triplet-wise missing data \\
newy & A new vector or matrix y after removing triplet-wise missing data \\
newctrl & A new vector or matrix ctrl after removing triplet-wise missing data
\end{tabular}

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

\section*{See Also}

See napair.

\section*{Examples}
```


## Not run:

x=sample(1:10);y=sample(1:10);x[2]=NA; y[3]=NA
w=sample(2:11)
naTriplet(x,y,w)

## End(Not run)

```

\section*{Description}

This is an auxiliary function for 'gmemtxBlk.' It uses two numerical vectors (\(\mathrm{x}, \mathrm{y}\)) of same length to create two vectors (xhat, yhat) of fitted values using nonlinear kernel regressions. It uses package ' \(n\) ' ' called by kern function to kernel regress \(x\) on \(y\), and conversely \(y\) on \(x\). It uses the option 'residuals=TRUE' of 'kern'

\section*{Usage}

NLhat (x, y)

\section*{Arguments}
\(x \quad\) A column vector of \(x\) data
\(y \quad\) A column vector of \(y\) data

\section*{Value}
two vectors named xhat and yhat for fitted values

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

\section*{See Also}

See Also as gmcmtxBlk.

\section*{Examples}
```


## Not run:

set.seed(34); x=sample(1:15);y=sample(1:15)
NLhat (x,y)

## End(Not run)

```
```

    out1 internal outl
    ```

\section*{Description}
intended for internal use only

\section*{Usage}
out1
```

p1 internal pl

```

\section*{Description}
intended for internal use only

\section*{Usage}
p1
```

Panel2Lag

```

Function to compute a vector of 2 lagged values of a variable from panel data.

\section*{Description}

The panel data have a set of time series for each entity (e.g. country) arranged such that all time series data for one entity is together. The data for the second entity should be below the entire data for first entity. When a variable is lagged twice, special care is needed to insert NA's for the first two time points (e.g. weeks) for each entity (country).

\section*{Usage}

Panel2Lag(ID, xj)

\section*{Arguments}

ID
x

Location of the column having time identities (e.g. the week number)
Data on variable to be lagged linked to ID

\section*{Value}

Vector containing 2 lagged values of xj .

\section*{Note}

This function is provided for convenient user modifications.

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

\section*{See Also}

A more general function PanelLag has examples.
PanelLag Function for computing a vector of one-lagged values of xj, a variable from panel data.

\section*{Description}

Panel data have a set of time series for each entity (e.g. country) arranged such that all time series data for one entity is together, and the data for the second entity should be below the entire data for first entity and so on for entities. In such a data setup, When a variable is lagged once, special care is needed to insert an NA for the first time point in the data (e.g. week) for each entity.

\section*{Usage}

PanelLag(ID, xj, lag = 1)

\section*{Arguments}

ID Location of the column having time identities (e.g. week number).
\(x j \quad\) Data vector of variable to be lagged and is linked with the ID.
lag Number of lags desired (lag=1 is the default).

\section*{Value}

Vector containing one-lagged values of variable xj .

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

\section*{Examples}
```


## Not run:

indiv=gl(6,12,labels=LETTERS[1:6])
\#creates A,A,A 12 times B B B also 12 times etc.
set.seed(99);cost=sample(30:90, 72, replace=TRUE)
revenu=sample(50:110, 72, replace=TRUE); month=rep(1:12,6)
df=data.frame(indiv,month, cost,revenu); head(df); tail(df)
L2cost=PanelLag(ID=month,xj=df[,'cost'], lag=2)
head(L2cost)
tail(L2cost)
gmcmtx0(cbind(revenu, cost,L2cost))
gmcxy_np(revenu,cost)

## End(Not run)

```
parcorBijk Block version of generalized partial correlation coefficients between
 \(X i\) and \(X j\), after removing the effect of \(x k\), via nonparametric regression
 residuals.

\section*{Description}

This function uses data on two column vectors, \(\mathrm{xi}, \mathrm{xj}\) and a third xk which can be a vector or a matrix, usually of the remaining variables in the model, including control variables, if any. It first removes missing data from all input variables. Then, it computes residuals of kernel regression (xi on xk) and (xj on xk). This is a block version of parcor_ijk.

\section*{Usage}
parcorBijk(xi, xj, xk, blksiz = 10)

\section*{Arguments}
\(x i \quad\) Input vector of data for variable \(x i\)
\(x j \quad\) Input vector of data for variable xj
\(\mathrm{xk} \quad\) Input data for variables in xk , usually control variables
blksiz block size, default=10, if chosen blksiz \(>\mathrm{n}\), where \(\mathrm{n}=\) rows in matrix then blk\(\operatorname{siz}=\mathrm{n}\). That is, no blocking is done

\section*{Value}
ouij Generalized partial correlation Xi with Xj (=cause) after removing xk
ouji Generalized partial correlation Xj with Xi (=cause) after removing xk allowing for control variables.

Note
This function calls kern,

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY.

\section*{See Also}

See parcor_linear.

\section*{Examples}
```


## Not run:

set.seed(34);x=matrix(sample(1:600)[1:99],ncol=3)
options(np.messages=FALSE)
parcorBijk(x[,1], x[,2], x[,3], blksi=10)

## End(Not run)\#'

```
```

parcorBMany

```

Block version reports many generalized partial correlation coefficients allowing control variables.

\section*{Description}

This function calls a block version parcorBijk of the function which uses original data to compute generalized partial correlations between \(X_{\text {idep }}\) and \(X_{j}\) where j can be any one of the remaining variables in the input matrix mtx. Partial correlations remove the effect of variables \(X_{k}\) other than \(X_{i}\) and \(X_{j}\). Calculation further allows for the presence of control variable(s) (if any) to remain always outside the input matrix and whose effect is also removed in computing partial correlations.

\section*{Usage}
parcorBMany(mtx, ctrl = 0, dig = 4, idep = 1, blksiz = 10, verbo = FALSE)

\section*{Arguments}
\begin{tabular}{ll}
mtx & Input data matrix with at least 3 columns. \\
ctrl & \begin{tabular}{l}
Input vector or matrix of data for control variable(s), default is \(\operatorname{ctrl}=0\) when \\
control variables are absent
\end{tabular} \\
dig & The number of digits for reporting \((=4\), default \()\) \\
idep & The column number of the first variable \((=1\), default \()\) \\
blksiz & \begin{tabular}{l}
block size, default=10, if chosen blksiz \(>n\), where \(n=\) rows in matrix then blk- \\
siz=n. That is, no blocking is done
\end{tabular} \\
verbo & Make this TRUE for detailed printing of computational steps
\end{tabular}

\section*{Value}

A five column 'out' matrix containing partials. The first column has the name of the idep variable. The second column has the name of the j variable, while the third column has partial correlation coefficients \(r^{*}(i, j \mid k)\).The last column reports the absolute difference between two partial correlations.

\section*{Note}

This function reports all partial correlation coefficients, while avoiding ridge type adjustment.

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY.

\section*{References}

Vinod, H. D. 'Generalized Correlations and Instantaneous Causality for Data Pairs Benchmark,' (March 8, 2015) http://ssrn.com/abstract=2574891

Vinod, H. D. 'Matrix Algebra Topics in Statistics and Economics Using R', Chapter 4 in Handbook of Statistics: Computational Statistics with R, Vol.32, co-editors: M. B. Rao and C.R. Rao. New York: North Holland, Elsevier Science Publishers, 2014, pp. 143-176.

\section*{See Also}

See Also parcor_ijk, parcorMany.

\section*{Examples}
```

set.seed(234)
z=runif(10,2,11)\# z is independently created
x=sample(1:10)+z/10 \#x is partly indep and partly affected by z
y=1+2*x+3*z+rnorm(10)\# y depends on x and z not vice versa
mtx=cbind(x,y,z)
parcorBMany(mtx, blksiz=10)

## Not run:

set.seed(34);x=matrix(sample(1:600)[1:99],ncol=3)
colnames(x)=c('V1', 'v2', 'V3')
parcorBMany(x, idep=1)

## End(Not run)

```

Report many generalized partial correlation coefficients allowing control variables.

\section*{Description}

This function calls parcor_ijk function which uses original data to compute generalized partial correlations between \(X_{i d e p}\) and \(X_{j}\) where j can be any one of the remaining variables in the input matrix mtx. Partial correlations remove the effect of variables \(x_{k}\) other than \(X_{i}\) and \(X_{j}\). Calculation further allows for the presence of control variable(s) (if any) to remain always outside the input matrix and whose effect is also removed in computing partial correlations.

\section*{Usage}
parcorMany(mtx, ctrl \(=0\), \(\operatorname{dig}=4\), idep \(=1\), verbo \(=\) FALSE)

\section*{Arguments}
\begin{tabular}{ll}
\(m t x\) & Input data matrix with at least 3 columns. \\
ctrl & \begin{tabular}{l}
Input vector or matrix of data for control variable(s), default is ctrl=0 when \\
control variables are absent
\end{tabular} \\
dig & The number of digits for reporting \((=4\), default \()\) \\
idep & The column number of the first variable \((=1\), default \()\) \\
verbo & Make this TRUE for detailed printing of computational steps
\end{tabular}

\section*{Value}

A five column 'out' matrix containing partials. The first column has the name of the idep variable. The second column has the name of the j variable, while the third column has partial correlation coefficients \(r^{*}(i, j \mid k)\). The last column reports the absolute difference between two partial correlations.

\section*{Note}

This function reports all partial correlation coefficients, while avoiding ridge type adjustment.

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY.

\section*{References}

Vinod, H. D. 'Generalized Correlations and Instantaneous Causality for Data Pairs Benchmark,' (March 8, 2015) http://ssrn.com/abstract=2574891
Vinod, H. D. 'Matrix Algebra Topics in Statistics and Economics Using R', Chapter 4 in Handbook of Statistics: Computational Statistics with R, Vol.32, co-editors: M. B. Rao and C.R. Rao. New York: North Holland, Elsevier Science Publishers, 2014, pp. 143-176.

\section*{parcorMtx}

\section*{See Also}

See Also parcor_ijk.

\section*{Examples}
```

set.seed(234)
z=runif(10,2,11)\# z is independently created
x=sample(1:10)+z/10 \#x is partly indep and partly affected by z
y=1+2*x+3*z+rnorm(10)\# y depends on }x\mathrm{ and z not vice versa
mtx=cbind(x,y,z)
parcorMany(mtx)

## Not run:

set.seed(34);x=matrix(sample(1:600)[1:99],ncol=3)
colnames(x)=c('V1', 'v2', 'V3')
parcorMany(x, idep=1)

## End(Not run)

```
```

parcorMtx

```

Matrix of generalized partial correlation coefficients, always leaving out control variables, if any.

\section*{Description}

This function calls parcor_ijk function which uses original data to compute generalized partial correlations between \(X_{i}\) and \(X_{j}\) where j can be any one of the remaining variables in the input matrix mtx. Partial correlations remove the effect of variables \(x_{k}\) other than \(X_{i}\) and \(X_{j}\). Calculation further allows for the presence of control variable(s) (if any) to remain always outside the input matrix and whose effect is also removed in computing partial correlations.

\section*{Usage}
parcorMtx (mtx, ctrl \(=0\), dig \(=4\), verbo \(=\) FALSE)

\section*{Arguments}
\begin{tabular}{ll}
\(m t x\) & Input data matrix with p columns. \(p\) is at least 3 columns. \\
ctrl & \begin{tabular}{l}
Input vector or matrix of data for control variable(s), default is ctrl=0 when \\
control variables are absent
\end{tabular} \\
dig & The number of digits for reporting \((=4\), default \()\) \\
verbo & Make this TRUE for detailed printing of computational steps
\end{tabular}

\section*{Value}

A p by p 'out' matrix containing partials \(\mathrm{r}^{*}(\mathrm{i}, \mathrm{j} \mid \mathrm{k})\). and \(\mathrm{r}^{*}(\mathrm{j}, \mathrm{i} \mid \mathrm{k})\).

\section*{Note}

We want to get all partial correlation coefficient pairs removing other column effects. Vinod (2018) shows why one needs more than one criterion to decide the causal paths or exogeneity.

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY.

\section*{References}

Vinod, H. D. 'Generalized Correlations and Instantaneous Causality for Data Pairs Benchmark,' (March 8, 2015) http://ssrn.com/abstract=2574891
Vinod, H. D. 'Matrix Algebra Topics in Statistics and Economics Using R', Chapter 4 in Handbook of Statistics: Computational Statistics with R, Vol.32, co-editors: M. B. Rao and C.R. Rao. New York: North Holland, Elsevier Science Publishers, 2014, pp. 143-176.

Vinod, H. D. 'New Exogeneity Tests and Causal Paths,' (June 30, 2018). Available at SSRN: https://ssrn.com/abstract=3206096

\section*{See Also}

See Also parcor_ijk.

\section*{Examples}
```

set.seed(234)
z=runif(10,2,11)\# z is independently created
x=sample(1:10)+z/10 \#x is partly indep and partly affected by z
y=1+2*x+3*z+rnorm(10)\# y depends on x and z not vice versa
mtx=cbind(x,y,z)
parcorMtx(mtx)

## Not run:

set.seed(34);x=matrix(sample(1:600)[1:99],ncol=3)
colnames(x)=c('V1', 'v2', 'V3')
parcorMtx(x)

## End(Not run)

```
parcorSilent

Silently compute generalized (ridge-adjusted) partial correlation coefficients from matrix \(R^{*}\).

\section*{Description}

This function calls parcor_ijkOLD function which uses a generalized correlation matrix \(\mathrm{R}^{*}\) as input to compute generalized partial correlations between \(X_{i}\) and \(X_{j}\) where j can be any one of the remaining variables. Computation removes the effect of all other variables in the matrix. It further adjusts the resulting partial correlation coefficients to be in the appropriate \([-1,1]\) range by using an additive constant in the fashion of ridge regression.
```

Usage
parcorSilent(gmc0, dig = 4, idep = 1, verbo = FALSE, incr = 3)

```

\section*{Arguments}
gmc0 This must be a p by p matrix \(\mathrm{R}^{*}\) of generalized correlation coefficients.
dig The number of digits for reporting (=4, default)
idep \(\quad\) The column number of the first variable (\(=1\), default)
verbo Make this TRUE for detailed printing of computational steps
incr incremental constant for iteratively adjusting 'ridgek' where ridgek is the constant times the identity matrix used to make sure that the gmc0 matrix is positive definite. If not, this function iteratively increases the incr till relevant partial correlations are within the \([-1,1]\) interval.

\section*{Value}

A five column 'out' matrix containing partials. The first column has the name of the idep variable. The second column has the name of the j variable, while the third column has \(\mathrm{r}^{*}(\mathrm{i}, \mathrm{j} \mid \mathrm{k})\). The 4-th column has \(\mathrm{r}^{*}(\mathrm{j}, \mathrm{i} \mid \mathrm{k})\) (denoted partji), and the 5 -th column has rijMrji, that is the difference in absolute values (abs(partij) - abs(partji)).

\section*{Note}

The ridgek constant created by the function during the first round may not be large enough to make sure that that other pairs of \(r^{*}(i, j \mid k)\) are within the \([-1,1]\) interval. The user may have to choose a suitably larger input incr to get all relevant partial correlation coefficients in the correct \([-1,1]\) interval.

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY.

\section*{References}

Vinod, H. D. 'Generalized Correlations and Instantaneous Causality for Data Pairs Benchmark,' (March 8, 2015) http://ssrn.com/abstract=2574891
Vinod, H. D. 'Matrix Algebra Topics in Statistics and Economics Using R', Chapter 4 in Handbook of Statistics: Computational Statistics with R, Vol.32, co-editors: M. B. Rao and C.R. Rao. New York: North Holland, Elsevier Science Publishers, 2014, pp. 143-176.

Vinod, H. D. "A Survey of Ridge Regression and Related Techniques for Improvements over Ordinary Least Squares," Review of Economics and Statistics, Vol. 60, February 1978, pp. 121-131.

\section*{See Also}

See Also parcor_ijk for a better version using original data as input.

\section*{Examples}
```

set.seed(234)
z=runif(10,2,11)\# z is independently created
x=sample(1:10)+z/10 \#x is partly indep and partly affected by z
y=1+2*x+3*z+rnorm(10)\# y depends on x and z not vice versa
mtx=cbind(x,y,z)
g1=gmcmtx0(mtx)
parcor_ijkOLD(g1,1,2) \# ouji> ouij implies i=x is the cause of j=y
parcor_ridg(g1,idep=1)
parcorSilent(g1,idep=1)

## Not run:

set.seed(34);x=matrix(sample(1:600)[1:99],ncol=3)
colnames(x)=c('V1', 'v2', 'V3')
gm1=gmcmtx0(x)
parcorSilent(gm1, idep=1)

## End(Not run)

```
parcor_ijk

Generalized partial correlation coefficients between Xi and Xj, after removing the effect of \(x k\), via nonparametric regression residuals.

\section*{Description}

This function uses data on two column vectors, \(\mathrm{xi}, \mathrm{xj}\) and a third xk which can be a vector or a matrix, usually of the remaining variables in the model, including control variables, if any. It first removes missing data from all input variables. Then, it computes residuals of kernel regression (xi on xk) and (xj on xk). This version avoids ridge type adjustment present in an older version.

\section*{Usage}
parcor_ijk(xi, xj, xk)

\section*{Arguments}

\section*{xi}

Input vector of data for variable xi
xj Input vector of data for variable xj
xk
Input data for variables in xk , usually control variables

\section*{Value}
ouij Generalized partial correlation Xi with Xj (=cause) after removing xk
ouji Generalized partial correlation Xj with Xi (=cause) after removing xk allowing for control variables.

\section*{Note}

This function calls kern,

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY.

\section*{See Also}

See parcor_linear.

\section*{Examples}
```


## Not run:

set.seed(34);x=matrix(sample(1:600)[1:99],ncol=3)
options(np.messages=FALSE)
parcor_ijk(x[,1], x[,2], x[,3])

## End(Not run)\#'

```
parcor_i jkOLD Generalized partial correlation coefficient between Xi and Xj after re-
 moving the effect of all others. (older version, deprecated)

\section*{Description}

This function uses a generalized correlation matrix \(\mathrm{R}^{*}\) as input to compute generalized partial correlations between \(X_{i}\) and \(X_{j}\) where j can be any one of the remaining variables. Computation removes the effect of all other variables in the matrix. The user is encouraged to remove all known irrelevant rows and columns from the \(\mathrm{R}^{*}\) matrix before submitting it to this function.

\section*{Usage}
parcor_ijkOLD(x, i, j)

\section*{Arguments}
x Input a p by p matrix \(\mathrm{R}^{*}\) of generalized correlation coefficients.
i
A column number identifying the first variable.
j
A column number identifying the second variable.

\section*{Value}
\begin{tabular}{ll}
ouij & Partial correlation Xi with Xj (=cause) after removing all other X's \\
ouji & Partial correlation Xj with Xi (=cause) after removing all other X's \\
myk & A list of column numbers whose effect has been removed
\end{tabular}

\section*{Note}

This function calls minor, and cofactor and is called by parcor_ridge.

\section*{Examples}
```


## Not run:

set.seed(34);x=matrix(sample(1:600)[1:99],ncol=3)
colnames(x)=c('V1', 'v2', 'V3')
gm1=gmcmtx0(x)
parcor_ijkOLD(gm1, 2,3)
\#\# End(Not run)\#'

```
parcor_linear Partial correlation coefficient between Xi and Xj after removing the linear effect of all others.

\section*{Description}

This function uses a symmetric correlation matrix R as input to compute usual partial correlations between \(X_{i}\) and \(X_{j}\) where j can be any one of the remaining variables. Computation removes the effect of all other variables in the matrix. The user is encouraged to remove all known irrelevant rows and columns from the R matrix before submitting it to this function.

\section*{Usage}
parcor_linear(x, i, j)

\section*{Arguments}
x
i A column number identifying the first variable.
\(j \quad\) A column number identifying the second variable.
Input a p by p matrix R of symmetric correlation coefficients.

\section*{Value}
ouij Partial correlation Xi with Xj after removing all other X 's
ouji Partial correlation Xj with Xi after removing all other X's
myk A list of column numbers whose effect has been removed

\section*{Note}

This function calls minor, and cofactor

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY.

\section*{See Also}

See parcor_ijk for generalized partial correlation coefficients useful for causal path determinations.

\section*{Examples}
```


## Not run:

set.seed(34);x=matrix(sample(1:600)[1:99],ncol=3)
colnames(x)=c('V1', 'v2', 'V3')
c1=cor(x)
parcor_linear(c1, 2,3)

## End(Not run)

```
parcor_ridg \begin{tabular}{l}
Compute generalized (ridge-adjusted) partial correlation coefficients \\
from matrix \(R^{*} .(\) deprecated)
\end{tabular}

\section*{Description}

This function calls parcor_ijkOLD function which uses a generalized correlation matrix \(\mathrm{R}^{*}\) as input to compute generalized partial correlations between \(X_{i}\) and \(X_{j}\) where j can be any one of the remaining variables. Computation removes the effect of all other variables in the matrix. It further adjusts the resulting partial correlation coefficients to be in the appropriate [-1,1] range by using an additive constant in the fashion of ridge regression.

\section*{Usage}
parcor_ridg(gmc0, dig \(=4\), idep \(=1\), verbo \(=\) FALSE, incr = 3)

\section*{Arguments}
gmc0 This must be a p by p matrix \(\mathrm{R}^{*}\) of generalized correlation coefficients.
dig The number of digits for reporting (=4, default)
idep \(\quad\) The column number of the first variable (\(=1\), default)
verbo Make this TRUE for detailed printing of computational steps
incr incremental constant for iteratively adjusting 'ridgek' where ridgek is the constant times the identity matrix used to make sure that the gmc0 matrix is positive definite. If not iteratively increas the incr till all partial correlations are within the \([-1,1]\) interval.

\section*{Value}

A five column 'out' matrix containing partials. The first column has the name of the idep variable. The second column has the name of the j variable, while the third column has \(\mathrm{r}^{*}(\mathrm{i}, \mathrm{j} \mid \mathrm{k})\). The 4-th column has \(\mathrm{r}^{*}(\mathrm{j}, \mathrm{i} \mid \mathrm{k})\) (denoted partji), and the 5 -th column has rijMrji, that is the difference in absolute values (abs(partij) - abs(partji)).

\section*{Note}

The ridgek constant created by the function during the first round may not be large enough to make sure that that other pairs of \(r^{*}(i, j \mid k)\) are within the \([-1,1]\) interval. The user may have to choose a suitably larger input incr to get all relevant partial correlation coefficients in the correct \([-1,1]\) interval.

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY.

\section*{References}

Vinod, H. D. 'Generalized Correlations and Instantaneous Causality for Data Pairs Benchmark,' (March 8, 2015) http://ssrn.com/abstract=2574891
Vinod, H. D. 'Matrix Algebra Topics in Statistics and Economics Using R', Chapter 4 in Handbook of Statistics: Computational Statistics with R, Vol.32, co-editors: M. B. Rao and C.R. Rao. New York: North Holland, Elsevier Science Publishers, 2014, pp. 143-176.
Vinod, H. D. "A Survey of Ridge Regression and Related Techniques for Improvements over Ordinary Least Squares," Review of Economics and Statistics, Vol. 60, February 1978, pp. 121-131.

\section*{See Also}

See Also parcor_ijkOLD.

\section*{Examples}
```

set.seed(234)
z=runif(10,2,11)\# z is independently created
x=sample(1:10)+z/10 \#x is partly indep and partly affected by z
y=1+2*x+3*z+rnorm(10)\# y depends on x and z not vice versa
mtx=cbind(x,y,z)
g1=gmcmtx0(mtx)
parcor_ijkOLD(g1,1,2) \# ouji> ouij implies i=x is the cause of j=y
parcor_ridg(g1,idep=1)

## Not run:

```
```

set.seed(34);x=matrix(sample(1:600)[1:99],ncol=3)
colnames(x)=c('V1', 'v2', 'V3')
gm1=gmcmtx0(x)
parcor_ridg(gm1, idep=1)

## End(Not run)

```
pcause Compute the bootstrap probability of correct causal direction.

\section*{Description}

Maximum entropy bootstrap ('meboot') package is used for statistical inference regarding \(\delta\) which equals \(\mathrm{GMC}(\mathrm{X} \mid \mathrm{Y})-\mathrm{GMC}(\mathrm{Y} \mid \mathrm{X})\) defined by Zheng et al (2012). The bootstrap provides an approximation to chances of correct determination of the causal direction.

\section*{Usage}
pcause \((x, y, n 999=999)\)

\section*{Arguments}
\begin{tabular}{ll}
\(x\) & Vector of \(x\) data \\
\(y\) & Vector of \(y\) data \\
n999 & Number of bootstrap replications (default=999)
\end{tabular}

\section*{Value}

P (cause) the bootstrap proportion of correct causal determinations.

\section*{Note}
'pcause' is computer intensive and generally slow. It is better to use it at a later stage in the investigation when a preliminary causal determination is already made. Its use may slow the exploratory phase. In my experience, if P (cause) is less than 0.55 , there is a cause for concern.

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

\section*{References}

Vinod, H. D. 'Generalized Correlation and Kernel Causality with Applications in Development Economics' in Communications in Statistics -Simulation and Computation, 2015, http://dx. doi . org/10.1080/03610918.2015.1122048
Zheng, S., Shi, N.-Z., and Zhang, Z. (2012). Generalized measures of correlation for asymmetry, nonlinearity, and beyond. Journal of the American Statistical Association, vol. 107, pp. 1239-1252.

Vinod, H. D. and Lopez-de-Lacalle, J. (2009). 'Maximum entropy bootstrap for time series: The meboot R package.' Journal of Statistical Software, Vol. 29(5), pp. 1-19.

\section*{Examples}
```


## Not run:

set.seed(34);x=sample(1:10);y=sample(2:11)
pcause(x,y,n999=29)
data('EuroCrime')
attach(EuroCrime)
pcause(crim,off,n999=29)

## End(Not run)

```
\[
\text { pillar3D } \quad \text { Create a } 3 D \text { pillar chart to display }(x, y, z) \text { data coordinate surface. }
\]

\section*{Description}

Give data on \(\mathrm{x}, \mathrm{y}, \mathrm{z}\) coordinate values of a 3D surface, this function plots them after making pillars near each \(z\) value by adding and subtracting small amounts dz . Instead of pins of the height z this creates pillars which better resemble a surface. It uses the wireframe() function of 'lattice' package to do the plotting.

\section*{Usage}
```

pillar3D(z = c(657, 936, 1111, 1201), x = c(280, 542, 722, 1168),
y = c(162, 214, 186, 246), drape = TRUE, xlab = "y", ylab = "x",
zlab = "z", mymain = "Pillar Chart")

```

\section*{Arguments}
z
\(x \quad x\)-coordinate values
\(y \quad y\)-coordinate values
drape logical value, default drape=TRUE to give color to heights
\(x l a b \quad\) default " \(x\) " label on the x axis
prelec2
\begin{tabular}{ll}
ylab & default "y" label on the y axis \\
zlab & default "z" label on the \(z\) axis \\
mymain & default "Pillar Chart" main label on the plot
\end{tabular}

\section*{Details}

For additional plotting features type 'pillar3D()' on the R console to get my code and adjust wireframe() function defaults.

\section*{Value}

A 3D plot

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

\section*{Examples}
\#\# Not run:
pillar3D())
\#\# End(Not run)
```

prelec2

```

Intermediate weighting function giving Non-Expected Utility theory weights.

\section*{Description}

Computes cumulative probabilities and difference between consecutive cumulative probabilities described in Vinod (2008) textbook. This is a simpler version of the version in the book without mapping to non-expected utility theory weights as explained in Vinod (2008).

\section*{Usage}
prelec2(n)

\section*{Arguments}
\(\mathrm{n} \quad \mathrm{A}\) (usually small) integer.

\section*{Value}
x
\(\mathrm{p} \quad\) probabilities \(\mathrm{p}=\mathrm{x}[\mathrm{i}] / \mathrm{n}\)
pdif consecutive differences \(\mathrm{p}[\mathrm{i}]-\mathrm{p}[\mathrm{i}-1]\)

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

\section*{References}

Vinod, H. D. 'Hands-On Intermediate Econometrics Using R' (2008) World Scientific Publishers: Hackensack, NJ. https://www.worldscientific.com/worldscibooks/10.1142/6895

\section*{Examples}
\#\# Not run: prelec2(10)
probSign Compute probability of positive or negative sign from bootPairs output

\section*{Description}

If there are p columns of data, probSign produces a p-1 by 1 vector of probabilities of correct signs assuming that the mean of \(n 999\) values has the correct sign and assuming that \(m\) of the 'sum' index values inside the range [-tau, tau] are neither positive nor negative but indeterminate or ambiguous (being too close to zero). That is, the denominator of \(\mathrm{P}(+1)\) or \(\mathrm{P}(-1)\) is (n999-m) if m signs are too close to zero.

\section*{Usage}
probSign(out, tau \(=0.476\))

\section*{Arguments}
out output from bootPairs with p-1 columns and n999 rows
tau threshold to determine what value is too close to zero, default tau= 0.476 is equivalent to 15 percent threshold for the unanimity index ui

\section*{Value}
sgn When mtx has p columns, sgn reports pairwise \(\mathrm{p}-1\) signs representing (fixing the first column in each pair) the average sign after averaging the output of of bootPairs(mtx) (a n999 by p-1 matrix) each containing resampled 'sum' values summarizing the weighted sums associated with all three criteria from the function silentPairs(mtx) applied to each bootstrap sample separately. \#'

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

\section*{References}

Vinod, H. D. 'Generalized Correlation and Kernel Causality with Applications in Development Economics' in Communications in Statistics -Simulation and Computation, 2015, http://dx. doi . org/10.1080/03610918.2015.1122048

Vinod, H. D. and Lopez-de-Lacalle, J. (2009). 'Maximum entropy bootstrap for time series: The meboot R package.' Journal of Statistical Software, Vol. 29(5), pp. 1-19.
Vinod, H. D. Causal Paths and Exogeneity Tests in Generalcorr Package for Air Pollution and Monetary Policy (June 6, 2017). Available at SSRN: https://ssrn.com/abstract=2982128

\section*{See Also}

See Also silentPairs.

\section*{Examples}
```


## Not run:

options(np.messages = FALSE)
set.seed(34);x=sample(1:10);y=sample(2:11)
bb=bootPairs(cbind(x,y),n999=29)
probSign(bb,tau=0.476) \#gives summary stats for n999 bootstrap sum computations
bb=bootPairs(airquality,n999=999);options(np.messages=FALSE)
probSign(bb,tau=0.476)\#signs for n999 bootstrap sum computations
data('EuroCrime')
attach(EuroCrime)
bb=bootPairs(cbind(crim,off),n999=29) \#col.1= crim causes off
\#hence positive signs are more intuitively meaningful.
\#note that n999=29 is too small for real problems, chosen for quickness here.
probSign(bb,tau=0.476)\#signs for n999 bootstrap sum computations

## End(Not run)

```
 rhs.lag2 internal rhs.lag2

\section*{Description}
intended for internal use only

\section*{Usage}
rhs.lag2
\(\qquad\)
rhs1 internal rhs1

\section*{Description}
intended for internal use only

\section*{Usage}
rhs1
ridgek internal ridgek

\section*{Description}
intended for internal use only

\section*{Usage}
ridgek
```

rij internal rij

```

\section*{Description}
intended for internal use only

\section*{Usage}
rij
\[
\text { rijMrji } \quad \text { internal rijMrji }
\]

\section*{Description}
intended for internal use only

\section*{Usage}
rijMrji
rji internal rji

\section*{Description}
intended for internal use only

\section*{Usage}
rji
rrij internal rrij

\section*{Description}
intended for internal use only

\section*{Usage}
rrij
rrji internal rrji

\section*{Description}
intended for internal use only

\section*{Usage}
rrji

\section*{Description}

Uses Vinod (2015) definition of generalized (asymmetric) correlation coefficients. It requires kernel regression of \(x\) on y obtained by using the 'np' package. It also reports usual Pearson correlation coefficient \(r\) and \(p\)-value for testing the null hypothesis that (population \(r\)) \(=0\).

\section*{Usage}
rstar (\(\mathrm{x}, \mathrm{y}\))

\section*{Arguments}
\(x \quad\) Vector of data on the dependent variable
\(y \quad\) Vector of data on the regressor

\section*{Value}

Four objects created by this function are:
corxy \(\quad r^{*} x\) ly or regressing \(x\) on \(y\)
coryx \(\quad r^{*} y \mid x\) or regressing \(y\) on \(x\)
pearson.r Pearson's product moment correlation coefficient
\(p v \quad\) The p -value for testing the Pearson r

\section*{Note}

This function needs the kern function which in turn needs the np package.

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

\section*{References}

Vinod, H. D. 'Generalized Correlation and Kernel Causality with Applications in Development Economics' in Communications in Statistics -Simulation and Computation, 2015, http://dx.doi. org/10.1080/03610918.2015.1122048
Vinod, H. D. 'Matrix Algebra Topics in Statistics and Economics Using R', Chapter 4 in Handbook of Statistics: Computational Statistics with R, Vol.32, co-editors: M. B. Rao and C.R. Rao. New York: North Holland, Elsevier Science Publishers, 2014, pp. 143-176.

\section*{See Also}

See Also gmcmtx0 and gmcmtxBlk.

\section*{Examples}
\(x=\) sample(1:30); \(y=\operatorname{sample}(1: 30) ; r \operatorname{star}(x, y)\)
```

sales2Lag internal sales2Lag

```

\section*{Description}
intended for internal use only

\section*{Usage}
sales2Lag
salesLag internal salesLag

\section*{Description}
intended for internal use only

\section*{Usage}
salesLag
\begin{tabular}{ll}
\hline seed \(\quad\) internal seed \\
\hline
\end{tabular}

\section*{Description}
intended for internal use only

\section*{Usage}
seed
internal sgn.e0

\section*{Description}
intended for internal use only
\begin{tabular}{ll}
Usage \\
sgn.e0 \\
silentMtx & \begin{tabular}{l}
No-print kernel-causality unanimity score matrix with optional control \\
variables
\end{tabular}
\end{tabular}

\section*{Description}

Allowing input matrix of control variables and missing data, this function produces a p by p matrix summarizing the results, where the estimated signs of stochastic dominance order values \((+1,0,-1)\) are weighted by \(w t=c(1.2,1.1,1.05,1)\) to compute an overall result for all orders of stochastic dominance by a weighted sum for the criteria Cr 1 and Cr 2 and added to the Cr 3 estimate as: \((+1\), \(0,-1)\). Final weighted index is always in the range \([-3.175,3.175]\). It is converted to the more intuitive range \([-100,100]\).

\section*{Usage}
silentMtx (mtx, ctrl \(=0, \operatorname{dig}=6, w t=c(1.2,1.1,1.05,1)\), sumwt = 4)

\section*{Arguments}
\(\mathrm{mtx} \quad\) The data matrix with p columns. Denote x 1 as the first column which is fixed and then paired with all other columns, say: x2, x3,.., xp, one by one for the purpose of flipping with x 1 . p must be 2 or more
ctrl data matrix for designated control variable(s) outside causal paths
dig Number of digits for reporting (default dig=6).
wt Allows user to choose a vector of four alternative weights for SD1 to SD4.
sumwt \(\quad\) Sum of weights can be changed here \(=4\) (default).

\section*{Details}

The reason for slightly declining weights on the signs from SD1 to SD4 is simply that the local mean comparisons implicit in SD1 are known to be more reliable than local variance implicit in SD2, local skewness implicit in SD3 and local kurtosis implicit in SD4. Why are higher moment estimates less reliable? The higher power of the deviations from the mean needed in their computations lead to greater sampling variability. The summary results for all three criteria are reported in a vector of numbers internally called crall:

\section*{Value}

With p columns in mtx argument to this function, x 1 can be paired with a total of \(\mathrm{p}-1\) columns (\(\mathrm{x} 2, \mathrm{x} 3, \ldots, \mathrm{xp}\)). Note we never flip any of the control variables with x 1 . This function produces \(\mathrm{i}=1,2, . ., \mathrm{p}-1\) numbers representing the summary sign, or 'sum' from the signs sg 1 to sg 3 associated with the three criteria: \(\mathrm{Cr} 1, \mathrm{Cr} 2\) and Cr 3 . Note that sg 1 and sg 2 themselves are weighted signs using weighted sum of signs from four orders of stochastic dominance. In general, a positive sign in the i-th location of the 'sum' output of this function means that x 1 is the kernel cause while the variable in (i+1)-th column of \(m t x\) is the 'effect' or 'response' or 'endogenous.' The magnitude represents the strength (unanimity) of the evidence for a particular sign. Conversely a negative sign in the i-th location of the 'sum' output of this function means that that the first variable listed as the input to this function is the 'effect,' while the variable in (i+1)-th column of \(m t x\) is the exogenous kernel cause. This function is a summary of someCPairs allowing for control variables.

\section*{Note}

The European Crime data has all three criteria correctly suggesting that high crime rate kernel causes the deployment of a large number of police officers. The command attach(EuroCrime); silentPairs(cbind(crim,off)) returns only one number: 3.175 , implying a high unanimity strength. The index 3.175 is the highest. The positive sign of the index suggests that 'crim' variable in the first column of the matrix input to this function kernel causes 'off' in the second column of the matrix argument mtx to this function.

Interpretation of the output matrix produced by this function is as follows. A negative index means the variable named in the column kernel-causes the variable named in the row. A positive index means the row name variable kernel-causes the column name variable. The abs(index) measures unanimity by three criteria, Cr 1 to Cr 3 representing the strength of evidence for the identified causal path.

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY.

\section*{References}
H. D. Vinod 'Generalized Correlation and Kernel Causality with Applications in Development Economics' in Communications in Statistics -Simulation and Computation, 2015, http://dx.doi. org/10.1080/03610918.2015.1122048
Vinod, H. D. Causal Paths and Exogeneity Tests in Generalcorr Package for Air Pollution and Monetary Policy (June 6, 2017). Available at SSRN: https://ssrn.com/abstract=2982128

\section*{See Also}

See silentPairs.
See someCPairs, some0Pairs

\section*{Examples}
```


## Not run:

options(np.messages=FALSE)
colnames(mtcars[2:ncol(mtcars)])
silentMtx(mtcars[,1:3],ctrl=mtcars[,4:5]) \# mpg paired with others

## End(Not run)

options(np.messages=FALSE)
set.seed(234)
z=runif(10,2,11)\# z is independently created
x=sample(1:10)+z/10 \#x is somewhat indep and affected by z
y=1+2*x+3*z+rnorm(10)
w=runif(10)
x2=x;x2[4]=NA;y2=y;y2[8]=NA;w2=w;w2[4]=NA
silentMtx(mtx=cbind(x2,y2), ctrl=cbind(z,w2))

```
silentMtx0 \begin{tabular}{l}
Older kernel-causality unanimity score matrix with optional control \\
variables
\end{tabular}

\section*{Description}

Allowing input matrix of control variables and missing data, this function produces a p by p matrix summarizing the results, where the estimated signs of stochastic dominance order values \((+1,0,-1)\) are weighted by \(w t=c(1.2,1.1,1.05,1)\) to compute an overall result for all orders of stochastic dominance by a weighted sum for the criteria Cr 1 and Cr 2 and added to the Cr 3 estimate as: \((+1\), \(0,-1)\). Final weighted index is always in the range \([-3.175,3.175]\). It is converted to the more intuitive range \([-100,100]\).

\section*{Usage}
silentMtx0(mtx, ctrl \(=0\), \(\operatorname{dig}=6\), wt \(=c(1.2,1.1,1.05,1)\), sumwt = 4)

\section*{Arguments}
\(\mathrm{mtx} \quad\) The data matrix with p columns. Denote x 1 as the first column which is fixed and then paired with all other columns, say: x2, x3,.., xp, one by one for the purpose of flipping with x 1 . p must be 2 or more
ctrl data matrix for designated control variable(s) outside causal paths
dig Number of digits for reporting (default dig=6).
wt
sumwt
Allows user to choose a vector of four alternative weights for SD1 to SD4.
Sum of weights can be changed here \(=4(\) default \()\).

\section*{Details}

The reason for slightly declining weights on the signs from SD1 to SD4 is simply that the local mean comparisons implicit in SD1 are known to be more reliable than local variance implicit in SD2, local skewness implicit in SD3 and local kurtosis implicit in SD4. Why are higher moment estimates less reliable? The higher power of the deviations from the mean needed in their computations lead to greater sampling variability. The summary results for all three criteria are reported in a vector of numbers internally called crall:

\section*{Value}

With p columns in mtx argument to this function, x 1 can be paired with a total of \(\mathrm{p}-1\) columns (\(\mathrm{x} 2, \mathrm{x} 3, . ., \mathrm{xp}\)). Note we never flip any of the control variables with x 1 . This function produces \(\mathrm{i}=1,2, \ldots, \mathrm{p}-1\) numbers representing the summary sign, or 'sum' from the signs sg1 to \(\operatorname{sg} 3\) associated with the three criteria: \(\mathrm{Cr} 1, \mathrm{Cr} 2\) and Cr 3 . Note that sg 1 and sg 2 themselves are weighted signs using weighted sum of signs from four orders of stochastic dominance. In general, a positive sign in the i-th location of the 'sum' output of this function means that x 1 is the kernel cause while the variable in (i+1)-th column of \(m t x\) is the 'effect' or 'response' or 'endogenous.' The magnitude represents the strength (unanimity) of the evidence for a particular sign. Conversely a negative sign in the i-th location of the 'sum' output of this function means that that the first variable listed as the input to this function is the 'effect,' while the variable in (i+1)-th column of \(m t x\) is the exogenous kernel cause. This function allows for control variables.

\section*{Note}

The European Crime data has all three criteria correctly suggesting that high crime rate kernel causes the deployment of a large number of police officers. The command attach(EuroCrime); silentPairs(cbind(crim,off)) returns only one number: 3.175, implying a high unanimity strength. The index 3.175 is the highest. The positive sign of the index suggests that 'crim' variable in the first column of the matrix input to this function kernel causes 'off' in the second column of the matrix argument \(m t x\) to this function.

Interpretation of the output matrix produced by this function is as follows. A negative index means the variable named in the column kernel-causes the variable named in the row. A positive index means the row name variable kernel-causes the column name variable. The abs(index) measures unanimity by three criteria, Cr 1 to Cr 3 representing the strength of evidence for the identified causal path.

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY.

\section*{References}
H. D. Vinod 'Generalized Correlation and Kernel Causality with Applications in Development Economics’ in Communications in Statistics -Simulation and Computation, 2015, http://dx.doi. org/10.1080/03610918.2015.1122048

Vinod, H. D. Causal Paths and Exogeneity Tests in Generalcorr Package for Air Pollution and Monetary Policy (June 6, 2017). Available at SSRN: https://ssrn.com/abstract=2982128

\section*{See Also}

See silentPairs0 using older Cr 1 criterion based on kernel regression local gradients.
See someCPairs, some0Pairs

\section*{Examples}
```


## Not run:

options(np.messages=FALSE)
colnames(mtcars[2:ncol(mtcars)])
silentMtx0(mtcars[,1:3],ctrl=mtcars[,4:5]) \# mpg paired with others

## End(Not run)

options(np.messages=FALSE)
set.seed(234)
z=runif(10,2,11)\# z is independently created
x=sample(1:10)+z/10 \#x is somewhat indep and affected by z
y=1+2*x+3*z+rnorm(10)
w=runif(10)
x2=x;x2[4]=NA;y2=y;y2[8]=NA;w2=w;w2[4]=NA
silentMtx0(mtx=cbind(x2,y2), ctrl=cbind(z,w2))

```
silentPairs No-print kernel causality scores with control variables Hausman-Wu
Criterion 1

\section*{Description}

Allowing input matrix of control variables and missing data, this function produces a 3 column matrix summarizing the results where the estimated signs of stochastic dominance order values \((+1,0,-1)\) are weighted by \(w t=c(1.2,1.1,1.05,1)\) to compute an overall result for all orders of stochastic dominance by a weighted sum for the criteria Cr 1 and Cr 2 and added to the Cr 3 estimate as: \((+1,0,-1)\), always in the range \([-3.175,3.175]\).

\section*{Usage}
silentPairs(mtx, ctrl \(=0, \operatorname{dig}=6, w t=c(1.2,1.1,1.05,1)\), sumwt = 4)

\section*{Arguments}
mtx
The data matrix with p columns. Denote x 1 as the first column which is fixed and then paired with all other columns, say: x2, x3,.., xp, one by one for the purpose of flipping with x 1 . p must be 2 or more
\begin{tabular}{ll}
ctrl & \begin{tabular}{l}
data matrix for designated control variable(s) outside causal paths default ctrl=0 \\
which means that there are no control variables used.
\end{tabular} \\
dig & Number of digits for reporting (default dig=6). \\
wt & Allows user to choose a vector of four alternative weights for SD1 to SD4. \\
sumwt & Sum of weights can be changed here =4(default).
\end{tabular}

\section*{Details}

The reason for slightly declining weights on the signs from SD1 to SD4 is simply that the local mean comparisons implicit in SD1 are known to be more reliable than local variance implicit in SD2, local skewness implicit in SD3 and local kurtosis implicit in SD4. The source of slightly declining sampling unreliability of higher moments is the higher power of the deviations from the mean needed in their computations. The summary results for all three criteria are reported in a vector of numbers internally called crall:

\section*{Value}

With p columns in mtx argument to this function, x 1 can be paired with a total of \(\mathrm{p}-1\) columns (\(\mathrm{x} 2, \mathrm{x} 3, \ldots, \mathrm{xp}\)). Note we never flip any of the control variables with x 1 . This function produces \(\mathrm{i}=1,2, . ., \mathrm{p}-1\) numbers representing the summary sign, or 'sum' from the signs sg 1 to sg 3 associated with the three criteria: \(\mathrm{Cr} 1, \mathrm{Cr} 2\) and Cr 3 . Note that sg 1 and sg 2 themselves are weighted signs using weighted sum of signs from four orders of stochastic dominance. In general, a positive sign in the i-th location of the 'sum' output of this function means that x 1 is the kernel cause while the variable in (i+1)-th column of \(m t x\) is the 'effect' or 'response' or 'endogenous.' The magnitude represents the strength (unanimity) of the evidence for a particular sign. Conversely a negative sign in the i-th location of the 'sum' output of this function means that that the first variable listed as the input to this function is the 'effect,' while the variable in (i+1)-th column of \(m t x\) is the exogenous kernel cause.

\section*{Note}

The European Crime data has all three criteria correctly suggesting that high crime rate kernel causes the deployment of a large number of police officers. The command attach(EuroCrime); silentPairs(cbind(crim,off)) returns only one number: 3.175, implying the highest unanimity strength index, with the positive sign suggesting 'crim' in the first column kernel causes 'off' in the second column of the argument mtx to this function.

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY.

\section*{References}
H. D. Vinod 'Generalized Correlation and Kernel Causality with Applications in Development Economics' in Communications in Statistics -Simulation and Computation, 2015, http://dx.doi. org/10.1080/03610918.2015.1122048
Vinod, H. D. Causal Paths and Exogeneity Tests in Generalcorr Package for Air Pollution and Monetary Policy (June 6, 2017). Available at SSRN: https://ssrn.com/abstract=2982128

\section*{See Also}

See bootPairs, silentMtx
See someCPairs, some0Pairs

\section*{Examples}
```


## Not run:

options(np.messages=FALSE)
colnames(mtcars[2:ncol(mtcars)])
silentPairs(mtcars[,1:3],ctrl=mtcars[,4:5]) \# mpg paired with others

## End(Not run)

options(np.messages=FALSE)
set.seed(234)
z=runif(10,2,11)\# z is independently created
x=sample(1:10)+z/10 \#x is somewhat indep and affected by z
y=1+2*x+3*z+rnorm(10)
w=runif(10)
x2=x;x2[4]=NA;y2=y;y2[8]=NA;w2=w;w2[4]=NA
silentPairs(mtx=cbind(x2,y2), ctrl=cbind(z,w2))

```
silentPairs0 \begin{tabular}{l}
Older version, kernel causality weighted sum allowing control vari- \\
ables
\end{tabular}

\section*{Description}

Allowing input matrix of control variables and missing data, this function produces a 3 column matrix summarizing the results where the estimated signs of stochastic dominance order values \((+1,0,-1)\) are weighted by \(w t=c(1.2,1.1,1.05,1)\) to compute an overall result for all orders of stochastic dominance by a weighted sum for the criteria Cr 1 and Cr 2 and added to the Cr 3 estimate as: \((+1,0,-1)\), always in the range \([-3.175,3.175]\).

\section*{Usage}
silentPairs0(mtx, ctrl \(=0, \operatorname{dig}=6, w t=c(1.2,1.1,1.05,1)\), sumwt = 4)

\section*{Arguments}
mtx
The data matrix with p columns. Denote x 1 as the first column which is fixed and then paired with all other columns, say: x2, x3,.., xp, one by one for the purpose of flipping with x 1 . p must be 2 or more
\begin{tabular}{ll}
ctrl & \begin{tabular}{l}
data matrix for designated control variable(s) outside causal paths default ctrl=0 \\
which means that there are no control variables used.
\end{tabular} \\
dig & Number of digits for reporting (default dig=6). \\
wt & Allows user to choose a vector of four alternative weights for SD1 to SD4. \\
sumwt & Sum of weights can be changed here \(=4\) (default).
\end{tabular}

\section*{Details}

This uses an older version of the first criterion Cr 1 based on absolute values of local gradients of kernel regressions, not absolute Hausman-Wu statistic (RHS variable times kernel residuals). It calls abs_stdapd and abs_stdapdC The reason for slightly declining weights on the signs from SD1 to SD4 is simply that the local mean comparisons implicit in SD1 are known to be more reliable than local variance implicit in SD2, local skewness implicit in SD3 and local kurtosis implicit in SD4. The source of slightly declining sampling unreliability of higher moments is the higher power of the deviations from the mean needed in their computations. The summary results for all three criteria are reported in a vector of numbers internally called crall:

\section*{Value}

With p columns in mtx argument to this function, x 1 can be paired with a total of \(\mathrm{p}-1\) columns (\(\mathrm{x} 2, \mathrm{x} 3, . ., \mathrm{xp}\)). Note we never flip any of the control variables with x 1 . This function produces \(\mathrm{i}=1,2, . ., \mathrm{p}-1\) numbers representing the summary sign, or 'sum' from the signs sg 1 to \(\operatorname{sg} 3\) associated with the three criteria: \(\mathrm{Cr} 1, \mathrm{Cr} 2\) and Cr 3 . Note that sg 1 and sg 2 themselves are weighted signs using weighted sum of signs from four orders of stochastic dominance. In general, a positive sign in the i-th location of the 'sum' output of this function means that x 1 is the kernel cause while the variable in (\(\mathrm{i}+1\))-th column of mtx is the 'effect' or 'response' or 'endogenous.' The magnitude represents the strength (unanimity) of the evidence for a particular sign. Conversely a negative sign in the i-th location of the 'sum' output of this function means that that the first variable listed as the input to this function is the 'effect,' while the variable in (i+1)-th column of \(m t x\) is the exogenous kernel cause. This function is a summary of someCPairs allowing for control variables.

\section*{Note}

The European Crime data has all three criteria correctly suggesting that high crime rate kernel causes the deployment of a large number of police officers. The command attach(EuroCrime); silentPairs(cbind(crim,off)) returns only one number: 3.175 , implying the highest unanimity strength index, with the positive sign suggesting 'crim' in the first column kernel causes 'off' in the second column of the argument mtx to this function.

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY.

\section*{References}
H. D. Vinod 'Generalized Correlation and Kernel Causality with Applications in Development Economics' in Communications in Statistics -Simulation and Computation, 2015, http://dx.doi. org/10.1080/03610918.2015.1122048

Vinod, H. D. Causal Paths and Exogeneity Tests in Generalcorr Package for Air Pollution and Monetary Policy (June 6, 2017). Available at SSRN: https://ssrn.com/abstract=2982128

\section*{See Also}

See bootPairs, silentMtx
See someCPairs, some0Pairs
See silentPairs for newer version using more direct Hausman-Wu exogeneity test statistic.

\section*{Examples}
```


## Not run:

options(np.messages=FALSE)
colnames(mtcars[2:ncol(mtcars)])
silentPairs0(mtcars[,1:3],ctrl=mtcars[,4:5]) \# mpg paired with others

## End(Not run)

options(np.messages=FALSE)
set.seed(234)
z=runif(10,2,11)\# z is independently created
x=sample(1:10)+z/10 \#x is somewhat indep and affected by z
y=1+2*x+3*z+rnorm(10)
w=runif(10)
x2=x;x2[4]=NA;y2=y;y2[8]=NA;w2=w;w2[4]=NA
silentPairs0(mtx=cbind(x2,y2), ctrl=cbind(z,w2))

```
siPairsBlk Block Version of silentPairs for causality scores with control variables

\section*{Description}

Allowing input matrix of control variables and missing data, this function produces a 3 column matrix summarizing the results where the estimated signs of stochastic dominance order values \((+1,0,-1)\) are weighted by \(w t=c(1.2,1.1,1.05,1)\) to compute an overall result for all orders of stochastic dominance by a weighted sum for the criteria Cr 1 and Cr 2 and added to the Cr 3 estimate as: \((+1,0,-1)\), always in the range \([-3.175,3.175]\).

\section*{Usage}
siPairsBlk(mtx, ctrl = 0, dig = 6, blksiz = 10, wt = c(1.2, 1.1,
\(1.05,1)\), sumwt \(=4\))

\section*{Arguments}
mtx The data matrix with p columns. Denote x 1 as the first column which is fixed and then paired with all other columns, say: x2, x3,.., xp, one by one for the purpose of flipping with x 1 . p must be 2 or more
ctrl data matrix for designated control variable(s) outside causal paths default ctrl=0 which means that there are no control variables used.
dig Number of digits for reporting (default dig=6).
blksiz block size, default=10, if chosen blksiz \(>\mathrm{n}\), where \(\mathrm{n}=\) rows in matrix then blk\(\operatorname{siz}=\mathrm{n}\). That is, no blocking is done
wt Allows user to choose a vector of four alternative weights for SD1 to SD4.
sumwt Sum of weights can be changed here \(=4(\) default \()\).

\section*{Details}

The reason for slightly declining weights on the signs from SD1 to SD4 is simply that the local mean comparisons implicit in SD1 are known to be more reliable than local variance implicit in SD2, local skewness implicit in SD3 and local kurtosis implicit in SD4. The source of slightly declining sampling unreliability of higher moments is the higher power of the deviations from the mean needed in their computations. The summary results for all three criteria are reported in a vector of numbers internally called crall:

\section*{Value}

With p columns in mtx argument to this function, x 1 can be paired with a total of \(\mathrm{p}-1\) columns (\(\mathrm{x} 2, \mathrm{x} 3, . . \mathrm{xp}\)). Note we never flip any of the control variables with x 1 . This function produces \(\mathrm{i}=1,2, . ., \mathrm{p}-1\) numbers representing the summary sign, or 'sum' from the signs sg 1 to sg 3 associated with the three criteria: \(\mathrm{Cr} 1, \mathrm{Cr} 2\) and Cr 3 . Note that sg 1 and sg 2 themselves are weighted signs using weighted sum of signs from four orders of stochastic dominance. In general, a positive sign in the i-th location of the 'sum' output of this function means that \(x 1\) is the kernel cause while the variable in (i+1)-th column of \(m t x\) is the 'effect' or 'response' or 'endogenous.' The magnitude represents the strength (unanimity) of the evidence for a particular sign. Conversely a negative sign in the i-th location of the 'sum' output of this function means that that the first variable listed as the input to this function is the 'effect,' while the variable in (\(\mathrm{i}+1\))-th column of \(m t x\) is the exogenous kernel cause.

\section*{Note}

The European Crime data has all three criteria correctly suggesting that high crime rate kernel causes the deployment of a large number of police officers. The command attach(EuroCrime); silentPairs(cbind(crim, off)) returns only one number: 3.175, implying the highest unanimity strength index, with the positive sign suggesting 'crim' in the first column kernel causes 'off' in the second column of the argument mtx to this function.

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY.

\section*{References}
H. D. Vinod 'Generalized Correlation and Kernel Causality with Applications in Development Economics' in Communications in Statistics -Simulation and Computation, 2015, http://dx.doi. org/10.1080/03610918.2015.1122048

Vinod, H. D. Causal Paths and Exogeneity Tests in Generalcorr Package for Air Pollution and Monetary Policy (June 6, 2017). Available at SSRN: https://ssrn.com/abstract=2982128

\section*{See Also}

See bootPairs, silentMtx
See someCPairs, some0Pairs

\section*{Examples}
```


## Not run:

options(np.messages=FALSE)
colnames(mtcars[2:ncol(mtcars)])
siPairsBlk(mtcars[,1:3],ctrl=mtcars[,4:5]) \# mpg paired with others

## End(Not run)

options(np.messages=FALSE)
set.seed(234)
z=runif(10,2,11)\# z is independently created
x=sample(1:10)+z/10 \#x is somewhat indep and affected by z
y=1+2*x+3*z+rnorm(10)
w=runif(10)
x2=x;x2[4]=NA;y2=y;y2[8]=NA;w2=w;w2[4]=NA
siPairsBlk(mtx=cbind(x2,y2), ctrl=cbind(z,w2))

```
some0Pairs

Function reporting detailed kernel causality results in a 7-column matrix (uses deprecated criterion 1, no longer recommended but may be useful for second and third criterion typ \(=2,3\))

\section*{Description}

The seven columns produced by this function summarize the results where the signs of stochastic dominance order values \((+1\) or -1\()\) are weighted by \(w t=c(1.2,1.1,1.05,1)\) to compute an overall result for all orders of stochastic dominance by a weighted sum for the criteria Cr 1 and Cr 2 . The weighting is obviously not needed for the third criterion Cr 3 .

\section*{Usage}
some0Pairs(mtx, dig = 6, verbo \(=\) TRUE, rnam \(=\) FALSE, wt \(=c(1.2\), \(1.1,1.05,1)\), sumwt \(=4\))

\section*{Arguments}
\begin{tabular}{ll}
\(m t x\) & The data matrix in the first column is paired with all others. \\
dig & Number of digits for reporting (default dig=6). \\
verbo & Make verbo= TRUE for printing detailed steps. \\
rnam & Make rnam= TRUE if cleverly created row-names are desired. \\
wt & Allows user to choose a vector of four alternative weights for SD1 to SD4. \\
sumwt & Sum of weights can be changed here =4(default).
\end{tabular}

\section*{Details}

The reason for slightly declining weights on the signs from SD1 to SD4 is simply that the local mean comparisons implicit in SD1 are known to be more reliable than local variance implicit in SD2, local skewness implicit in SD3 and local kurtosis implicit in SD4. The source of slightly declining sampling unreliability of higher moments is the higher power of the deviations from the mean needed in their computations. The summary results for all three criteria are reported in one matrix called outVote:
typ=1 reports ('Y', 'X', 'Cause', 'SD1apd', 'SD2apd', 'SD3apd', 'SD4apd') naming variables identifying 'cause' and measures of stochastic dominance using absolute values of kernel regression gradients (or amorphous partial derivatives, apd-s) being minimized by the kernel regression algorithm while comparing the kernel regression of X on Y with that of Y on X .
typ=2 reports ('Y', 'X', 'Cause', 'SD1res', 'SD2res', 'SD3res', 'SD4res') and measures of stochastic dominance using absolute values of kernel regression residuals comparing regression of X on Y with that of Y on X .
typ=3 reports ('Y', 'X', 'Cause', 'r*xly', 'r*ylx', 'r', 'p-val') containing generalized correlation coefficients \(r^{*}\), ' \(r\) ' refers to. Pearson correlation coefficient \(p\)-val is the \(p\)-value for testing the significance of ' \(r\) '

\section*{Value}

Prints three matrices detailing results for \(\mathrm{Cr} 1, \mathrm{Cr} 2\) and Cr 3 . It also returns a grand summary matrix called 'outVote' which summarizes all three criteria. In general, a positive sign for weighted sum reported in the column 'sum' means that the first variable listed as the input to this function is the 'kernel cause.' For example, crime 'kernel causes' police officer deployment (not vice versa) is indicated by the positive sign of 'sum' (=3.175) reported for that example included in this package.

\section*{Note}

The output matrix last column for 'mtcars' example has the sum of the scores by the three criteria combined. If 'sum' is positive, then variable X (mpg) is more likely to have been engineered to kernel cause the response variable Y, rather than vice versa.
The European Crime data has all three criteria correctly suggesting that high crime rate kernel causes the deployment of a large number of police officers.

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY.

\section*{References}

Vinod, H. D. 'Generalized Correlation and Kernel Causality with Applications in Development Economics' in Communications in Statistics -Simulation and Computation, 2015, http: //dx. doi . org/10.1080/03610918.2015.1122048

\section*{See Also}

See Also somePairs

\section*{Examples}
```


## Not run:

some0Pairs(mtcars) \# first variable is mpg and effect on mpg is of interest

## End(Not run)

## Not run:

data(EuroCrime)
attach(EuroCrime)
some0Pairs(cbind(crim,off))

## End(Not run)

```
```

someCPairs

```

Kernel causality computations admitting control variables reporting a 7-column matrix (has older Cr1)

\section*{Description}

Allowing input matrix of control variables, produce 7 column matrix summarizing the results where the signs of stochastic dominance order values \((+1\) or -1\()\) are weighted by \(w t=c(1.2,1.1,1.05,1)\) to compute an overall result for all orders of stochastic dominance by a weighted sum for the criteria Cr 1 and Cr 2 . The weighting is obviously not needed for the third criterion Cr 3 .

\section*{Usage}
someCPairs(mtx, ctrl, dig = 6, verbo = TRUE, rnam = FALSE, wt \(=c(1.2,1.1,1.05,1)\), sumwt \(=4\))

\section*{Arguments}
\begin{tabular}{ll}
mtx & \begin{tabular}{l}
The data matrix with many columns where the first column is fixed and then \\
paired with all other columns, one by one.
\end{tabular} \\
ctrl & data matrix for designated control variable(s) outside causal paths \\
dig & Number of digits for reporting (default dig=6). \\
verbo & Make verbo= TRUE for printing detailed steps. \\
rnam & Make rnam= TRUE if cleverly created rownames are desired. \\
wt & Allows user to choose a vector of four alternative weights for SD1 to SD4. \\
sumwt & Sum of weights can be changed here =4(default).
\end{tabular}

\section*{Details}

The reason for slightly declining weights on the signs from SD1 to SD4 is simply that the local mean comparisons implicit in SD1 are known to be more reliable than local variance implicit in SD2, local skewness implicit in SD3 and local kurtosis implicit in SD4. The source of slightly declining sampling unreliability of higher moments is the higher power of the deviations from the mean needed in their computations. The summary results for all three criteria are reported in one matrix called outVote:
typ=1 reports ('Y', 'X', 'Cause', 'SD1apdC', 'SD2apdC', 'SD3apdC', 'SD4apdC') naming variables identifying 'cause' and measures of stochastic dominance using absolute values of kernel regression gradients (or amorphous partial derivatives, apd-s) being minimized by the kernel regression algorithm while comparing the kernel regression of X on Y with that of Y on X . The letter C in the titles reminds presence of control variable(s).
typ=2 reports ('Y', 'X', 'Cause', 'SD1resC', 'SD2resC', 'SD3resC', 'SD4resC') and measures of stochastic dominance using absolute values of kernel regression residuals comparing regression of X on Y with that of Y on X .
typ \(=3\) reports (' Y ', ' X ', 'Cause', 'r*xlyC', 'r*ylxC', 'r', 'p-val') containing generalized correlation coefficients \(r^{*}\), ' \(r\) ' refers to. Pearson correlation coefficient \(p\)-val is the \(p\)-value for testing the significance of 'r'. The letter C in the titles reminds the presence of control variable(s).

\section*{Value}

Prints three matrices detailing results for \(\mathrm{Cr} 1, \mathrm{Cr} 2\) and Cr 3 . It also returns a grand summary matrix called 'outVote' which summarizes all three criteria. In general, a positive sign for weighted sum reported in the column 'sum' means that the first variable listed as the input to this function is the 'kernel cause.' This function is an extension of some0Pairs to allow for control variables. For example, crime 'kernel causes' police officer deployment (not vice versa) is indicated by the positive sign of 'sum' (=3.175) reported for that example included in this package.

\section*{Note}

The output matrix last column for 'mtcars' example has the sum of the scores by the three criteria combined. If 'sum' is positive, then variable \(\mathrm{X}(\mathrm{mpg})\) is more likely to have been engineerd to kernel cause the response variable Y, rather than vice versa.
The European Crime data has all three criteria correctly suggesting that high crime rate kernel causes the deployment of a large number of police officers.

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY.

\section*{References}

Vinod, H. D. 'Generalized Correlation and Kernel Causality with Applications in Development Economics' in Communications in Statistics -Simulation and Computation, 2015, http://dx. doi . org/10.1080/03610918.2015.1122048

\section*{See Also}

See Also somePairs, some0Pairs

\section*{Examples}
```


## Not run:

someCPairs(mtcars[,1:3],ctrl=mtcars[4:5]) \# first variable is mpg and effect on mpg is of interest

## End(Not run)

set.seed(234)
z=runif(10,2,11)\# z is independently created
x=sample(1:10)+z/10 \#x is somewhat indep and affected by z
y=1+2*x+3*z+rnorm(10)
w=runif(10)
x2=x;x2[4]=NA;y2=y;y2[8]=NA;w2=w;w2[4]=NA
someCPairs(cbind(x2,y2), cbind(z,w2)) \#yields x2 as correct cause

```
someCPairs2

Kernel causality computations admitting control variables reporting a 7-column matrix, version 2.

\section*{Description}

Second version of someCPairs also allows input matrix of control variables, produce 7 column matrix summarizing the results where the signs of stochastic dominance order values \((+1\) or -1\()\) are weighted by \(w t=c(1.2,1.1,1.05,1)\) to compute an overall result for all orders of stochastic dominance by a weighted sum for the criteria Cr 1 and Cr 2 . The weighting is obviously not needed for the third criterion Cr 3 .

\section*{Usage}
someCPairs2(mtx, ctrl, dig \(=6\), verbo \(=\) TRUE, rnam \(=\) FALSE, wt \(=c(1.2,1.1,1.05,1)\), sumwt \(=4\))

\section*{Arguments}
mtx The data matrix with many columns where the first column is fixed and then paired with all other columns, one by one.
ctrl data matrix for designated control variable(s) outside causal paths
dig Number of digits for reporting (default dig=6).
verbo Make verbo= TRUE for printing detailed steps.
rnam Make rnam= TRUE if cleverly created rownames are desired.
wt Allows user to choose a vector of four alternative weights for SD1 to SD4.
sumwt \(\quad\) Sum of weights can be changed here \(=4\) (default).

\section*{Details}

The reason for slightly declining weights on the signs from SD1 to SD4 is simply that the local mean comparisons implicit in SD1 are known to be more reliable than local variance implicit in SD2, local skewness implicit in SD3 and local kurtosis implicit in SD4. The source of slightly declining sampling unreliability of higher moments is the higher power of the deviations from the mean needed in their computations. The summary results for all three criteria are reported in one matrix called outVote:
(typ=1) reports ('Y', 'X', 'Cause', 'SD1.rhserr', 'SD2.rhserr', 'SD3.rhserr', 'SD4.rhserr') naming variables identifying the 'cause' and measures of stochastic dominance using absolute values of kernel regression abs(RHS first regressor*residual) values comparing flipped regressions X on Y versus Y on X . The letter C in the titles reminds presence of control variable(s).
typ=2 reports (' \(\mathrm{Y}^{\prime}\), ' X ', 'Cause', 'SD1resC', 'SD2resC', 'SD3resC', 'SD4resC') and measures of stochastic dominance using absolute values of kernel regression residuals comparing regression of X on Y with that of Y on X .
typ \(=3\) reports (' \(Y^{\prime}\), ' \(X^{\prime}\), 'Cause', 'r*xlyC', 'r*ylxC', 'r', 'p-val') containing generalized correlation coefficients \(r^{*}\), 'r' refers to. Pearson correlation coefficient \(p\)-val is the \(p\)-value for testing the significance of 'r'. The letter C in the titles reminds the presence of control variable(s).

\section*{Value}

Prints three matrices detailing results for \(\mathrm{Cr} 1, \mathrm{Cr} 2\) and Cr 3 . It also returns a grand summary matrix called 'outVote' which summarizes all three criteria. In general, a positive sign for weighted sum reported in the column 'sum' means that the first variable listed as the input to this function is the 'kernel cause.' This function is an extension of some0Pairs to allow for control variables. For example, crime 'kernel causes' police officer deployment (not vice versa) is indicated by the positive sign of 'sum' (=3.175) reported for that example included in this package.

\section*{Note}

The output matrix last column for 'mtcars' example has the sum of the scores by the three criteria combined. If 'sum' is positive, then variable \(\mathrm{X}(\mathrm{mpg})\) is more likely to have been engineered to kernel cause the response variable Y, rather than vice versa.
The European Crime data has all three criteria correctly suggesting that high crime rate kernel causes the deployment of a large number of police officers.

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY.

\section*{References}

Vinod, H. D. 'Generalized Correlation and Kernel Causality with Applications in Development Economics' in Communications in Statistics -Simulation and Computation, 2015, http://dx. doi . org/10.1080/03610918.2015.1122048

\section*{See Also}

See Also somePairs, some0Pairs

\section*{Examples}
```


## Not run:

someCPairs2(mtcars[,1:3],ctrl=mtcars[4:5]) \# first variable is mpg and effect on mpg is of interest

## End(Not run)

```
set. seed (234)
\(z=r u n i f(10,2,11) \# z\) is independently created
\(x=\) sample \((1: 10)+z / 10\) \#x is somewhat indep and affected by z
\(y=1+2 * x+3 * z+r n o r m(10)\)
w=runif(10)
\(x 2=x ; x 2[4]=N A ; y 2=y ; y 2[8]=N A ; w 2=w ; w 2[4]=N A\)
someCPairs2(cbind(x2,y2), cbind(z,w2)) \#yields \(x 2\) as correct cause
someMagPairs \(\quad\)\begin{tabular}{l}
Summary magnitudes after removing control variables in several pairs \\
where dependent variable is fixed.
\end{tabular}

\section*{Description}

This builds on the function mag_ctrl, where the input matrix \(m t x\) has \(p\) columns. The first column is present in each of the (\(\mathrm{p}-1\)) pairs. Its output is a matrix with four columns containing the names of variables and approximate overall estimates of the magnitudes of partial derivatives (dy/dx) and (\(\mathrm{dx} / \mathrm{dy}\)) for a distinct (\(\mathrm{x}, \mathrm{y}\)) pair in a row. The estimated overall derivatives are not always welldefined, because the real partial derivatives of nonlinear functions are generally distinct for each observation point.

\section*{Usage}
```

someMagPairs(mtx, ctrl, dig = 6, verbo = TRUE)

```

\section*{Arguments}
\begin{tabular}{ll}
\(m t x\) & \begin{tabular}{l}
The data matrix with many columns where the first column is fixed and then \\
paired with all other columns, one by one.
\end{tabular} \\
ctrl & \begin{tabular}{l}
data matrix for designated control variable(s) outside causal paths. A constant \\
vector is not allowed as a control variable.
\end{tabular} \\
dig & \begin{tabular}{l}
Number of digits for reporting (default dig=6).
\end{tabular} \\
verbo & Make verbo= TRUE for printing detailed steps.
\end{tabular}

\section*{Details}

The function mag_ctrl has kernel regressions: \(x \sim y+c t r l\) and \(x \sim c t r l\) to evaluate the 'incremental change' in R-squares. Let (rxy;ctrl) denote the square root of that 'incremental change' after its sign is made the same as that of the Pearson correlation coefficient from \(\operatorname{cor}(x, y)\)). One can interpret (rxy;ctrl) as a generalized partial correlation coefficient when \(x\) is regressed on \(y\) after removing the effect of control variable(s) in ctrl. It is more general than the usual partial correlation coefficient, since this one allows for nonlinear relations among variables. Next, the function computes 'dxdy' obtained by multiplying (rxy;ctrl) by the ratio of standard deviations, sd(x)/sd(y). Now our 'dxdy' approximates the magnitude of the partial derivative (\(\mathrm{dx} / \mathrm{dy}\)) in a causal model where y is the cause and \(x\) is the effect. The function also reports entirely analogous 'dydx' obtained by interchanging x and y .
someMegPairs function runs the function mag_ctrl on several column pairs in a matrix input mtx where the first column is held fixed and all others are changed one by one, reporting two partial derivatives for each row.

\section*{Value}

Table containing names of Xi and Xj and two magnitudes: \((\mathrm{dXidXj}, \mathrm{dXjdXi}) . \mathrm{dXidXj}\) is the magnitude of the effect on Xi when Xi is regressed on Xj (i.e., when Xj is the cause). The analogous dXjdXi is the magnitude when Xj is regressed on Xi .

\section*{Note}

This function is intended for use only after the causal path direction is already determined by various functions in this package (e.g. someCPairs). That is, after the researcher knows whether Xi causes Xj or vice versa. The output of this function is a matrix of 4 columns, where first columns list the names of Xi and Xj and the next two numbers in each row are \(\mathrm{dXidXj}, \mathrm{dXjdXi}\), respectively, representing the magnitude of effect of one variable on the other.

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

\section*{References}

Vinod, H. D. 'Generalized Correlation and Kernel Causality with Applications in Development Economics' in Communications in Statistics -Simulation and Computation, 2015, http://dx. doi . org/10.1080/03610918.2015.1122048

Vinod, H. D. 'Matrix Algebra Topics in Statistics and Economics Using R', Chapter 4 in Handbook of Statistics: Computational Statistics with R, Vol.32, co-editors: M. B. Rao and C. R. Rao. New York: North Holland, Elsevier Science Publishers, 2014, pp. 143-176.

\section*{See Also}

See mag_ctrl, someCPairs

\section*{Examples}
```

set.seed(34); x=sample(1:10);y=1+2*x+rnorm(10); z=sample(2:11)
w=runif(10)
ss=someMagPairs(cbind(y,x,z),ctrl=w)

```
somePairs Function reporting kernel causality results as a 7-column ma- trix.(deprecated)

\section*{Description}

This function lets the user choose one of three criteria to determine causal direction by setting typ as 1,2 or 3 . This function reports results for only one criterion at a time unlike the function some0Pairs which summarizes the resulting causal directions for all criteria with suitable weights. If some variables are 'control' variables, use someCPairs, \(\mathrm{C}=\) control.

\section*{Usage}
somePairs(mtx, dig = 6, verbo = FALSE, typ = 1, rnam = FALSE)

\section*{Arguments}
\(m t x \quad\) The data matrix in the first column is paired with all others.
dig Number of digits for reporting (default dig=6).
verbo Make verbo= TRUE for printing detailed steps.
typ Must be 1 (default), 2 or 3 for the three criteria.
rnam Make rnam= TRUE if cleverly created rownames are desired.

\section*{Details}
(typ=1) reports ('Y', 'X', 'Cause', 'SD1apd', 'SD2apd', 'SD3apd', 'SD4apd') nameing variables identifying 'cause' and measures of stochastic dominance using absolute values of kernel regression gradients comparing regresson of X on Y with that of Y on X .
(typ=2) reports ('Y', 'X', 'Cause', 'SD1res', 'SD2res', 'SD3res', 'SD4res') and measures of stochastic dominance using absolute values of kernel regression residuals comparing regresson of X on Y with that of Y on X .
(typ=3) reports (' \(\mathrm{Y}^{\prime}\), ' \(\mathrm{X}^{\prime}\), 'Cause', 'r*XIY', 'r* \(\mathrm{Y} \mid \mathrm{X}^{\prime}\), ' \(\mathrm{r}^{\prime}\), 'p-val') containing generalized correlation coefficients \(r^{*}\), ' \(r\) ' refers to the Pearson correlation coefficient and \(p\)-val column has the \(p\)-values for testing the significance of Pearson's ' \(r\) '.

\section*{Value}

A matrix containing causal identification results for one criterion. The first column of the input mtx having p columns is paired with (\(\mathrm{p}-1\)) other columns The output matrix headings are selfexplanatory and distinct for each criterion Cr 1 to Cr 3 .

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

\section*{References}
H. D. Vinod 'Generalized Correlation and Kernel Causality with Applications in Development Economics' in Communications in Statistics -Simulation and Computation, 2015, http://dx.doi. org/10.1080/03610918.2015.1122048

\section*{See Also}

The related function some0Pairs may be more useful, since it reports on all three criteria (by choosing typ \(=1,2,3\)) and further summarizes their results by weighting to help choose causal paths.

\section*{Examples}
```


## Not run:

data(mtcars)
somePairs(mtcars)

## End(Not run)

```
somePairs2

Function reporting kernel causality results as a 7-column matrix, version 2.

\section*{Description}

This function is an alternative implementation of somePairs which also lets the user choose one of three criteria to determine causal direction by setting typ as 1,2 or 3 . This function reports results for only one criterion at a time unlike the function some0Pairs which summarizes the resulting causal directions for all criteria with suitable weights. If some variables are 'control' variables, use someCPairs, where notation \(\mathrm{C}=\) control.

\section*{Usage}
somePairs2(mtx, dig \(=6\), verbo \(=\) FALSE, typ \(=1\), rnam \(=\) FALSE)

\section*{Arguments}
mtx The data matrix in the first column is paired with all others.
dig Number of digits for reporting (default dig=6).
verbo Make verbo= TRUE for printing detailed steps.
typ Must be 1 (default), 2 or 3 for the three criteria.
rnam Make rnam= TRUE if cleverly created rownames are desired.

\section*{Details}
(typ=1) reports ('Y', 'X', 'Cause', 'SD1.rhserr', 'SD2.rhserr', 'SD3.rhserr', 'SD4.rhserr') naming variables identifying the 'cause,' using Hausman-Wu criterion. It measures of stochastic dominance using absolute values of kernel regression abs(RHS first regressor*residual), comparing flipped regressions X on Y versus Y on X .
(typ=2) reports ('Y', 'X', 'Cause', 'SD1res', 'SD2res', 'SD3res', 'SD4res') and measures of stochastic dominance using absolute values of kernel regression residuals comparing regression of X on Y with that of Y on X.
(typ=3) reports (' \(\mathrm{Y}^{\prime}\), ' X ', 'Cause', ' \(\mathrm{r}^{*} \mathrm{X} \mid \mathrm{Y}^{\prime}\), ' \(\mathrm{r}^{*} \mathrm{Y} \mid \mathrm{X}\) ', ' r , ' p -val') containing generalized correlation coefficients \(r^{*}\), 'r' refers to the Pearson correlation coefficient and \(p\)-val column has the \(p\)-values for testing the significance of Pearson's 'r'.

\section*{Value}

A matrix containing causal identification results for one criterion. The first column of the input \(m t x\) having p columns is paired with (\(\mathrm{p}-1\)) other columns The output matrix headings are selfexplanatory and distinct for each criterion Cr 1 to Cr 3 .

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

\section*{References}
H. D. Vinod 'Generalized Correlation and Kernel Causality with Applications in Development Economics' in Communications in Statistics -Simulation and Computation, 2015, http://dx.doi. org/10.1080/03610918.2015.1122048

\section*{See Also}

The related function some0Pairs may be more useful, since it reports on all three criteria (by choosing typ \(=1,2,3\)) and further summarizes their results by weighting to help choose causal paths.
Alternative and revised function somePairs2 implements the Cr1 (first criterion) with a direct estimate of the Hausman-Wu statistic for testing exogeneity.

\section*{Examples}
```

    ## Not run:
    data(mtcars)
    somePairs2(mtcars)
    ## End(Not run)
    ```
```

sort.abse0 internal sort.abse0

```

\section*{Description}
intended for internal use only

\section*{Usage}
sort.abse0
```

sort.e0 internal sort.e0

```

\section*{Description}
intended for internal use only

\section*{Usage}
sort.e0
sort_matrix \(\quad\) Sort all columns of matrix \(x\) with respect to the \(j\)-th column.

\section*{Description}

This function can use the sort.list function in R. The reason for using it is that one wants the sort to carry along all columns.

\section*{Usage}
sort_matrix(x, j)

\section*{Arguments}
\(x \quad\) An input matrix with several columns
j The column number with reference to which one wants to sort

\section*{Value}

A sorted matrix

\section*{Examples}
```

    set.seed(30)
    x=matrix(sample(1:50),ncol=5)
    y=sort_matrix(x,3);y
    ```
stdres Residuals of kernel regressions of \(x\) on \(y\) when both \(x\) and \(y\) are stan-
 dardized.

\section*{Description}
1) Standardize the data to force mean zero and variance unity, 2) kernel regress \(x\) on \(y\), with the option 'residuals = TRUE' and finally 3) compute the residuals.

\section*{Usage}
stdres(x, y)

\section*{Arguments}
\(x \quad\) vector of data on the dependent variable
\(y \quad\) data on the regressors which can be a matrix

\section*{Details}

The first argument is assumed to be the dependent variable. If \(\operatorname{stdres}(x, y)\) is used, you are regressing x on y (not the usual y on x). The regressors can be a matrix with 2 or more columns. The missing values are suitably ignored by the standardization.

\section*{Value}
kernel regression residuals are returned after standardizing the data on both sides so that the magnitudes of residuals are comparable between regression of \(x\) on \(y\) on the one hand and regression of \(y\) on \(x\) on the other.

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

\section*{References}

Vinod, H. D. 'Generalized Correlation and Kernel Causality with Applications in Development Economics' in Communications in Statistics -Simulation and Computation, 2015, http://dx. doi . org/10.1080/03610918.2015.1122048

\section*{Examples}
```


## Not run:

set.seed(330)
x=sample(20:50)
y=sample(20:50)
stdres(x,y)

## End(Not run)

```
```

stdz_xy

```

Standardize \(x\) and \(y\) vectors to achieve zero mean and unit variance.

\section*{Description}

Standardize x and y vectors to achieve zero mean and unit variance.

\section*{Usage}
stdz_xy (x, y)

\section*{Arguments}
\begin{tabular}{ll}
\(x\) & Vector of data which can have NA's \\
\(y\) & Vector of data which can have NA's
\end{tabular}

\section*{Value}
\begin{tabular}{ll}
stdx & standardized values of \(x\) \\
stdy & standardized values of \(y\)
\end{tabular}

\section*{Note}

This works even if there are missing x or y values.

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

\section*{Examples}
```


## Not run:

set.seed(30)
x=sample(20:30)
y=sample(21:31)
stdz_xy(x,y)

## End(Not run)

```
```

stochdom2

```

Compute vectors measuring stochastic dominance of four orders.

\section*{Description}

Stochastic dominance originated as a sophisticated comparison of two distributions of stock market returns. The dominating distribution is superior in terms of local mean, variance, skewness and kurtosis respectively, representing dominance orders 1 to 4 , without simply computing the four moment summary measures for the entire data. Vinod (2008, sec. 4.3) explains the details. This function uses the output of 'wtdpapb'.

\section*{Usage}
stochdom2(dj, wpa, wpb)

\section*{Arguments}
dj Vector of (unequal) distances of consecutive intervals defined on common support of two probability distributions being compared
wpa Vector of the first set of (weighted) probabilities
wpb \(\quad\) Vector of the second set of (weighted) probabilities

\section*{Value}
sd1b Vector measuring stochastic dominance of order 1, SD1
\(\mathrm{sd} 2 \mathrm{~b} \quad\) Vector measuring stochastic dominance of order 2, SD2
sd3b Vector measuring stochastic dominance of order 3, SD3
sd4b Vector measuring stochastic dominance of order 4, SD4

Note
The input to this function is the output of the function wtdpapb.

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

\section*{References}

Vinod, H. D.', 'Hands-On Intermediate Econometrics Using R' (2008) World Scientific Publishers: Hackensack, NJ. https://www.worldscientific.com/worldscibooks/10.1142/6895
Vinod, H. D. 'Ranking Mutual Funds Using Unconventional Utility Theory and Stochastic Dominance,' Journal of Empirical Finance Vol. 11(3) 2004, pp. 353-377.

\section*{See Also}

See Also wtdpapb

\section*{Examples}
```


## Not run:

set.seed(234);x=sample(1:30);y=sample(5:34)
w1=wtdpapb(x,y) \#y should dominate x with mostly positive SDs
stochdom2(w1$dj, w1$wpa, w1\$wpb)

## End(Not run)

```
```

wtdpapb Creates input for the stochastic dominance function stochdom2

```

\section*{Description}

Stochastic dominance is a sophisticated comparison of two distributions of stock market returns. The dominating distribution is superior in terms of mean, variance, skewness and kurtosis respectively, representing dominance orders 1 to 4 , without directly computing four moments. Vinod(2008) sec. 4.3 explains the details. The 'wtdpapb' function creates the input for stochdom 2 which in turn computes the stochastic dominance. See Vinod (2004) for details about quantitative stochastic dominance.

\section*{Usage}
wtdpapb (xa, xb)

\section*{Arguments}
xa
\(x b \quad\) Vector of returns for the second option B

Value
wpa Weighted vector of probabilities for option A
wpb Weighted vector of probabilities for option B
dj Vector of interval widths (distances) when both sets of data are forced on a common support

\section*{Note}

Function is needed before using stochastic dominance
In Vinod (2008) where the purpose of wtdpapb is to map from standard 'expected utility theory' weights to more sophisticated 'non-expected utility theory' weights using Prelec's (1998, Econometrica, p. 497) method. These weights are not needed here. Hence we provide the function prelec 2 which does not use Prelec weights at all, thereby simplifying and speeding up the R code provided in Vinod (2008). This function avoids sophisticated 'non-expected' utility theory which incorporates commonly observed human behavior favoring loss aversion and other anomalies inconsistent with precepts of the expected utility theory. Such weighting is not needed for our application.

\section*{Author(s)}

Prof. H. D. Vinod, Economics Dept., Fordham University, NY

\section*{References}

Vinod, H. D.', 'Hands-On Intermediate Econometrics Using R' (2008) World Scientific Publishers: Hackensack, NJ. https://www.worldscientific.com/worldscibooks/10.1142/6895

Vinod, H. D. 'Ranking Mutual Funds Using Unconventional Utility Theory and Stochastic Dominance,' Journal of Empirical Finance Vol. 11(3) 2004, pp. 353-377.

\section*{See Also}

See Also stochdom2

\section*{Examples}
```


## Not run:

set.seed(234);x=sample(1:30);y=sample(5:34)
wtdpapb(x,y)

## End(Not run)

```

\section*{Index}
```

*Topic da2Lagtasets
da2Lag, 36
*Topic datasets
badCol, 17
diff.e0,37
ibad,49
ii,49
j,49
abs_res, 8
abs_stdapd, 9, 10
abs_stdapdC,10
abs_stdres, 6, 7, 11, 13, 14
abs_stdresC,12
abs_stdrhserC,13
abs_stdrhserr,14
absBstdres,4
absBstdresC,5
absBstdrhserC,6
allPairs, 15
badCol,17
bigfp,17
bootPairs, 18, 21, 28, 30, 33, 90, 92, 94
bootPairs0, 20
bootQuantile, 21, 23, }2
bootSign, 23, 25
bootSignPcent, 23, 24
bootSummary, 25
causeSummary, 27, 33
causeSummary0, 28, 29, 33
causeSummBlk, 31
cofactor, 33, 72, 73
comp_portfo2, 34
da, 35
da2Lag, 36
depMeas,36
diff.e0, 37

```
dig, 37
e0, 38
EuroCrime, 38
generalCorrInfo, 39
generalCorrInfo-package
(generalCorrInfo), 39
get0outliers, 40
getSeq, 41
gmc0, 42
gmc1, 42
gmcmtx0, 37, 42, 82
gmcmtxBlk, 37, 41, 43, 44, 60, 82
gmcmtxZ, 45
gmcxy_np, 46
goodCol, 47
heurist, 48
i, 49
ibad, 49
ii, 49
j, 49
kern, 50, 52, 64, 71
kern_ctrl, 50, 51
mag, 52, 54
mag_ctrl, 53, 53, 102
min.e0, 55
minor, 55, 72, 73
mtx, 56
mtx0, 56
\(m t \times 2,56\)
n, 57
nall, 57
nam. badCol, 57
nam.goodCol, 58
nam.mtx0, 58
napair, 58, 59
naTriplet, 59
NLhat, 60
out1, 61
p1, 61
Panel2Lag, 61
PanelLag, 62, 62
parcor_ijk, 65, 67, 68, 70, 70, 73
parcor_ijkOLD, 71, 74
parcor_linear, 64, 71, 72
parcor_ridg, 73
parcorBijk, 63
parcorBMany, 64
parcorMany, 65, 66
parcorMtx, 67
parcorSilent, 68
pcause, 75
pillar3D, 76
prelec2, 77
probSign, 78
rhs.lag2, 79
rhs1, 80
ridgek, 80
rij, 80
rijMrji, 80
rji, 81
rrij, 81
rrji, 81
rstar, 82
sales2Lag, 83
salesLag, 83
seed, 83
sgn.e0, 84
silentMtx, \(84,90,92,94\)
silentMtx0, 86
silentPairs, \(19,22,23,25,26,28,30,79\), 85, 88, 92
silentPairs0, 21, 88,90
siPairsBlk, 33, 92
some0Pairs, 85, 88, 90, 92, 94, 94, 98, 100, 103, 104
someCPairs, 28, 30, 33, 85, 88, 90, 92, 94, 96, 102
someCPairs2, 98
someMagPairs, 100
somePairs, 96, 98, 100, 102
somePairs2, 103, 104
sort.abse0, 105
sort.e0, 105
sort_matrix, 105
stdres, 106
stdz_xy, 107
stochdom2, 35, 108, 110
wtdpapb, 109, 109```

